Nonlinear wave dynamics and soliton solutions of the Rosenau equation with conformable fractional derivatives
The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean engineering to plasma physics, fluid dynamics, and other mediums. The Rosenau equation provides an analytical solution for studying wave pheno...
Saved in:
| Published in: | Journal of algorithms & computational technology Vol. 19 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
SAGE Publishing
01.11.2025
|
| ISSN: | 1748-3018, 1748-3026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean engineering to plasma physics, fluid dynamics, and other mediums. The Rosenau equation provides an analytical solution for studying wave phenomena in many physical systems, where dispersion and nonlinear dynamics play significant roles. This equation is proposed to explain the dense dynamic behavior of discrete systems. The generalized exponential rational function method has been employed to obtain the new soliton solutions of a nonlinear wave equation in fluid dynamics. This work uses the conformal fractional derivative and the fractional wave transformation to get the analytical results. The solutions include trigonometric, hyperbolic, and exponential functions with possible representations into three-dimensional graphics showing wave dynamics. The study focuses on the nonlinear Rosenau equation, revealing wave features including dark and bright solitons, and kinks and anti-kink waves. We are examining how parameters may have their impact on stability and interactions. This work enhances our knowledge of nonlinear wave systems and their practical applications in fluid dynamics and materials science. |
|---|---|
| AbstractList | The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean engineering to plasma physics, fluid dynamics, and other mediums. The Rosenau equation provides an analytical solution for studying wave phenomena in many physical systems, where dispersion and nonlinear dynamics play significant roles. This equation is proposed to explain the dense dynamic behavior of discrete systems. The generalized exponential rational function method has been employed to obtain the new soliton solutions of a nonlinear wave equation in fluid dynamics. This work uses the conformal fractional derivative and the fractional wave transformation to get the analytical results. The solutions include trigonometric, hyperbolic, and exponential functions with possible representations into three-dimensional graphics showing wave dynamics. The study focuses on the nonlinear Rosenau equation, revealing wave features including dark and bright solitons, and kinks and anti-kink waves. We are examining how parameters may have their impact on stability and interactions. This work enhances our knowledge of nonlinear wave systems and their practical applications in fluid dynamics and materials science. |
| Author | Zunaira Ceesay, Baboucarr Baber, Muhammad Z Ghazanfar, Sidra Ahmed, Nauman |
| Author_xml | – sequence: 1 givenname: Nauman surname: Ahmed fullname: Ahmed, Nauman – sequence: 2 surname: Zunaira fullname: Zunaira – sequence: 3 givenname: Baboucarr orcidid: 0009-0003-5182-2725 surname: Ceesay fullname: Ceesay, Baboucarr – sequence: 4 givenname: Muhammad Z surname: Baber fullname: Baber, Muhammad Z – sequence: 5 givenname: Sidra surname: Ghazanfar fullname: Ghazanfar, Sidra |
| BookMark | eNplkF9LwzAUxYMoOOc-gG_5AtWkaZL2UYZ_BkNB9Lncpjcuo0006Tb27V2d7MULl3M55_J7OFfk3AePhNxwdsu51ndcF6VgucolF5WUnJ-Ryehlo3l-unl5SWYprdlhRK5LLiakfwm-cx4h0h1skbZ7D70ziYJvaQqdG4IfdTO44BMNlg4rpG8hoYcNxe8NjAHduWFFTfA2xB6aDqmNYMYEOtpidNvD2xbTNbmw0CWc_emUfDw-vM-fs-Xr02J-v8yMYOWQaSa0EtIUVaXGNYXUtlGF5q01jVK2NRXjwFUhsUJsUAoQjc5bXkAOZSOmZHHktgHW9Vd0PcR9HcDVv0aInzXEwZkO61zwHFFKAKkLrUyZy0IJJsCAwFKLA4sfWSaGlCLaE4-zeqy__le_-AHNi3qC |
| Cites_doi | 10.1142/S0219691322500539 10.1016/j.rinp.2023.106299 10.1016/j.rinp.2023.106677 10.1038/s41598-025-95093-9 10.1016/j.cam.2014.10.016 10.3390/math9111183 10.1038/s41598-024-67698-z 10.1007/s12190-025-02571-4 10.1155/2022/5224289 10.29020/nybg.ejpam.v18i2.5851 10.1016/j.wavemoti.2020.102618 10.3390/fractalfract7030252 10.1080/00036811.2014.987134 10.1002/mma.9205 10.1016/j.jmaa.2019.123485 10.1155/2014/714635 10.1016/j.padiff.2023.100583 10.1016/j.jcp.2011.01.030 10.3390/app122211813 10.1166/jctn.2016.5675 10.3390/math11112562 10.1142/S021798492550201X 10.1080/00036811.2017.1303137 10.1088/1402-4896/ad1455 10.1063/5.0280906 10.1016/j.cjph.2021.10.026 10.1016/j.padiff.2024.100634 10.28924/2291-8639-22-2024-135 10.1016/j.rinp.2023.106671 10.3390/fractalfract7050344 10.1142/S1793524525500275 10.1016/j.rinp.2023.106922 10.1038/s41598-024-82678-z 10.1063/5.0153529 10.1515/phys-2021-0103 10.3390/math13010109 10.1016/j.rinp.2024.107444 10.1080/00036810108840914 10.1142/S0218348X23401606 10.3390/math8091601 10.3390/fractalfract6010024 10.1007/s40819-023-01601-8 10.1038/s41598-024-58553-2 10.1080/00036811.2022.2027381 10.1140/epjp/i2016-16356-3 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1177/17483026251395511 |
| DatabaseName | CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1748-3026 |
| ExternalDocumentID | oai_doaj_org_article_2312ee55aa57476c82546303aca3e873 10_1177_17483026251395511 |
| GroupedDBID | .4S .DC 0R~ 29J 4.4 54M 5GY 5VS 8G5 AAJPV AAOTM AATZT AAYXX ABAWP ABQXT ABUWG ACDXX ACGFS ACHEB ACROE ADBBV ADEBD ADMLS ADOGD AEDFJ AEWDL AFCOW AFFHD AFKRA AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AUTPY AYAKG AZQEC BCNDV BDDNI BENPR BPHCQ CCPQU CITATION CKLRP CS3 DWQXO EBS EDO EJD F5P GNUQQ GROUPED_DOAJ GUQSH H13 IL9 IPNFZ J8X J9A K.F KQ8 M2O MET MK~ MV1 O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ RIG ROL SAUOL SCDPB SCNPE SFC AASGM |
| ID | FETCH-LOGICAL-c308t-7037635c49964996c457fb6471dfcb66fdc901a1645e9eebe53a3b72d14a2a8b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614461800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1748-3018 |
| IngestDate | Mon Nov 17 19:36:46 EST 2025 Sat Nov 29 06:49:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-7037635c49964996c457fb6471dfcb66fdc901a1645e9eebe53a3b72d14a2a8b3 |
| ORCID | 0009-0003-5182-2725 |
| OpenAccessLink | https://doaj.org/article/2312ee55aa57476c82546303aca3e873 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2312ee55aa57476c82546303aca3e873 crossref_primary_10_1177_17483026251395511 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of algorithms & computational technology |
| PublicationYear | 2025 |
| Publisher | SAGE Publishing |
| Publisher_xml | – name: SAGE Publishing |
| References | e_1_3_2_49_2 Park MA (e_1_3_2_24_2) 1990; 9 e_1_3_2_28_2 Park MA (e_1_3_2_26_2) 1992; 29 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_47_2 e_1_3_2_16_2 e_1_3_2_37_2 Mumtaz A (e_1_3_2_42_2) 2025; 41 e_1_3_2_7_2 e_1_3_2_18_2 Razborova P (e_1_3_2_34_2) 2014; 59 Zuo JM (e_1_3_2_31_2) 2009; 215 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 Adomian G (e_1_3_2_6_2) 2013 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 Omrani K (e_1_3_2_39_2) 2008; 201 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Merdan M (e_1_3_2_4_2) 2009; 18 e_1_3_2_40_2 Novikov S (e_1_3_2_9_2) 1984 e_1_3_2_21_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 Abdou MA (e_1_3_2_2_2) 2007; 190 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 Tricomi FG (e_1_3_2_23_2) 1985 e_1_3_2_11_2 e_1_3_2_57_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 |
| References_xml | – ident: e_1_3_2_7_2 doi: 10.1142/S0219691322500539 – ident: e_1_3_2_57_2 doi: 10.1016/j.rinp.2023.106299 – volume: 29 start-page: 261 year: 1992 ident: e_1_3_2_26_2 article-title: Pointwise decay estimates of solutions of the generalized Rosenau equation publication-title: J Korean Math Soc – ident: e_1_3_2_15_2 doi: 10.1016/j.rinp.2023.106677 – ident: e_1_3_2_16_2 doi: 10.1038/s41598-025-95093-9 – volume-title: Solving frontier problems of physics: The decomposition method year: 2013 ident: e_1_3_2_6_2 – ident: e_1_3_2_56_2 doi: 10.1016/j.cam.2014.10.016 – ident: e_1_3_2_37_2 doi: 10.3390/math9111183 – ident: e_1_3_2_5_2 doi: 10.1038/s41598-024-67698-z – ident: e_1_3_2_52_2 doi: 10.1007/s12190-025-02571-4 – ident: e_1_3_2_14_2 doi: 10.1155/2022/5224289 – ident: e_1_3_2_17_2 doi: 10.29020/nybg.ejpam.v18i2.5851 – ident: e_1_3_2_36_2 doi: 10.1016/j.wavemoti.2020.102618 – ident: e_1_3_2_49_2 doi: 10.3390/fractalfract7030252 – ident: e_1_3_2_27_2 doi: 10.1080/00036811.2014.987134 – volume-title: Theory of solitons: The inverse scattering method year: 1984 ident: e_1_3_2_9_2 – volume: 190 start-page: 988 year: 2007 ident: e_1_3_2_2_2 article-title: The extended tanh method and its applications for solving nonlinear physical models publication-title: Appl Math Comput – volume: 9 start-page: 145 year: 1990 ident: e_1_3_2_24_2 article-title: On the Rosenau equation publication-title: Math Appl Comput – ident: e_1_3_2_8_2 doi: 10.1002/mma.9205 – ident: e_1_3_2_32_2 doi: 10.1016/j.jmaa.2019.123485 – ident: e_1_3_2_28_2 doi: 10.1155/2014/714635 – ident: e_1_3_2_18_2 doi: 10.1016/j.padiff.2023.100583 – ident: e_1_3_2_22_2 doi: 10.1016/j.jcp.2011.01.030 – ident: e_1_3_2_11_2 doi: 10.3390/app122211813 – ident: e_1_3_2_33_2 doi: 10.1166/jctn.2016.5675 – ident: e_1_3_2_54_2 doi: 10.3390/math11112562 – volume-title: Integral equations year: 1985 ident: e_1_3_2_23_2 – ident: e_1_3_2_46_2 doi: 10.1142/S021798492550201X – ident: e_1_3_2_29_2 doi: 10.1080/00036811.2017.1303137 – volume: 41 start-page: 27 year: 2025 ident: e_1_3_2_42_2 article-title: Stability and chaotic analysis of nonlinear fractional model using novel analytical technique: Soliton solutions for Wazwaz Kaur Boussinesq equation publication-title: Rev Int Metod Numer Calc Diseno Ing – ident: e_1_3_2_19_2 doi: 10.1088/1402-4896/ad1455 – ident: e_1_3_2_21_2 doi: 10.1063/5.0280906 – ident: e_1_3_2_3_2 doi: 10.1016/j.cjph.2021.10.026 – volume: 59 start-page: 658 year: 2014 ident: e_1_3_2_34_2 article-title: Perturbation of dispersive shallow water waves with Rosenau–KdV–RLW equation and power law nonlinearity publication-title: Rom J Phys – ident: e_1_3_2_13_2 doi: 10.1016/j.padiff.2024.100634 – ident: e_1_3_2_48_2 doi: 10.28924/2291-8639-22-2024-135 – ident: e_1_3_2_44_2 doi: 10.1016/j.rinp.2023.106671 – ident: e_1_3_2_51_2 doi: 10.3390/fractalfract7050344 – ident: e_1_3_2_43_2 doi: 10.1142/S1793524525500275 – ident: e_1_3_2_53_2 doi: 10.1016/j.rinp.2023.106922 – ident: e_1_3_2_25_2 doi: 10.1038/s41598-024-82678-z – ident: e_1_3_2_10_2 doi: 10.1063/5.0153529 – ident: e_1_3_2_40_2 doi: 10.1515/phys-2021-0103 – ident: e_1_3_2_45_2 doi: 10.3390/math13010109 – volume: 18 start-page: 59 year: 2009 ident: e_1_3_2_4_2 article-title: He’s variational iteration method for solving modelling the pollution of a system of lakes publication-title: J Sci Technol Dumlupınar Univ – ident: e_1_3_2_12_2 doi: 10.1016/j.rinp.2024.107444 – ident: e_1_3_2_38_2 doi: 10.1080/00036810108840914 – ident: e_1_3_2_50_2 doi: 10.1142/S0218348X23401606 – volume: 201 start-page: 35 year: 2008 ident: e_1_3_2_39_2 article-title: A new conservative finite difference scheme for the Rosenau equation publication-title: Appl Math Comput – ident: e_1_3_2_30_2 doi: 10.3390/math8091601 – volume: 215 start-page: 835 year: 2009 ident: e_1_3_2_31_2 article-title: Solitons and periodic solutions for the Rosenau–KdV and Rosenau–Kawahara equations publication-title: Appl Math Comput – ident: e_1_3_2_41_2 doi: 10.3390/fractalfract6010024 – ident: e_1_3_2_55_2 doi: 10.1007/s40819-023-01601-8 – ident: e_1_3_2_20_2 doi: 10.1038/s41598-024-58553-2 – ident: e_1_3_2_47_2 doi: 10.1080/00036811.2022.2027381 – ident: e_1_3_2_35_2 doi: 10.1140/epjp/i2016-16356-3 |
| SSID | ssj0000327813 |
| Score | 2.3214717 |
| SecondaryResourceType | review_article |
| Snippet | The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| Title | Nonlinear wave dynamics and soliton solutions of the Rosenau equation with conformable fractional derivatives |
| URI | https://doaj.org/article/2312ee55aa57476c82546303aca3e873 |
| Volume | 19 |
| WOSCitedRecordID | wos001614461800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: M2O dateStart: 20160301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctVBhgQDxFeVQemJAiEj_yGAGBYGjVAaQyRX6cJSRIIWnL1-cch6qIgYUhSxQn0d0l97_E_h0h5yAZFFLLCFSSR6jATVQogEgI4dkxzDgRmk1ko1E-mRTjlVZffk5YwAMHw12i_mAAUiolUfmmJgDcY66M4pBnLeczzoqVYqp9B3OW5QnvfmN6whIqb4-6QrmPmgdlQvIjEa3w-tvEcrdDtjtFSK_CneySNaj2yNZwiVNt9snbKAAtVE0_1QKoDW3kG6oqSxs_g21a0WUQ0amjOJj6pomVmlP4CDhv6r-5Uqx_W52qX4G6OixrwMtbjMRFCwFvDsjT3e3jzX3U9UmIDI_zWYQPrcfKGSxeUr8ZITOnU0w71hmdps4azPoKCyMJBaDXJFdcZ8wmQjGVa35IetW0giNCZYIjDUuLnIGwQmqXa-vQ9oLzGAzvk4tvo5XvAYdRJh0x_JeF--Tam3V5oCdZtzvQv2Xn3_Iv_x7_x0lOyCbzfXvbNYSnpDer53BGNsxi9tLUgzZ0BmR9_DAcP38BIH_JQA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+wave+dynamics+and+soliton+solutions+of+the+Rosenau+equation+with+conformable+fractional+derivatives&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Nauman+Ahmed&rft.au=Zunaira&rft.au=Baboucarr+Ceesay&rft.au=Muhammad+Z+Baber&rft.date=2025-11-01&rft.pub=SAGE+Publishing&rft.eissn=1748-3026&rft.volume=19&rft_id=info:doi/10.1177%2F17483026251395511&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2312ee55aa57476c82546303aca3e873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3018&client=summon |