Identification of continuous-time hybrid “Box–Jenkins” systems with multiple unknown time delays using two-stage parameter estimation algorithm
Purpose This study/paper aims to present a separable identification algorithm for a multiple input single output (MISO) continuous time (CT) hybrid “Box–Jenkins”. Design/methodology/approach This paper proposes an optimal method for the identification of MISO CT hybrid “Box–Jenkins” systems with unk...
Uložené v:
| Vydané v: | Engineering computations Ročník 36; číslo 6; s. 2111 - 2130 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bradford
Emerald Publishing Limited
15.08.2019
Emerald Group Publishing Limited |
| Predmet: | |
| ISSN: | 0264-4401, 1758-7077 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Purpose
This study/paper aims to present a separable identification algorithm for a multiple input single output (MISO) continuous time (CT) hybrid “Box–Jenkins”.
Design/methodology/approach
This paper proposes an optimal method for the identification of MISO CT hybrid “Box–Jenkins” systems with unknown time delays by using the two-stage recursive least-square (TS-RLS) identification algorithm.
Findings
The effectiveness of the proposed scheme is shown with application to a simulation example.
Originality/value
A two-stage recursive least-square identification method is developed for multiple input single output continuous time hybrid “Box–Jenkins” system with multiple unknown time delays from sampled data. The proposed technique allows the division of the global CT hybrid “Box–Jenkins” system into two fictitious subsystems: the first one contains the parameters of the system model, including the multiple unknown time delays, and the second contains the parameters of the noise model. Then the TS-RLS identification algorithm can be applied easily to estimate all the parameters of the studied system. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0264-4401 1758-7077 |
| DOI: | 10.1108/EC-12-2018-0550 |