Knowledge- and Model-Driven Deep Reinforcement Learning for Efficient Federated Edge Learning: Single- and Multi-Agent Frameworks

In this paper, we investigate federated learning (FL) efficiency improvement in practical edge computing systems, where edge workers have non-independent and identically distributed (non-IID) local data, as well as dynamic and heterogeneous computing and communication capabilities. We consider a gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on machine learning in communications and networking Jg. 3; S. 332 - 352
Hauptverfasser: Li, Yangchen, Zhao, Lingzhi, Wang, Tianle, Ding, Lianghui, Yang, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2025
Schlagworte:
ISSN:2831-316X, 2831-316X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!