Solving second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative method
Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived....
Uloženo v:
| Vydáno v: | Engineering computations Ročník 38; číslo 1; s. 107 - 130 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bradford
Emerald Publishing Limited
27.01.2021
Emerald Group Publishing Limited |
| Témata: | |
| ISSN: | 0264-4401, 1758-7077 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method.
Design/methodology/approach
The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula.
Findings
When the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions.
Research limitations/implications
Basically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides.
Practical implications
Starting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied.
Originality/value
Through the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast. |
|---|---|
| AbstractList | PurposeThe purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method.Design/methodology/approachThe authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula.FindingsWhen the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions.Research limitations/implicationsBasically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides.Practical implicationsStarting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied.Originality/valueThrough the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast. Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula. Findings When the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions. Research limitations/implications Basically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides. Practical implications Starting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied. Originality/value Through the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast. |
| Author | Chang, Jiang-Ren Liu, Chein-Shan |
| Author_xml | – sequence: 1 givenname: Chein-Shan surname: Liu fullname: Liu, Chein-Shan email: csliu58@163.com – sequence: 2 givenname: Jiang-Ren surname: Chang fullname: Chang, Jiang-Ren email: cjr@mail.ntou.edu.tw |
| BookMark | eNp9kT1PBCEURYnRxHW1tiWxRh8DyFCazfqRmFioNQHmqZhZUIZd4793JmujMVY091xuzjsguyknJOSYwynn0J4tFwwEa6ABBrwxO2TGtWqZBq13yQyac8mkBL5PDobhFQC0EDAj-T73m5ie6YAhp47l0mGhY3UfE7pCfV6nzpVPunH9Gulbyb7HFf2I9eWv1NQRa8xpoP6TukRjxeJq3CBdYX3J3SHZe3L9gEff75w8Xi4fFtfs9u7qZnFxy4KAtjLphQlKOy_NuB98o6FT59gE6RtjgkMDTokQtA5eSu5aMEoilx5AoVFOzMnJtndc_L7GodrXvC5p_NI2SkjZgjLtmFLbVCh5GAo-2RCrm_bX4mJvOdjJrV0uLAg7ubWT25E7-8W9lbgaBfxDnG4JXI1C-u4P4Mf5xBdNjow5 |
| CitedBy_id | crossref_primary_10_3390_math12233769 crossref_primary_10_1016_j_matcom_2021_12_013 crossref_primary_10_1016_j_seps_2024_101947 crossref_primary_10_1016_j_matcom_2023_03_015 |
| Cites_doi | 10.1016/j.cnsns.2007.09.012 10.1080/10236190108808274 10.1016/j.aml.2007.07.019 10.1016/S0898-1221(02)00282-1 10.1016/j.cam.2017.05.027 10.1155/2010/287473 10.1016/S0252-9602(17)30397-1 10.1016/j.camwa.2007.10.002 10.1016/j.nonrwa.2005.06.008 10.1016/j.cam.2005.05.006 10.1002/mma.5226 10.1016/j.aml.2017.02.018 10.1016/j.amc.2019.04.028 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited 2020 |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited 2020 |
| DBID | AAYXX CITATION 7SC 7TB 7WY 7WZ 7XB 8AO 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 F~G GNUQQ HCIFZ JQ2 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1108/EC-03-2020-0129 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1758-7077 |
| EndPage | 130 |
| ExternalDocumentID | 10_1108_EC_03_2020_0129 10.1108/EC-03-2020-0129 |
| GroupedDBID | 02 0R 29G 4.4 5GY 5VS 70U 7WY 8AO 8FE 8FG 8FW 8R4 8R5 9E0 AADTA AADXL AAGBP AAMCF AATHL AAUDR ABFLS ABIJV ABJCF ABKQV ABPTK ABSDC ACGFS ACGOD ACIWK ADOMW AEBVX AEBZA AENEX AEUCW AFKRA AFYHH AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS ARAPS ASMFL AUCOK AZQEC BENPR BEZIV BGLVJ BPHCQ BPQFQ CS3 DU5 DWQXO EBS ECCUG FNNZZ GEI GEL GNUQQ GQ. GROUPED_ABI_INFORM_COMPLETE HCIFZ HZ IPNFZ J1Y JI- JL0 K6 K6V K7- KBGRL L6V M0C M2P M7S O9- P2P P62 PQBIZ PQEST PQQKQ PQUKI PRINS PROAC PTHSS Q2X RIG RWL TAE TN5 U5U UNMZH V1G 0R~ AAYXX ABJNI ABYQI ACBEA ACZLT ADFRT AFFHD AHMHQ AODMV CCPQU CITATION H13 HZ~ IJT K6~ M42 PHGZM PHGZT PQGLB SBBZN ~02 7SC 7TB 7XB 8FD AFNTC FR3 JQ2 KR7 L.- L.0 L7M L~C L~D M0N PKEHL Q9U |
| ID | FETCH-LOGICAL-c308t-4b39c57ab490770b270d56e2c4b299cae90a53cc77cb441a80954e14b005e95a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541872000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0264-4401 |
| IngestDate | Fri Jul 25 19:50:51 EDT 2025 Tue Nov 18 21:09:06 EST 2025 Sat Nov 29 07:37:11 EST 2025 Tue Feb 15 19:18:54 EST 2022 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Nonlinear boundary value problem Iterative algorithm Nonlinear boundary conditions Eigenfunctions as test functions Closed-form expansion coefficients |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-4b39c57ab490770b270d56e2c4b299cae90a53cc77cb441a80954e14b005e95a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2534480598 |
| PQPubID | 26043 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2534480598 emerald_primary_10_1108_EC-03-2020-0129 crossref_citationtrail_10_1108_EC_03_2020_0129 crossref_primary_10_1108_EC_03_2020_0129 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-27 |
| PublicationDateYYYYMMDD | 2021-01-27 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Bradford |
| PublicationPlace_xml | – name: Bradford |
| PublicationTitle | Engineering computations |
| PublicationYear | 2021 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2021043009424099000_ref007) 2002; 44 (key2021043009424099000_ref006) 2007; 8 (key2021043009424099000_ref009) 2004; 47 (key2021043009424099000_ref013) 2017; 41 (key2021043009424099000_ref019) 2010; 2010 (key2021043009424099000_ref001) 2009; 14 (key2021043009424099000_ref010) 1998 (key2021043009424099000_ref014) 2017; 73 (key2021043009424099000_ref004) 2008; 55 (key2021043009424099000_ref003) 2011; 2011 (key2021043009424099000_ref005) 2006; 192 (key2021043009424099000_ref012) 2019; 359 (key2021043009424099000_ref017) 2001; 21 (key2021043009424099000_ref008) 2001; 7 (key2021043009424099000_ref011) 2006; 13 (key2021043009424099000_ref016) 2017; 326 (key2021043009424099000_ref002) 1965 (key2021043009424099000_ref018) 2008; 21 (key2021043009424099000_ref015) 2018; 41 |
| References_xml | – volume: 14 start-page: 430 issue: 2 year: 2009 ident: key2021043009424099000_ref001 article-title: Modified homotopy analysis method for solving systems of second-order BVPs publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2007.09.012 – volume: 7 start-page: 297 issue: 2 year: 2001 ident: key2021043009424099000_ref008 article-title: Difference equations associated with fully nonlinear boundary value problems for second order ordinary differential equations publication-title: Journal of Difference Equations and Applications doi: 10.1080/10236190108808274 – volume: 21 start-page: 656 issue: 7 year: 2008 ident: key2021043009424099000_ref018 article-title: Existence and monotone iteration of positive solutions for a three-point boundary value problem publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2007.07.019 – volume: 44 start-page: 1599 issue: 12 year: 2002 ident: key2021043009424099000_ref007 article-title: Numerical study for two-point boundary value problems using green’s functions publication-title: Computers and Mathematics with Applications doi: 10.1016/S0898-1221(02)00282-1 – volume-title: Vol. 440 of Mathematics and Its Applications year: 1998 ident: key2021043009424099000_ref010 article-title: Generalized quasilinearization for nonlinear problems – volume: 326 start-page: 87 year: 2017 ident: key2021043009424099000_ref016 article-title: An iterative method based on coupled closed-form coefficients expansions for recovering the pollutant source and initial pollution profile publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2017.05.027 – volume: 2010 start-page: 287473 year: 2010 ident: key2021043009424099000_ref019 article-title: A second-order boundary value problem with nonlinear and mixed boundary conditions: Existence, uniqueness, and approximation publication-title: Abstr Appl Anal doi: 10.1155/2010/287473 – volume-title: Quasilinearization and Nonlinear Boundary Value Problems year: 1965 ident: key2021043009424099000_ref002 – volume: 21 start-page: 189 issue: 2 year: 2001 ident: key2021043009424099000_ref017 article-title: Existence results for semipositone boundary value problems publication-title: Acta Mathematica Scientia doi: 10.1016/S0252-9602(17)30397-1 – volume: 2011 start-page: 893753 year: 2011 ident: key2021043009424099000_ref003 article-title: An overview of the lower and upper solutions method with nonlinear boundary value conditions publication-title: Boundary Value Problems – volume: 55 start-page: 2476 issue: 11 year: 2008 ident: key2021043009424099000_ref004 article-title: A numerical approach to nonlinear two-point boundary value problems for ODEs publication-title: Computers and Mathematics with Applications doi: 10.1016/j.camwa.2007.10.002 – volume: 8 start-page: 174 issue: 1 year: 2007 ident: key2021043009424099000_ref006 article-title: A quasilinearization method for a class of second order singular nonlinear differential equations with nonlinear boundary conditions publication-title: Nonlinear Analysis: Real World Applications doi: 10.1016/j.nonrwa.2005.06.008 – volume: 192 start-page: 270 issue: 2 year: 2006 ident: key2021043009424099000_ref005 article-title: A generalized quasilinearization method for second-order nonlinear differential equations with nonlinear boundary conditions publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2005.05.006 – volume: 13 start-page: 149 year: 2006 ident: key2021043009424099000_ref011 article-title: The lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions publication-title: Comput Model Eng Sci – volume: 41 start-page: 7641 issue: 17 year: 2018 ident: key2021043009424099000_ref015 article-title: A simple non-iterative method for recovering a space-dependent load on the Euler-Bernoulli beam equation publication-title: Mathematical Methods in the Applied Sciences doi: 10.1002/mma.5226 – volume: 73 start-page: 150 year: 2017 ident: key2021043009424099000_ref014 article-title: Exactly determining the expansion coefficients in the recovery of space-dependent pollutant source publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2017.02.018 – volume: 41 start-page: 1855 issue: 5 year: 2017 ident: key2021043009424099000_ref013 article-title: Highly accurate algorithms endowing with boundary functions for solving a nonlinear beam equation involving an integral term publication-title: Mathematical Methods in the Applied Sciences – volume: 47 start-page: 1619 issue: 10/11 year: 2004 ident: key2021043009424099000_ref009 article-title: Quadratic approximation of solutions for differential equations with nonlinear boundary conditions publication-title: Computers and Mathematics with Applications – volume: 359 start-page: 386 year: 2019 ident: key2021043009424099000_ref012 article-title: Closed-form higher-order numerical differentiators for differentiating noisy signals publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2019.04.028 |
| SSID | ssj0007330 |
| Score | 2.2686281 |
| Snippet | Purpose
The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical... PurposeThe purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107 |
| SubjectTerms | Algorithms Approximation Boundary conditions Boundary value problems Closed form solutions Convergence Eigenvalues Eigenvectors Exact solutions Integral equations Iterative algorithms Iterative methods Numerical analysis Numerical methods Ordinary differential equations Orthogonality Thermal expansion Weighting functions |
| Title | Solving second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative method |
| URI | https://www.emerald.com/insight/content/doi/10.1108/EC-03-2020-0129/full/html https://www.proquest.com/docview/2534480598 |
| Volume | 38 |
| WOSCitedRecordID | wos000541872000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1758-7077 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: 7WY dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest) customDbUrl: eissn: 1758-7077 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: M0C dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1758-7077 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: P5Z dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1758-7077 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: K7- dateStart: 19960101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1758-7077 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: M7S dateStart: 19960101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1758-7077 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: BENPR dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1758-7077 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: M2P dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx6EcoKVULI-VD5XKxcWJY-ycEKwWIQGrVYEWuES2Y6RKaBc2CxL_npnEy0vApRdLUZzE0tjjb8aT7wP4kUhrrXeKC-G3ODk87jCK4Jm6lD4pXZLWpD5_DnWvZ87O8n5MuFWxrHLiE2tHXQ495cg3UyUxkkAwYLavbzipRtHpapTQmIIZRDYJlXQdpf1HT6yljDkW_DgGEpHah5Rvuh0qJEopeKJUzItd6dWvuU_uud5z9hb-d7RfYD6iTbbTTI-v8CkMFmEhIk8W13W1CHPPaAm_wfB4eEV5BlZRtFzymp6TDRpSDTtirpZiGt0zYgoPLGrSMErpvtWL3tEUhjF3z-yANUzO6GZZo1-9BKd73ZPOPo_CDNxLYcY8czL3SluXYWithUu1KNVWSH3m0NjehlxYJb3X2juEW9YgjstCktGSD7my8jtM43DCMjBCdKpEp6BzkyFUNcoaGbLSKh0ujZUt-DUxTOEjazmJZ1wVdfQiTNHtFEIWZMmCLNmCjccHrhvCjve7_oyWfqPni-nRgrWJmYu4xqviycYrH99ehc8pVcKIhKd6DabHo9uwDrP-bvyvGrVhSv89b8PMbrfX_41XB5pjeyQ67XoyU6uPse2riwcnTPbe |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxQxGH6DYKIeRFHjKmgPGr0UOv2gnYMhZFkCYd2QiIZbaTslMSG7uLNq9k_5G-070-HDoDcOnqfTdDrPvF_z9nkA3hTCORe8ooyFTYoGj_qURVCpTkUoKl_whtTny1CPRub4uDxcgF_dWRhsq-xsYmOoq0nAGvkGVyJlEikYMFvn3yiqRuHf1U5Co4XFQZz_TClb_WF_J73ft5zvDo76ezSrCtAgmJlR6UUZlHZeprxQM881q9Rm5EH6tNLgYsmcEiFoHXyKFZxJQYiMhUS8xlI5kea9A0sSmcWwVZAfXlh-LUSu6aSHTYlLphJCpZ1BHxuXOCZrWPq55gX_OAp86Q4aH7e7_L_tziN4mKNpst3C_zEsxPEKLOfImmS7Va_Agyu0i09g8mlyhnUUUmM1oKIN_SgZt6Qhbkp8IzU1nRNkQo8ka-4QLFnfNArnaBvfiJ8TNyYtU3VyI6TV534Kn29lE57BYlpOfA4EI1ZVJaOnSyNTKG6UMyLKyikdT40TPVjvgGBDZmVHcZAz22RnzNhB3zJhETkWkdOD9xc3nLeEJH8f-i4j64aR1-DYg9UOVjbbsNpeYurFvy-_hnt7Rx-Hdrg_OngJ9zl2_bCCcr0Ki7Pp97gGd8OP2dd6-qr5XAic3DYCfwOtJ0v4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+second-order+nonlinear+boundary+value+problem+with+nonlinear+boundary+conditions+by+an+iterative+method&rft.jtitle=Engineering+computations&rft.au=Liu%2C+Chein-Shan&rft.au=Chang%2C+Jiang-Ren&rft.date=2021-01-27&rft.issn=0264-4401&rft.volume=38&rft.issue=1&rft.spage=107&rft.epage=130&rft_id=info:doi/10.1108%2FEC-03-2020-0129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EC_03_2020_0129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon |