A Faithful and Quantitative Notion of Distant Reduction for the Lambda-Calculus with Generalized Applications

We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock $\beta$-redexes without resorting to the standard permutative conversions of generalized applications used in the original $\Lambda J$-calculus with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 20, Issue 3
Hlavní autoři: Santo, José Espírito, Kesner, Delia, Peyrot, Loïc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 01.01.2024
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock $\beta$-redexes without resorting to the standard permutative conversions of generalized applications used in the original $\Lambda J$-calculus with generalized applications of Joachimski and Matthes. We show strong normalization of simply-typed terms, and we then fully characterize strong normalization by means of a quantitative (i.e. non-idempotent intersection) typing system. This characterization uses a non-trivial inductive definition of strong normalization --related to others in the literature--, which is based on a weak-head normalizing strategy. We also show that our calculus $\lambda Jn$ relates to explicit substitution calculi by means of a faithful translation, in the sense that it preserves strong normalization. Moreover, our calculus $\lambda Jn$ and the original $\Lambda J$-calculus determine equivalent notions of strong normalization. As a consequence, $\lambda J$ inherits a faithful translation into explicit substitutions, and its strong normalization can also be characterized by the quantitative typing system designed for $\lambda Jn$, despite the fact that quantitative subject reduction fails for permutative conversions.
AbstractList We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock $\beta$-redexes without resorting to the standard permutative conversions of generalized applications used in the original $\Lambda J$-calculus with generalized applications of Joachimski and Matthes. We show strong normalization of simply-typed terms, and we then fully characterize strong normalization by means of a quantitative (i.e. non-idempotent intersection) typing system. This characterization uses a non-trivial inductive definition of strong normalization --related to others in the literature--, which is based on a weak-head normalizing strategy. We also show that our calculus $\lambda Jn$ relates to explicit substitution calculi by means of a faithful translation, in the sense that it preserves strong normalization. Moreover, our calculus $\lambda Jn$ and the original $\Lambda J$-calculus determine equivalent notions of strong normalization. As a consequence, $\lambda J$ inherits a faithful translation into explicit substitutions, and its strong normalization can also be characterized by the quantitative typing system designed for $\lambda Jn$, despite the fact that quantitative subject reduction fails for permutative conversions.
We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock $\beta$-redexes without resorting to the standard permutative conversions of generalized applications used in the original $\Lambda J$-calculus with generalized applications of Joachimski and Matthes. We show strong normalization of simply-typed terms, and we then fully characterize strong normalization by means of a quantitative (i.e. non-idempotent intersection) typing system. This characterization uses a non-trivial inductive definition of strong normalization --related to others in the literature--, which is based on a weak-head normalizing strategy. We also show that our calculus $\lambda Jn$ relates to explicit substitution calculi by means of a faithful translation, in the sense that it preserves strong normalization. Moreover, our calculus $\lambda Jn$ and the original $\Lambda J$-calculus determine equivalent notions of strong normalization. As a consequence, $\lambda J$ inherits a faithful translation into explicit substitutions, and its strong normalization can also be characterized by the quantitative typing system designed for $\lambda Jn$, despite the fact that quantitative subject reduction fails for permutative conversions.
Author Peyrot, Loïc
Kesner, Delia
Santo, José Espírito
Author_xml – sequence: 1
  givenname: José Espírito
  surname: Santo
  fullname: Santo, José Espírito
– sequence: 2
  givenname: Delia
  surname: Kesner
  fullname: Kesner, Delia
– sequence: 3
  givenname: Loïc
  surname: Peyrot
  fullname: Peyrot, Loïc
BookMark eNpNkE1r3DAQhkVIIMlm_0BPOrYHN_qyLfe2bD4aWBoS0rMYSaNGwWstlpzS_vp6d0vpXGZ4hnkG3ktyOqQBCfnA2WfViE5f91uXK8E-yi-cfRJMqBNywXXDqrpr1el_8zlZ5vzG5pKSa9FckO2K3kEsr2HqKQyePk0wlFigxHek31KJaaAp0JuYy7ygz-gnd4AhjbS8It3A1nqo1tC7qZ8y_TnL6D0OOEIff6Onq92ujw72R_mKnAXoMy7_9gX5fnf7sv5abR7vH9arTeUk06US0moEWyNvNHfaOtZZ9K1qLfCacaFD0ApDaMBr0dUWJTKlWmWZ9bKRQS7Iw9HrE7yZ3Ri3MP4yCaI5gDT-MDCW6Ho0oGqhWTs_C62qne640t7rhksltUc-u8TR5caU84jhn48zc8jf7PM3ghm5R_v85R-863xy
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/lmcs-20(3:10)2024
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_a452807b5ef745c89148dd8613438de1
10_46298_lmcs_20_3_10_2024
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c308t-23b8eab5e1681c8bc09bed747ba150128ff84eff6ad8295be3e04474b0bd363f3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001279089600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:53:37 EDT 2025
Sat Nov 29 06:21:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-23b8eab5e1681c8bc09bed747ba150128ff84eff6ad8295be3e04474b0bd363f3
OpenAccessLink https://doaj.org/article/a452807b5ef745c89148dd8613438de1
ParticipantIDs doaj_primary_oai_doaj_org_article_a452807b5ef745c89148dd8613438de1
crossref_primary_10_46298_lmcs_20_3_10_2024
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2024
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.291051
Snippet We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock...
We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - logic in computer science
Title A Faithful and Quantitative Notion of Distant Reduction for the Lambda-Calculus with Generalized Applications
URI https://doaj.org/article/a452807b5ef745c89148dd8613438de1
Volume 20, Issue 3
WOSCitedRecordID wos001279089600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjXjLAwMIRXViJ7HZSmnFUCpAgLpFfopKbUA0ZWDgt3N2UlQmFpYMpyiyvrN9313s7xA6lSrm2ok0UsSRiLmcRpJzFSVW54zrWOfh8PhzPx8M-HAo7hZaffkzYbU8cA1cS7LUC7ao1LqcpZoL4O_GcIhCjHJjQ-JDcrGQTIU9mFJPnOtbMixLBG-NJ3oKc-KMXsbkHFJ-9isSLQj2h8jS20BrDSXE7Xoom2jJlltofd5uATerbxtN2rgnR9WLm40x5P_4fibLcEUMNiw8CN148KvD154RlhV-8KKswQi8FAPPw305UUZGHTn2Nb8p9jVY3OhOjz6twe2Fv9k76KnXfezcRE23hEhTwqsooYpbCTjFGY81V5oIZQ1kC0oC6YMw5Bxn1rlMGp6IVFlqCWM5U0QZmlFHd9Fy-VraPYRTAcAS42JnHXMuVcC5jNUyjqnKLBH76GKOXPFWi2IUkEwEnAuPc5GQgnqTx3kfXXlwf970gtbBAG4uGjcXf7n54D8-cohW_YDqCsoRWq7eZ_YYreiPajR9PwkzCJ63X91vvgDNLA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Faithful+and+Quantitative+Notion+of+Distant+Reduction+for+the+Lambda-Calculus+with+Generalized+Applications&rft.jtitle=Logical+methods+in+computer+science&rft.au=Santo%2C+Jos%C3%A9+Esp%C3%ADrito&rft.au=Kesner%2C+Delia&rft.au=Peyrot%2C+Lo%C3%AFc&rft.date=2024-01-01&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=20%2C+Issue+3&rft_id=info:doi/10.46298%2Flmcs-20%283%3A10%292024&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_lmcs_20_3_10_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon