Knowledge- and Model-Driven Deep Reinforcement Learning for Efficient Federated Edge Learning: Single- and Multi-Agent Frameworks
In this paper, we investigate federated learning (FL) efficiency improvement in practical edge computing systems, where edge workers have non-independent and identically distributed (non-IID) local data, as well as dynamic and heterogeneous computing and communication capabilities. We consider a gen...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on machine learning in communications and networking Jg. 3; S. 332 - 352 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2025
|
| Schlagworte: | |
| ISSN: | 2831-316X, 2831-316X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!