A categorical foundation for structured reversible flowchart languages: Soundness and adequacy

Structured reversible flowchart languages is a class of imperative reversible programming languages allowing for a simple diagrammatic representation of control flow built from a limited set of control flow structures. This class includes the reversible programming language Janus (without recursion)...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science Vol. 14, Issue 3
Main Authors: Glück, Robert, Kaarsgaard, Robin
Format: Journal Article
Language:English
Published: Logical Methods in Computer Science e.V 05.09.2018
Subjects:
ISSN:1860-5974, 1860-5974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structured reversible flowchart languages is a class of imperative reversible programming languages allowing for a simple diagrammatic representation of control flow built from a limited set of control flow structures. This class includes the reversible programming language Janus (without recursion), as well as more recently developed reversible programming languages such as R-CORE and R-WHILE. In the present paper, we develop a categorical foundation for this class of languages based on inverse categories with joins. We generalize the notion of extensivity of restriction categories to one that may be accommodated by inverse categories, and use the resulting decisions to give a reversible representation of predicates and assertions. This leads to a categorical semantics for structured reversible flowcharts, which we show to be computationally sound and adequate, as well as equationally fully abstract with respect to the operational semantics under certain conditions.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-14(3:16)2018