Nonlinear wave dynamics and soliton solutions of the Rosenau equation with conformable fractional derivatives

The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean engineering to plasma physics, fluid dynamics, and other mediums. The Rosenau equation provides an analytical solution for studying wave pheno...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algorithms & computational technology Vol. 19
Main Authors: Ahmed, Nauman, Zunaira, Ceesay, Baboucarr, Baber, Muhammad Z, Ghazanfar, Sidra
Format: Journal Article
Language:English
Published: SAGE Publishing 01.11.2025
ISSN:1748-3018, 1748-3026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean engineering to plasma physics, fluid dynamics, and other mediums. The Rosenau equation provides an analytical solution for studying wave phenomena in many physical systems, where dispersion and nonlinear dynamics play significant roles. This equation is proposed to explain the dense dynamic behavior of discrete systems. The generalized exponential rational function method has been employed to obtain the new soliton solutions of a nonlinear wave equation in fluid dynamics. This work uses the conformal fractional derivative and the fractional wave transformation to get the analytical results. The solutions include trigonometric, hyperbolic, and exponential functions with possible representations into three-dimensional graphics showing wave dynamics. The study focuses on the nonlinear Rosenau equation, revealing wave features including dark and bright solitons, and kinks and anti-kink waves. We are examining how parameters may have their impact on stability and interactions. This work enhances our knowledge of nonlinear wave systems and their practical applications in fluid dynamics and materials science.
AbstractList The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean engineering to plasma physics, fluid dynamics, and other mediums. The Rosenau equation provides an analytical solution for studying wave phenomena in many physical systems, where dispersion and nonlinear dynamics play significant roles. This equation is proposed to explain the dense dynamic behavior of discrete systems. The generalized exponential rational function method has been employed to obtain the new soliton solutions of a nonlinear wave equation in fluid dynamics. This work uses the conformal fractional derivative and the fractional wave transformation to get the analytical results. The solutions include trigonometric, hyperbolic, and exponential functions with possible representations into three-dimensional graphics showing wave dynamics. The study focuses on the nonlinear Rosenau equation, revealing wave features including dark and bright solitons, and kinks and anti-kink waves. We are examining how parameters may have their impact on stability and interactions. This work enhances our knowledge of nonlinear wave systems and their practical applications in fluid dynamics and materials science.
Author Zunaira
Ceesay, Baboucarr
Baber, Muhammad Z
Ghazanfar, Sidra
Ahmed, Nauman
Author_xml – sequence: 1
  givenname: Nauman
  surname: Ahmed
  fullname: Ahmed, Nauman
– sequence: 2
  surname: Zunaira
  fullname: Zunaira
– sequence: 3
  givenname: Baboucarr
  orcidid: 0009-0003-5182-2725
  surname: Ceesay
  fullname: Ceesay, Baboucarr
– sequence: 4
  givenname: Muhammad Z
  surname: Baber
  fullname: Baber, Muhammad Z
– sequence: 5
  givenname: Sidra
  surname: Ghazanfar
  fullname: Ghazanfar, Sidra
BookMark eNplkF9LwzAUxYMoOOc-gG_5AtWkaZL2UYZ_BkNB9Lncpjcuo0006Tb27V2d7MULl3M55_J7OFfk3AePhNxwdsu51ndcF6VgucolF5WUnJ-Ryehlo3l-unl5SWYprdlhRK5LLiakfwm-cx4h0h1skbZ7D70ziYJvaQqdG4IfdTO44BMNlg4rpG8hoYcNxe8NjAHduWFFTfA2xB6aDqmNYMYEOtpidNvD2xbTNbmw0CWc_emUfDw-vM-fs-Xr02J-v8yMYOWQaSa0EtIUVaXGNYXUtlGF5q01jVK2NRXjwFUhsUJsUAoQjc5bXkAOZSOmZHHktgHW9Vd0PcR9HcDVv0aInzXEwZkO61zwHFFKAKkLrUyZy0IJJsCAwFKLA4sfWSaGlCLaE4-zeqy__le_-AHNi3qC
Cites_doi 10.1142/S0219691322500539
10.1016/j.rinp.2023.106299
10.1016/j.rinp.2023.106677
10.1038/s41598-025-95093-9
10.1016/j.cam.2014.10.016
10.3390/math9111183
10.1038/s41598-024-67698-z
10.1007/s12190-025-02571-4
10.1155/2022/5224289
10.29020/nybg.ejpam.v18i2.5851
10.1016/j.wavemoti.2020.102618
10.3390/fractalfract7030252
10.1080/00036811.2014.987134
10.1002/mma.9205
10.1016/j.jmaa.2019.123485
10.1155/2014/714635
10.1016/j.padiff.2023.100583
10.1016/j.jcp.2011.01.030
10.3390/app122211813
10.1166/jctn.2016.5675
10.3390/math11112562
10.1142/S021798492550201X
10.1080/00036811.2017.1303137
10.1088/1402-4896/ad1455
10.1063/5.0280906
10.1016/j.cjph.2021.10.026
10.1016/j.padiff.2024.100634
10.28924/2291-8639-22-2024-135
10.1016/j.rinp.2023.106671
10.3390/fractalfract7050344
10.1142/S1793524525500275
10.1016/j.rinp.2023.106922
10.1038/s41598-024-82678-z
10.1063/5.0153529
10.1515/phys-2021-0103
10.3390/math13010109
10.1016/j.rinp.2024.107444
10.1080/00036810108840914
10.1142/S0218348X23401606
10.3390/math8091601
10.3390/fractalfract6010024
10.1007/s40819-023-01601-8
10.1038/s41598-024-58553-2
10.1080/00036811.2022.2027381
10.1140/epjp/i2016-16356-3
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1177/17483026251395511
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1748-3026
ExternalDocumentID oai_doaj_org_article_2312ee55aa57476c82546303aca3e873
10_1177_17483026251395511
GroupedDBID .4S
.DC
0R~
29J
4.4
54M
5GY
5VS
8G5
AAJPV
AAOTM
AATZT
AAYXX
ABAWP
ABQXT
ABUWG
ACDXX
ACGFS
ACHEB
ACROE
ADBBV
ADEBD
ADMLS
ADOGD
AEDFJ
AEWDL
AFCOW
AFFHD
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AUTPY
AYAKG
AZQEC
BCNDV
BDDNI
BENPR
BPHCQ
CCPQU
CITATION
CKLRP
CS3
DWQXO
EBS
EDO
EJD
F5P
GNUQQ
GROUPED_DOAJ
GUQSH
H13
IL9
IPNFZ
J8X
J9A
K.F
KQ8
M2O
MET
MK~
MV1
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
RIG
ROL
SAUOL
SCDPB
SCNPE
SFC
AASGM
ID FETCH-LOGICAL-c308t-7037635c49964996c457fb6471dfcb66fdc901a1645e9eebe53a3b72d14a2a8b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614461800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-3018
IngestDate Mon Nov 17 19:36:46 EST 2025
Sat Nov 29 06:49:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-7037635c49964996c457fb6471dfcb66fdc901a1645e9eebe53a3b72d14a2a8b3
ORCID 0009-0003-5182-2725
OpenAccessLink https://doaj.org/article/2312ee55aa57476c82546303aca3e873
ParticipantIDs doaj_primary_oai_doaj_org_article_2312ee55aa57476c82546303aca3e873
crossref_primary_10_1177_17483026251395511
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of algorithms & computational technology
PublicationYear 2025
Publisher SAGE Publishing
Publisher_xml – name: SAGE Publishing
References e_1_3_2_49_2
Park MA (e_1_3_2_24_2) 1990; 9
e_1_3_2_28_2
Park MA (e_1_3_2_26_2) 1992; 29
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_47_2
e_1_3_2_16_2
e_1_3_2_37_2
Mumtaz A (e_1_3_2_42_2) 2025; 41
e_1_3_2_7_2
e_1_3_2_18_2
Razborova P (e_1_3_2_34_2) 2014; 59
Zuo JM (e_1_3_2_31_2) 2009; 215
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
Adomian G (e_1_3_2_6_2) 2013
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
Omrani K (e_1_3_2_39_2) 2008; 201
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Merdan M (e_1_3_2_4_2) 2009; 18
e_1_3_2_40_2
Novikov S (e_1_3_2_9_2) 1984
e_1_3_2_21_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
Abdou MA (e_1_3_2_2_2) 2007; 190
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
Tricomi FG (e_1_3_2_23_2) 1985
e_1_3_2_11_2
e_1_3_2_57_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
References_xml – ident: e_1_3_2_7_2
  doi: 10.1142/S0219691322500539
– ident: e_1_3_2_57_2
  doi: 10.1016/j.rinp.2023.106299
– volume: 29
  start-page: 261
  year: 1992
  ident: e_1_3_2_26_2
  article-title: Pointwise decay estimates of solutions of the generalized Rosenau equation
  publication-title: J Korean Math Soc
– ident: e_1_3_2_15_2
  doi: 10.1016/j.rinp.2023.106677
– ident: e_1_3_2_16_2
  doi: 10.1038/s41598-025-95093-9
– volume-title: Solving frontier problems of physics: The decomposition method
  year: 2013
  ident: e_1_3_2_6_2
– ident: e_1_3_2_56_2
  doi: 10.1016/j.cam.2014.10.016
– ident: e_1_3_2_37_2
  doi: 10.3390/math9111183
– ident: e_1_3_2_5_2
  doi: 10.1038/s41598-024-67698-z
– ident: e_1_3_2_52_2
  doi: 10.1007/s12190-025-02571-4
– ident: e_1_3_2_14_2
  doi: 10.1155/2022/5224289
– ident: e_1_3_2_17_2
  doi: 10.29020/nybg.ejpam.v18i2.5851
– ident: e_1_3_2_36_2
  doi: 10.1016/j.wavemoti.2020.102618
– ident: e_1_3_2_49_2
  doi: 10.3390/fractalfract7030252
– ident: e_1_3_2_27_2
  doi: 10.1080/00036811.2014.987134
– volume-title: Theory of solitons: The inverse scattering method
  year: 1984
  ident: e_1_3_2_9_2
– volume: 190
  start-page: 988
  year: 2007
  ident: e_1_3_2_2_2
  article-title: The extended tanh method and its applications for solving nonlinear physical models
  publication-title: Appl Math Comput
– volume: 9
  start-page: 145
  year: 1990
  ident: e_1_3_2_24_2
  article-title: On the Rosenau equation
  publication-title: Math Appl Comput
– ident: e_1_3_2_8_2
  doi: 10.1002/mma.9205
– ident: e_1_3_2_32_2
  doi: 10.1016/j.jmaa.2019.123485
– ident: e_1_3_2_28_2
  doi: 10.1155/2014/714635
– ident: e_1_3_2_18_2
  doi: 10.1016/j.padiff.2023.100583
– ident: e_1_3_2_22_2
  doi: 10.1016/j.jcp.2011.01.030
– ident: e_1_3_2_11_2
  doi: 10.3390/app122211813
– ident: e_1_3_2_33_2
  doi: 10.1166/jctn.2016.5675
– ident: e_1_3_2_54_2
  doi: 10.3390/math11112562
– volume-title: Integral equations
  year: 1985
  ident: e_1_3_2_23_2
– ident: e_1_3_2_46_2
  doi: 10.1142/S021798492550201X
– ident: e_1_3_2_29_2
  doi: 10.1080/00036811.2017.1303137
– volume: 41
  start-page: 27
  year: 2025
  ident: e_1_3_2_42_2
  article-title: Stability and chaotic analysis of nonlinear fractional model using novel analytical technique: Soliton solutions for Wazwaz Kaur Boussinesq equation
  publication-title: Rev Int Metod Numer Calc Diseno Ing
– ident: e_1_3_2_19_2
  doi: 10.1088/1402-4896/ad1455
– ident: e_1_3_2_21_2
  doi: 10.1063/5.0280906
– ident: e_1_3_2_3_2
  doi: 10.1016/j.cjph.2021.10.026
– volume: 59
  start-page: 658
  year: 2014
  ident: e_1_3_2_34_2
  article-title: Perturbation of dispersive shallow water waves with Rosenau–KdV–RLW equation and power law nonlinearity
  publication-title: Rom J Phys
– ident: e_1_3_2_13_2
  doi: 10.1016/j.padiff.2024.100634
– ident: e_1_3_2_48_2
  doi: 10.28924/2291-8639-22-2024-135
– ident: e_1_3_2_44_2
  doi: 10.1016/j.rinp.2023.106671
– ident: e_1_3_2_51_2
  doi: 10.3390/fractalfract7050344
– ident: e_1_3_2_43_2
  doi: 10.1142/S1793524525500275
– ident: e_1_3_2_53_2
  doi: 10.1016/j.rinp.2023.106922
– ident: e_1_3_2_25_2
  doi: 10.1038/s41598-024-82678-z
– ident: e_1_3_2_10_2
  doi: 10.1063/5.0153529
– ident: e_1_3_2_40_2
  doi: 10.1515/phys-2021-0103
– ident: e_1_3_2_45_2
  doi: 10.3390/math13010109
– volume: 18
  start-page: 59
  year: 2009
  ident: e_1_3_2_4_2
  article-title: He’s variational iteration method for solving modelling the pollution of a system of lakes
  publication-title: J Sci Technol Dumlupınar Univ
– ident: e_1_3_2_12_2
  doi: 10.1016/j.rinp.2024.107444
– ident: e_1_3_2_38_2
  doi: 10.1080/00036810108840914
– ident: e_1_3_2_50_2
  doi: 10.1142/S0218348X23401606
– volume: 201
  start-page: 35
  year: 2008
  ident: e_1_3_2_39_2
  article-title: A new conservative finite difference scheme for the Rosenau equation
  publication-title: Appl Math Comput
– ident: e_1_3_2_30_2
  doi: 10.3390/math8091601
– volume: 215
  start-page: 835
  year: 2009
  ident: e_1_3_2_31_2
  article-title: Solitons and periodic solutions for the Rosenau–KdV and Rosenau–Kawahara equations
  publication-title: Appl Math Comput
– ident: e_1_3_2_41_2
  doi: 10.3390/fractalfract6010024
– ident: e_1_3_2_55_2
  doi: 10.1007/s40819-023-01601-8
– ident: e_1_3_2_20_2
  doi: 10.1038/s41598-024-58553-2
– ident: e_1_3_2_47_2
  doi: 10.1080/00036811.2022.2027381
– ident: e_1_3_2_35_2
  doi: 10.1140/epjp/i2016-16356-3
SSID ssj0000327813
Score 2.3214717
SecondaryResourceType review_article
Snippet The nonlinear partial differential equations considered in this study are important in modeling complex wave phenomena extending from hydrodynamics via ocean...
SourceID doaj
crossref
SourceType Open Website
Index Database
Title Nonlinear wave dynamics and soliton solutions of the Rosenau equation with conformable fractional derivatives
URI https://doaj.org/article/2312ee55aa57476c82546303aca3e873
Volume 19
WOSCitedRecordID wos001614461800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: M2O
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctVBhgQDxFeVQemJAiEj_yGAGBYGjVAaQyRX6cJSRIIWnL1-cch6qIgYUhSxQn0d0l97_E_h0h5yAZFFLLCFSSR6jATVQogEgI4dkxzDgRmk1ko1E-mRTjlVZffk5YwAMHw12i_mAAUiolUfmmJgDcY66M4pBnLeczzoqVYqp9B3OW5QnvfmN6whIqb4-6QrmPmgdlQvIjEa3w-tvEcrdDtjtFSK_CneySNaj2yNZwiVNt9snbKAAtVE0_1QKoDW3kG6oqSxs_g21a0WUQ0amjOJj6pomVmlP4CDhv6r-5Uqx_W52qX4G6OixrwMtbjMRFCwFvDsjT3e3jzX3U9UmIDI_zWYQPrcfKGSxeUr8ZITOnU0w71hmdps4azPoKCyMJBaDXJFdcZ8wmQjGVa35IetW0giNCZYIjDUuLnIGwQmqXa-vQ9oLzGAzvk4tvo5XvAYdRJh0x_JeF--Tam3V5oCdZtzvQv2Xn3_Iv_x7_x0lOyCbzfXvbNYSnpDer53BGNsxi9tLUgzZ0BmR9_DAcP38BIH_JQA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+wave+dynamics+and+soliton+solutions+of+the+Rosenau+equation+with+conformable+fractional+derivatives&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Nauman+Ahmed&rft.au=Zunaira&rft.au=Baboucarr+Ceesay&rft.au=Muhammad+Z+Baber&rft.date=2025-11-01&rft.pub=SAGE+Publishing&rft.eissn=1748-3026&rft.volume=19&rft_id=info:doi/10.1177%2F17483026251395511&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2312ee55aa57476c82546303aca3e873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3018&client=summon