Knowledge- and Model-Driven Deep Reinforcement Learning for Efficient Federated Edge Learning: Single- and Multi-Agent Frameworks
In this paper, we investigate federated learning (FL) efficiency improvement in practical edge computing systems, where edge workers have non-independent and identically distributed (non-IID) local data, as well as dynamic and heterogeneous computing and communication capabilities. We consider a gen...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on machine learning in communications and networking Jg. 3; S. 332 - 352 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2025
|
| Schlagworte: | |
| ISSN: | 2831-316X, 2831-316X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we investigate federated learning (FL) efficiency improvement in practical edge computing systems, where edge workers have non-independent and identically distributed (non-IID) local data, as well as dynamic and heterogeneous computing and communication capabilities. We consider a general FL algorithm with configurable parameters, including the number of local iterations, mini-batch sizes, step sizes, aggregation weights, and quantization parameters, and provide a rigorous convergence analysis. We formulate a joint optimization problem for FL worker selection and algorithm parameter configuration to minimize the final test loss subject to time and energy constraints. The resulting problem is a complicated stochastic sequential decision-making problem with an implicit objective function and unknown transition probabilities. To address these challenges, we propose knowledge/model-driven single-agent and multi-agent deep reinforcement learning (DRL) frameworks. We transform the primal problem into a Markov decision process (MDP) for the single-agent DRL framework and a decentralized partially-observable Markov decision process (Dec-POMDP) for the multi-agent DRL framework. We develop efficient single-agent and multi-agent asynchronous advantage actor-critic (A3C) approaches to solve the MDP and Dec-POMDP, respectively. In both frameworks, we design a knowledge-based reward to facilitate effective DRL and propose a model-based stochastic policy to tackle the mixed discrete-continuous actions and large action spaces. To reduce the computational complexities of policy learning and execution, we introduce a segmented actor-critic architecture for the single-agent DRL and a distributed actor-critic architecture for the multi-agent DRL. Numerical results demonstrate the effectiveness and advantages of the proposed frameworks in enhancing FL efficiency. |
|---|---|
| AbstractList | In this paper, we investigate federated learning (FL) efficiency improvement in practical edge computing systems, where edge workers have non-independent and identically distributed (non-IID) local data, as well as dynamic and heterogeneous computing and communication capabilities. We consider a general FL algorithm with configurable parameters, including the number of local iterations, mini-batch sizes, step sizes, aggregation weights, and quantization parameters, and provide a rigorous convergence analysis. We formulate a joint optimization problem for FL worker selection and algorithm parameter configuration to minimize the final test loss subject to time and energy constraints. The resulting problem is a complicated stochastic sequential decision-making problem with an implicit objective function and unknown transition probabilities. To address these challenges, we propose knowledge/model-driven single-agent and multi-agent deep reinforcement learning (DRL) frameworks. We transform the primal problem into a Markov decision process (MDP) for the single-agent DRL framework and a decentralized partially-observable Markov decision process (Dec-POMDP) for the multi-agent DRL framework. We develop efficient single-agent and multi-agent asynchronous advantage actor-critic (A3C) approaches to solve the MDP and Dec-POMDP, respectively. In both frameworks, we design a knowledge-based reward to facilitate effective DRL and propose a model-based stochastic policy to tackle the mixed discrete-continuous actions and large action spaces. To reduce the computational complexities of policy learning and execution, we introduce a segmented actor-critic architecture for the single-agent DRL and a distributed actor-critic architecture for the multi-agent DRL. Numerical results demonstrate the effectiveness and advantages of the proposed frameworks in enhancing FL efficiency. |
| Author | Ding, Lianghui Li, Yangchen Zhao, Lingzhi Yang, Feng Wang, Tianle |
| Author_xml | – sequence: 1 givenname: Yangchen orcidid: 0000-0001-5885-5587 surname: Li fullname: Li, Yangchen organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Lingzhi orcidid: 0000-0002-8104-1124 surname: Zhao fullname: Zhao, Lingzhi organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: Tianle surname: Wang fullname: Wang, Tianle organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Lianghui orcidid: 0000-0002-3231-3613 surname: Ding fullname: Ding, Lianghui organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Feng orcidid: 0000-0002-6350-5765 surname: Yang fullname: Yang, Feng email: yangfeng@sjtu.edu.cn organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China |
| BookMark | eNp9kc1OGzEURq2KSqWBF6i68AtM6t_xuDsUQosIVAIqdWfdse9EphMbeYaiLvvmTBKoUBfd2NZnn09XPu_JQcoJCfnA2ZxzZj_dXq4WV3PBhJ5LLZXR6g05FI3kleT1j4NX53fkeBjuGGNSMmNqcUj-XKT82GNYY0UhBXqZA_bVaYm_MNFTxHt6jTF1uXjcYBrpCqGkmNZ0iuiy66KP2_gMAxYYMdDlVPX31Wd6M639S_dDP8bqZL0DCmzwMZefwxF520E_4PHzPiPfz5a3i6_V6tuX88XJqvKSNWNlhO5a7VlbdyJw0J03nCndmq4xtlUIjWfA2HSBlhthTfASrIGaeyu9lHJGzve9IcOduy9xA-W3yxDdLshl7aCM0ffoZF2D0FoZFbzS0luuGtaitdzXAaY_npFm3-VLHoaCnfNxhDHmNBaIvePMbc24nRm3NeOezUyo-Ad9GeW_0Mc9FBHxFdBopSeZTwgVnF0 |
| CODEN | ITMLBB |
| CitedBy_id | crossref_primary_10_1109_TCC_2025_3574823 |
| Cites_doi | 10.1109/TII.2022.3210008 10.1109/5.726791 10.1109/JIOT.2022.3172113 10.1145/3545008.3545085 10.1109/JSTSP.2021.3126174 10.1109/TMC.2022.3186936 10.1109/TII.2021.3064351 10.1109/MWC.003.2100028 10.1109/JSAC.2019.2904348 10.1109/TWC.2020.3037554 10.1109/IWQoS49365.2020.9212881 10.1109/TWC.2020.3002988 10.1609/aaai.v36i8.20894 10.1109/SEC50012.2020.00060 10.1109/TNSE.2022.3225444 10.1109/GCWkshps50303.2020.9367421 10.1109/TWC.2016.2633522 10.1109/TPDS.2021.3134647 10.1561/2200000083 10.1109/TWC.2023.3335302 10.1109/JSAC.2021.3118352 10.1109/LCOMM.2021.3122129 10.1109/JIOT.2020.3028742 10.1109/COMST.2020.2986024 10.1016/j.future.2023.03.009 10.1109/FMEC59375.2023.10306017 10.1109/TCOMM.2021.3083316 10.1109/INFOCOM41043.2020.9155494 10.1109/IJCNN.2017.7966217 10.1109/INFOCOM.2019.8737464 10.1109/IWQOS52092.2021.9521301 10.1109/TII.2022.3222369 10.1109/ICDE53745.2022.00077 10.1109/INFOCOM42981.2021.9488679 10.1109/GLOBECOM48099.2022.10001466 10.1109/TII.2022.3183465 10.1609/aaai.v33i01.33015693 10.23919/EUSIPCO54536.2021.9616052 10.1007/s11280-021-00989-x 10.1109/CVPR52688.2022.00986 10.1109/TC.2021.3099723 10.1109/ICC.2019.8761315 10.1109/IJCNN55064.2022.9892211 10.1007/978-3-319-71682-4_5 10.1109/ACCESS.2021.3056919 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/TMLCN.2025.3534754 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Explore CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Explore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2831-316X |
| EndPage | 352 |
| ExternalDocumentID | oai_doaj_org_article_366a255474dc453c91480be991c6da35 10_1109_TMLCN_2025_3534754 10854500 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shanghai Key Laboratory Funding grantid: (STCSM 22DZ2229005) – fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning funderid: 10.13039/501100013285 |
| GroupedDBID | 0R~ 97E ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c308t-725fb5c0b6f2d1a5fc71045b7f879b4ea8c0a00a5fe917297dc3a97a61c93c333 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001487810100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2831-316X |
| IngestDate | Fri Oct 03 12:45:03 EDT 2025 Sat Nov 29 08:18:42 EST 2025 Tue Nov 18 22:17:19 EST 2025 Wed Aug 27 01:49:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-725fb5c0b6f2d1a5fc71045b7f879b4ea8c0a00a5fe917297dc3a97a61c93c333 |
| ORCID | 0000-0001-5885-5587 0000-0002-3231-3613 0000-0002-6350-5765 0000-0002-8104-1124 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10854500 |
| PageCount | 21 |
| ParticipantIDs | ieee_primary_10854500 doaj_primary_oai_doaj_org_article_366a255474dc453c91480be991c6da35 crossref_citationtrail_10_1109_TMLCN_2025_3534754 crossref_primary_10_1109_TMLCN_2025_3534754 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on machine learning in communications and networking |
| PublicationTitleAbbrev | TMLCN |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref15 ref14 ref53 ref11 Li (ref6) 2020; 2 ref54 ref17 Li (ref1) ref16 ref19 ref18 Mnih (ref46) ref45 ref48 Schulman (ref56) 2017 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref3 ref5 Kingma (ref52) 2014 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 McMahan (ref4); 54 ref32 ref2 ref39 ref38 Krizhevsky (ref55) 2009 ref24 Bertsekas (ref51) 2019; 1 ref26 ref25 ref20 ref22 ref21 ref28 Jee Cho (ref23) 2020 ref27 Hsu (ref7) 2019 ref29 Wang (ref10); 1 Zhao (ref50) 2018 |
| References_xml | – ident: ref37 doi: 10.1109/TII.2022.3210008 – start-page: 1928 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref46 article-title: Asynchronous methods for deep reinforcement learning – ident: ref45 doi: 10.1109/5.726791 – ident: ref19 doi: 10.1109/JIOT.2022.3172113 – ident: ref32 doi: 10.1145/3545008.3545085 – ident: ref26 doi: 10.1109/JSTSP.2021.3126174 – ident: ref9 doi: 10.1109/TMC.2022.3186936 – ident: ref39 doi: 10.1109/TII.2021.3064351 – ident: ref5 doi: 10.1109/MWC.003.2100028 – ident: ref12 doi: 10.1109/JSAC.2019.2904348 – year: 2017 ident: ref56 article-title: Proximal policy optimization algorithms publication-title: arXiv:1707.06347 – ident: ref15 doi: 10.1109/TWC.2020.3037554 – ident: ref29 doi: 10.1109/IWQoS49365.2020.9212881 – year: 2019 ident: ref7 article-title: Measuring the effects of non-identical data distribution for federated visual classification publication-title: arXiv:1909.06335 – ident: ref13 doi: 10.1109/TWC.2020.3002988 – ident: ref35 doi: 10.1609/aaai.v36i8.20894 – start-page: 1 volume-title: Proc. IEEE Global Commun. Conf. (Globecom) ident: ref1 article-title: Knowledge and model-driven deep reinforcement learning for federated edge learning – ident: ref17 doi: 10.1109/SEC50012.2020.00060 – ident: ref42 doi: 10.1109/TNSE.2022.3225444 – ident: ref28 doi: 10.1109/GCWkshps50303.2020.9367421 – ident: ref48 doi: 10.1109/TWC.2016.2633522 – volume: 1 start-page: 212 volume-title: Proc. SysML ident: ref10 article-title: Adaptive communication strategies to achieve the best error-runtime trade-off in local-update SGD – ident: ref43 doi: 10.1109/TPDS.2021.3134647 – ident: ref49 doi: 10.1561/2200000083 – volume: 1 year: 2019 ident: ref51 publication-title: Reinforcement Learning and Optimal Control – ident: ref11 doi: 10.1109/TWC.2023.3335302 – ident: ref40 doi: 10.1109/JSAC.2021.3118352 – ident: ref44 doi: 10.1109/LCOMM.2021.3122129 – ident: ref27 doi: 10.1109/JIOT.2020.3028742 – ident: ref2 doi: 10.1109/COMST.2020.2986024 – ident: ref41 doi: 10.1016/j.future.2023.03.009 – ident: ref3 doi: 10.1109/FMEC59375.2023.10306017 – ident: ref8 doi: 10.1109/TCOMM.2021.3083316 – ident: ref34 doi: 10.1109/INFOCOM41043.2020.9155494 – ident: ref54 doi: 10.1109/IJCNN.2017.7966217 – ident: ref14 doi: 10.1109/INFOCOM.2019.8737464 – ident: ref21 doi: 10.1109/IWQOS52092.2021.9521301 – year: 2014 ident: ref52 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – volume-title: Learning multiple layers of features from tiny images year: 2009 ident: ref55 – ident: ref33 doi: 10.1109/TII.2022.3222369 – volume: 54 start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref4 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref57 doi: 10.1109/ICDE53745.2022.00077 – ident: ref25 doi: 10.1109/INFOCOM42981.2021.9488679 – ident: ref38 doi: 10.1109/GLOBECOM48099.2022.10001466 – ident: ref36 doi: 10.1109/TII.2022.3183465 – ident: ref47 doi: 10.1609/aaai.v33i01.33015693 – ident: ref22 doi: 10.23919/EUSIPCO54536.2021.9616052 – ident: ref16 doi: 10.1007/s11280-021-00989-x – ident: ref18 doi: 10.1109/CVPR52688.2022.00986 – volume: 2 start-page: 429 year: 2020 ident: ref6 article-title: Federated optimization in heterogeneous networks publication-title: Proc. Mach. Learn. Syst. – ident: ref31 doi: 10.1109/TC.2021.3099723 – ident: ref24 doi: 10.1109/ICC.2019.8761315 – ident: ref30 doi: 10.1109/IJCNN55064.2022.9892211 – ident: ref53 doi: 10.1007/978-3-319-71682-4_5 – ident: ref20 doi: 10.1109/ACCESS.2021.3056919 – year: 2018 ident: ref50 article-title: Federated learning with non-IID data publication-title: arXiv:1806.00582 – year: 2020 ident: ref23 article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies publication-title: arXiv:2010.01243 |
| SSID | ssj0003307762 |
| Score | 2.2853618 |
| Snippet | In this paper, we investigate federated learning (FL) efficiency improvement in practical edge computing systems, where edge workers have non-independent and... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 332 |
| SubjectTerms | Accuracy algorithm parameter configuration Computational modeling Convergence deep reinforcement learning Delay effects Edge computing Energy consumption Federated learning Markov decision processes multi-agent reinforcement learning Quantization (signal) Servers Stochastic processes worker selection |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYM3qWabtGm8-dhFUBfxAd5KMklFWFZZV-_-c2fSdlkvevHSQ0jSkJkk34TJ9zF2QJjUk3x7ATkFKBISVzniIgzgQiBCb4hiE3owKJ6ezO2M1BflhNX0wPXEHcs8twh7lVYeVCbBIH4XLiCsgdxbGdlLEfXMBFO0B2OUrnGZt69khDl-uLk-H2A8mGZHMpNKZ-rHSRQJ-38orMQDpr_ClhtkyE_rEa2yuTBaY0szfIHr7OuqvQFLuB15TkJmw-RiTDsWvwjhjd-FyIQK8dKPN-SpzxyLeC-SRVBxnwgkEGN63sOuprVO-D1-h23flGmYnD7HBm0G1_sGe-z3Hs4vk0ZDIQEpikmi06xyGQiXV6nv2qwChBQqc7oqtHEq2AKEFcJSzhliGaM9SGu0zbtgJEgpN9n86HUUthgnsjofRI5BEKg04NJNU6u8U65IgwPTYd12PktoCMZJ52JYxkBDmDLaoCQblI0NOuxw2uatptf4tfYZmWlak6ixYwE6TNk4TPmXw3TYBhl55ncFokghtv-j8x22SAOu72h22fxk_BH22AJ8Tl7ex_vRR78BSlvm3g priority: 102 providerName: Directory of Open Access Journals |
| Title | Knowledge- and Model-Driven Deep Reinforcement Learning for Efficient Federated Edge Learning: Single- and Multi-Agent Frameworks |
| URI | https://ieeexplore.ieee.org/document/10854500 https://doaj.org/article/366a255474dc453c91480be991c6da35 |
| Volume | 3 |
| WOSCitedRecordID | wos001487810100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2831-316X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307762 issn: 2831-316X databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2831-316X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307762 issn: 2831-316X databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVp6KE9pF8p3TYNOvRWnGgtybJ6S5NdCk2WkqSQm5FG41BYNmGzybHQf94Z2V6SQwq9CDNIsvBY1rzxzBshPrFNmrh8ew0VAxQNRWwjcxEiREQm9IZcbMLNZvXFhf_RJ6vnXBhEzMFnuMeX-V9-uoJbdpXtc6S8sYoQ-hPnXJestXaoEDB3tLOHxBjl989Pjg9nBAFLu6etNs6aB4dP5uh_UFQlnynTF_-5mpdiqzce5UGn7VdiAxevxfN7lIJvxJ_vg5OskGGRJNc6mxdHS_6oySPEa3mKmSwVsl9Q9vyql5JEcpL5JFg8ZY4JMkOTnNBU615f5Bm182FuDkYsDi7zgCHI62Zb_JxOzg-_FX2ZhQK0qleFK20bLahYtWUaB9sCWR3GRtfWzkeDoQYVlAoclkbmjncJdPAuVGPwGrTWb8Xm4mqB74RkPruEqiKcBKZE2t1lGUyKJtYlRvAjMR6efwM9BzmXwpg3GYso32SdNayzptfZSHxej7nuGDj-2fsrq3Xdk9mzs4BU1_SbsdFVFQhKGWcSGKvBEyZUEclUhioFbUdim9V973adpt8_Iv8gnvEaOs_MjthcLW_xo3gKd6tfN8vdDPOpPfk92c2v7F-wr-eX |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBUlLbQ9pF8J3fRLh96KE60lWVZvabJLStKltCnkZqTROBSWTdhseu8_74xsL8khhVyMEZIs_Cx73njmjRAf2SZNXL69hooJioYitpG1CBEiIgt6Qy424Waz-uzMf--T1XMuDCLm4DPc5dP8Lz9dwDW7yvY4Ut5YRQz9oTWmHHfpWmuXClFzR3t7SI1Rfu_028nBjEhgaXe11cZZc-vzk1X6b5VVyV-V6bN7rue52OzNR7nf4f1CPMDFS_H0hqjgK_H3eHCTFTIskuRqZ_PicMmvNXmIeCl_YJZLhewZlL3C6rmkJjnJihLcPGWVCTJEk5zQVOten-VPOs6HuTkcsdg_zwOGMK-rLfFrOjk9OCr6QgsFaFWvClfaNlpQsWrLNA62BbI7jI2urZ2PBkMNKigVODCNDB7vEujgXajG4DVorbfFxuJiga-FZEW7hKoipgSmRNrfZRlMiibWJUbwIzEe7n8DvQo5F8OYN5mNKN9kzBrGrOkxG4lP6zGXnQbHf3t_YVjXPVk_OzcQdE2_HRtdVYHIlHEmgbEaPLFCFZGMZahS0HYkthjuG5frkN65o_2DeHxES2lOvs6O34gnvJ7OT_NWbKyW1_hOPII_q99Xy_f5kf0H9izouA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-+and+Model-Driven+Deep+Reinforcement+Learning+for+Efficient+Federated+Edge+Learning%3A+Single-+and+Multi-Agent+Frameworks&rft.jtitle=IEEE+transactions+on+machine+learning+in+communications+and+networking&rft.au=Li%2C+Yangchen&rft.au=Zhao%2C+Lingzhi&rft.au=Wang%2C+Tianle&rft.au=Ding%2C+Lianghui&rft.date=2025&rft.pub=IEEE&rft.eissn=2831-316X&rft.volume=3&rft.spage=332&rft.epage=352&rft_id=info:doi/10.1109%2FTMLCN.2025.3534754&rft.externalDocID=10854500 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2831-316X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2831-316X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2831-316X&client=summon |