Subspace-orbit randomized algorithms for low rank approximations of third-order tensors in t-product format

This paper focuses on computing low rank approximations of third-order tensors in the t-product format using random techniques. Given a truncated term K, we derive randomized algorithms for approximating the K-term t-SVD, which is called as the subspace-orbit randomized t-SVD (sort-SVD). Additionall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 170; S. 112066
Hauptverfasser: Wang, Xuezhong, Wang, Kai, Mo, Changxin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2026
Schlagworte:
ISSN:0031-3203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on computing low rank approximations of third-order tensors in the t-product format using random techniques. Given a truncated term K, we derive randomized algorithms for approximating the K-term t-SVD, which is called as the subspace-orbit randomized t-SVD (sort-SVD). Additionally, we conduct an analysis of the deterministic and probabilistic error bounds of the proposed algorithm, subject to certain assumptions. We integrate the present algorithm with the power method to enhance the accuracy of the approximate the K-term t-SVD. Furthermore, we demonstrate the effectiveness of our algorithms through numerous numerical examples. Lastly, the proposed algorithms are employed to compress data tensors from various image databases.
ISSN:0031-3203
DOI:10.1016/j.patcog.2025.112066