Interaction Graphs: Exponentials
This paper is the fourth of a series exposing a systematic combinatorial approach to Girard's Geometry of Interaction (GoI) program. The GoI program aims at obtaining particular realisability models for linear logic that accounts for the dynamics of cut-elimination. This fourth paper tackles th...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 15, Issue 3 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science e.V
01.01.2019
|
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper is the fourth of a series exposing a systematic combinatorial approach to Girard's Geometry of Interaction (GoI) program. The GoI program aims at obtaining particular realisability models for linear logic that accounts for the dynamics of cut-elimination. This fourth paper tackles the complex issue of defining exponential connectives in this framework. For that purpose, we use the notion of \emph{graphings}, a generalisation of graphs which was defined in earlier work. We explain how to define a GoI for Elementary Linear Logic (ELL) with second-order quantification, a sub-system of linear logic that captures the class of elementary time computable functions. |
|---|---|
| ISSN: | 1860-5974 1860-5974 |
| DOI: | 10.23638/LMCS-15(3:25)2019 |