Energy, exergy, and exergy-economic optimization of a multigeneration system driven by geothermal primary heat source using multi-objective genetic algorithm (MOGA)
A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through seawater desalination, has been proposed and analyzed. It uses liquefied natural gas (LNG) as a heat sink during the process and enhanced by inco...
Saved in:
| Published in: | Energy (Oxford) Vol. 330; p. 136653 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2025
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through seawater desalination, has been proposed and analyzed. It uses liquefied natural gas (LNG) as a heat sink during the process and enhanced by incorporating a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit. The modified system has been evaluated in terms of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP) to assess its thermal, exergy, and exergy-economic performances. These three objective functions were then optimized using the Multi-objective Genetic Algorithm (MOGA) based on selected decision variables from the Engineering Equation Solver (EES) code connected with the MATLAB module and the TOPSIS method to obtain their most optimal values. The system could generate a heating capacity of 3577 kW, cooling capacity of 505.9 kW, output power of 282.5 kW, hydrogen production of 2.969 kg/h, and distillate water of 145.8 m3/hr. The most optimal values for thermal efficiency, exergy efficiency, and SUCP are 60.08 %, 18.65 %, and 159.389 $/GJ, respectively. With the TEG and RO desalination unit, the MGS resulted in a decrease in both thermal and exergy efficiency but with an increase in the SUCP.
•Geothermal heat as the energy source and LNG as heat sink drive a multigeneration system (MGS) providing cooling, heating, and hydrogen products.•Introduction of a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit changes the systems into modified MGS.•Those additional systems into the MGS affect the performances of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP).•MOGA in MATLAB optimizes system performance using EES decision variables, reducing thermal/exergy inefficiencies while increasing SUCP. |
|---|---|
| AbstractList | A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through seawater desalination, has been proposed and analyzed. It uses liquefied natural gas (LNG) as a heat sink during the process and enhanced by incorporating a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit. The modified system has been evaluated in terms of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP) to assess its thermal, exergy, and exergy-economic performances. These three objective functions were then optimized using the Multi-objective Genetic Algorithm (MOGA) based on selected decision variables from the Engineering Equation Solver (EES) code connected with the MATLAB module and the TOPSIS method to obtain their most optimal values. The system could generate a heating capacity of 3577 kW, cooling capacity of 505.9 kW, output power of 282.5 kW, hydrogen production of 2.969 kg/h, and distillate water of 145.8 m3/hr. The most optimal values for thermal efficiency, exergy efficiency, and SUCP are 60.08 %, 18.65 %, and 159.389 $/GJ, respectively. With the TEG and RO desalination unit, the MGS resulted in a decrease in both thermal and exergy efficiency but with an increase in the SUCP.
•Geothermal heat as the energy source and LNG as heat sink drive a multigeneration system (MGS) providing cooling, heating, and hydrogen products.•Introduction of a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit changes the systems into modified MGS.•Those additional systems into the MGS affect the performances of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP).•MOGA in MATLAB optimizes system performance using EES decision variables, reducing thermal/exergy inefficiencies while increasing SUCP. |
| ArticleNumber | 136653 |
| Author | Saefuttamam, M. Rifqi Nasruddin Dikaimana, Yophie Ekariansyah, Andi S. Muwonge, Martin |
| Author_xml | – sequence: 1 givenname: Andi S. surname: Ekariansyah fullname: Ekariansyah, Andi S. organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia – sequence: 2 givenname: Martin surname: Muwonge fullname: Muwonge, Martin organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia – sequence: 3 givenname: M. Rifqi surname: Saefuttamam fullname: Saefuttamam, M. Rifqi organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia – sequence: 4 givenname: Yophie surname: Dikaimana fullname: Dikaimana, Yophie organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia – sequence: 5 orcidid: 0000-0002-5289-0039 surname: Nasruddin fullname: Nasruddin email: nasruddin@eng.ui.ac.id organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia |
| BookMark | eNqFkMtOwzAQRb0AifL4AxZegkSCHefJAqlC5SGBuoG15Tjj1FFiI9utKN_Dh5KSrljA6o5Gc-_onmN0YKwBhM4piSmh-XUXgwHXbuOEJFlMWZ5n7ADNCMtJlKVpcoSOve8IIVlZVTP0tfi5vsLwMakwzX6OQFpjBy2xfQ960J8iaGuwVVjgYd0H3e4-TUu_9QEG3Di9AYPrLW7BhhW4QfT43elBuC1egQjY27WTgNdem3ZKiWzdgQyjEe8Cw_hP9K11OqwGfPGyfJhfnqJDJXoPZ3s9QW_3i9e7x-h5-fB0N3-OJCNliKgqJZUJVTlhLJGklqwpM5apVGaC0UwVNUvzhJUNY6qAKq_ypmjqohAgRlHsBN1MudJZ7x0oLnX4KRic0D2nhO8Y845PjPmOMZ8Yj-b0l3lf_D_b7WSDsdhGg-NeajASGu1GLLyx-u-AbxJfoWE |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_137424 crossref_primary_10_1016_j_energy_2025_137927 |
| Cites_doi | 10.1016/j.enconman.2017.08.052 10.1016/j.geothermics.2021.102042 10.1016/j.desal.2017.08.012 10.1016/j.applthermaleng.2021.116596 10.1016/j.applthermaleng.2017.01.114 10.1016/j.solener.2014.11.027 10.1016/j.desal.2016.09.034 10.1016/j.renene.2010.03.034 10.1016/j.ijhydene.2018.05.143 10.1016/j.egyr.2019.12.011 10.1016/j.jclepro.2018.04.049 10.1016/j.enconman.2020.112903 10.1016/j.applthermaleng.2017.03.116 10.1016/j.enconman.2018.03.055 10.1016/j.enconman.2019.112207 10.1016/j.enconman.2019.112154 10.1016/j.applthermaleng.2017.03.040 10.1016/j.ijhydene.2020.08.160 10.1016/j.rser.2015.09.032 10.1016/j.geothermics.2016.09.004 10.1016/j.applthermaleng.2016.11.163 10.1016/j.seta.2019.06.002 10.1016/j.jclepro.2018.09.181 10.1016/j.renene.2018.06.046 10.1016/j.ijhydene.2012.11.025 10.1016/j.renene.2017.11.082 10.1016/j.desal.2011.11.050 10.1016/j.energy.2015.07.101 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.energy.2025.136653 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2025_136653 S0360544225022959 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- ~HD 29G 6TJ 9DU AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ADMUD ADNMO ADXHL AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ |
| ID | FETCH-LOGICAL-c308t-1f8c1c21f60332c0bc3d8535f4c5a315f7b346238d33f7e9696d7db77aeadb7f3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516329800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sat Nov 29 07:00:09 EST 2025 Tue Nov 18 22:36:14 EST 2025 Sat Sep 27 17:13:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective genetic algorithm Exergy Energy Exergo-economic Geothermal Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c308t-1f8c1c21f60332c0bc3d8535f4c5a315f7b346238d33f7e9696d7db77aeadb7f3 |
| ORCID | 0000-0002-5289-0039 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_energy_2025_136653 crossref_primary_10_1016_j_energy_2025_136653 elsevier_sciencedirect_doi_10_1016_j_energy_2025_136653 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ahmadi, Dincer, Rosen (bib21) 2013; 38 Mehrpooya, Moftakhari Sharifzadeh, Rosen (bib12) 2015; 90 Nemati, Sadeghi, Yari (bib25) 2017; 422 Salcedo, Antipova, Boer, Jiménez, Guillén-Gosálbez (bib31) 2012; 286 Musharavati, Khanmohammadi, Pakseresht (bib17) 2021; 187 Alirahmi, Assareh (bib18) 2020; 45 Kim, Ko, Han (bib20) 2020; 10 Houshfar (bib26) 2020; 205 Abbasi, Pourrahmani (bib27) 2020; 214 Hogerwaard, Dincer, Naterer (bib5) 2017; 121 Ghaebi, Shekari Namin, Rostamzadeh (bib1) 2018; 165 Hekmatshoar, Deymi-Dashtebayaz, Gholizadeh, Dadpour, Delpisheh (bib15) 2022; 247 Yilmaz, Ozturk, Selbas (bib3) 2019; 202 Assareh, Alirahmi, Ahmadi (bib13) 2021; 92 Bejan, Tsatsaronis, Moran (bib28) 1995 Azhar, Rizvi, Dincer (bib8) 2017; 404 Habibollahzade, Gholamian, Ahmadi, Behzadi (bib32) 2018; 43 Nasruddin, Satrio, Mahlia, Giannetti, Saito (bib29) 2019; 35 Dinçer (bib19) 2018 Parikhani, Gholizadeh, Ghaebi, Sattari Sadat, Sarabi (bib16) 2019; 209 Khalid, Dincer, Rosen (bib6) 2017; 120 Khalid, Dincer, Rosen (bib7) 2015; 112 Jahan, Edwards (bib30) 2013 . Ghaebi, Namin, Rostamzadeh (bib34) 2018; 189 Ghaebi, Parikhani, Rostamzadeh (bib9) 2018; 119 Jaziri, Boughamoura, Müller, Mezghani, Tounsi, Ismail (bib23) 2020; 6 Nasruddin, Daud, Surachman, Sugiyono, Aditya, Mahlia (bib2) 2016; 53 Nafey, Sharaf (bib24) 2010; 35 Mehrpooya, Sharifzadeh (bib11) 2017; 114 Ghaebi, Yari, Gargari, Rostamzadeh (bib4) 2019; 130 Mohammadi, Mehrpooya (bib22) 2017; 116 Ghaebi, Parikhani, Rostamzadeh (bib10) 2017; 150 Mosaffa, Mokarram, Farshi (bib33) 2017; 65 Jaziri (10.1016/j.energy.2025.136653_bib23) 2020; 6 Habibollahzade (10.1016/j.energy.2025.136653_bib32) 2018; 43 Nemati (10.1016/j.energy.2025.136653_bib25) 2017; 422 Salcedo (10.1016/j.energy.2025.136653_bib31) 2012; 286 Abbasi (10.1016/j.energy.2025.136653_bib27) 2020; 214 Parikhani (10.1016/j.energy.2025.136653_bib16) 2019; 209 Musharavati (10.1016/j.energy.2025.136653_bib17) 2021; 187 Khalid (10.1016/j.energy.2025.136653_bib7) 2015; 112 Bejan (10.1016/j.energy.2025.136653_bib28) 1995 Nasruddin (10.1016/j.energy.2025.136653_bib29) 2019; 35 Azhar (10.1016/j.energy.2025.136653_bib8) 2017; 404 Dinçer (10.1016/j.energy.2025.136653_bib19) 2018 Ahmadi (10.1016/j.energy.2025.136653_bib21) 2013; 38 Ghaebi (10.1016/j.energy.2025.136653_bib34) 2018; 189 Jahan (10.1016/j.energy.2025.136653_bib30) 2013 10.1016/j.energy.2025.136653_bib14 Ghaebi (10.1016/j.energy.2025.136653_bib10) 2017; 150 Ghaebi (10.1016/j.energy.2025.136653_bib1) 2018; 165 Mosaffa (10.1016/j.energy.2025.136653_bib33) 2017; 65 Ghaebi (10.1016/j.energy.2025.136653_bib9) 2018; 119 Kim (10.1016/j.energy.2025.136653_bib20) 2020; 10 Alirahmi (10.1016/j.energy.2025.136653_bib18) 2020; 45 Mohammadi (10.1016/j.energy.2025.136653_bib22) 2017; 116 Nasruddin (10.1016/j.energy.2025.136653_bib2) 2016; 53 Nafey (10.1016/j.energy.2025.136653_bib24) 2010; 35 Houshfar (10.1016/j.energy.2025.136653_bib26) 2020; 205 Assareh (10.1016/j.energy.2025.136653_bib13) 2021; 92 Hekmatshoar (10.1016/j.energy.2025.136653_bib15) 2022; 247 Hogerwaard (10.1016/j.energy.2025.136653_bib5) 2017; 121 Mehrpooya (10.1016/j.energy.2025.136653_bib12) 2015; 90 Yilmaz (10.1016/j.energy.2025.136653_bib3) 2019; 202 Mehrpooya (10.1016/j.energy.2025.136653_bib11) 2017; 114 Ghaebi (10.1016/j.energy.2025.136653_bib4) 2019; 130 Khalid (10.1016/j.energy.2025.136653_bib6) 2017; 120 |
| References_xml | – volume: 92 year: 2021 ident: bib13 publication-title: Geothermics – volume: 214 year: 2020 ident: bib27 publication-title: Energy Convers Manag – volume: 35 start-page: 2571 year: 2010 end-page: 2580 ident: bib24 publication-title: Renew Energy – volume: 121 start-page: 1059 year: 2017 end-page: 1069 ident: bib5 publication-title: Appl Therm Eng – volume: 53 start-page: 733 year: 2016 end-page: 740 ident: bib2 publication-title: Renew Sustain Energy Rev – volume: 45 start-page: 31555 year: 2020 end-page: 31573 ident: bib18 publication-title: Int J Hydrogen Energy – volume: 422 start-page: 113 year: 2017 end-page: 123 ident: bib25 publication-title: Desalination (Amst) – volume: 165 start-page: 419 year: 2018 end-page: 439 ident: bib1 publication-title: Energy Convers Manag – volume: 189 start-page: 279 year: 2018 end-page: 296 ident: bib34 publication-title: J Clean Prod – volume: 43 start-page: 14140 year: 2018 end-page: 14157 ident: bib32 publication-title: Int J Hydrogen Energy – volume: 112 start-page: 290 year: 2015 end-page: 299 ident: bib7 publication-title: Sol Energy – volume: 404 start-page: 72 year: 2017 end-page: 78 ident: bib8 publication-title: Desalination (Amst) – volume: 247 year: 2022 ident: bib15 publication-title: Energy (Calg) – volume: 202 year: 2019 ident: bib3 publication-title: Energy Convers Manag – volume: 150 start-page: 678 year: 2017 end-page: 692 ident: bib10 publication-title: Energy Convers Manag – volume: 6 start-page: 264 year: 2020 end-page: 287 ident: bib23 publication-title: Energy Rep – volume: 90 start-page: 2047 year: 2015 end-page: 2069 ident: bib12 publication-title: Energy (Calg) – volume: 38 start-page: 1795 year: 2013 end-page: 1805 ident: bib21 publication-title: Int J Hydrogen Energy – volume: 119 start-page: 513 year: 2018 end-page: 527 ident: bib9 publication-title: Renew Energy – year: 1995 ident: bib28 article-title: Thermal design and optimization – volume: 65 start-page: 113 year: 2017 end-page: 125 ident: bib33 publication-title: Geothermics – volume: 10 year: 2020 ident: bib20 publication-title: Appl Sci – volume: 286 start-page: 358 year: 2012 end-page: 371 ident: bib31 publication-title: Desalination (Amst) – reference: . – year: 2018 ident: bib19 article-title: Comprehensive energy systems – start-page: 105 year: 2013 end-page: 108 ident: bib30 publication-title: Multi-criteria decision analysis for supporting the selection of engineering materials in product design – volume: 120 start-page: 645 year: 2017 end-page: 653 ident: bib6 publication-title: Appl Therm Eng – volume: 116 start-page: 685 year: 2017 end-page: 694 ident: bib22 publication-title: Appl Therm Eng – volume: 130 start-page: 87 year: 2019 end-page: 102 ident: bib4 publication-title: Renew Energy – volume: 114 start-page: 1090 year: 2017 end-page: 1104 ident: bib11 publication-title: Appl Therm Eng – volume: 209 start-page: 550 year: 2019 end-page: 571 ident: bib16 publication-title: J Clean Prod – volume: 187 year: 2021 ident: bib17 publication-title: Appl Therm Eng – volume: 205 year: 2020 ident: bib26 publication-title: Energy Convers Manag – volume: 35 start-page: 48 year: 2019 end-page: 57 ident: bib29 publication-title: Sustain Energy Technol Assessments – volume: 150 start-page: 678 year: 2017 ident: 10.1016/j.energy.2025.136653_bib10 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.08.052 – volume: 92 year: 2021 ident: 10.1016/j.energy.2025.136653_bib13 publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102042 – volume: 422 start-page: 113 year: 2017 ident: 10.1016/j.energy.2025.136653_bib25 publication-title: Desalination (Amst) doi: 10.1016/j.desal.2017.08.012 – volume: 187 year: 2021 ident: 10.1016/j.energy.2025.136653_bib17 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.116596 – volume: 116 start-page: 685 year: 2017 ident: 10.1016/j.energy.2025.136653_bib22 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.01.114 – volume: 112 start-page: 290 year: 2015 ident: 10.1016/j.energy.2025.136653_bib7 publication-title: Sol Energy doi: 10.1016/j.solener.2014.11.027 – volume: 404 start-page: 72 year: 2017 ident: 10.1016/j.energy.2025.136653_bib8 publication-title: Desalination (Amst) doi: 10.1016/j.desal.2016.09.034 – volume: 35 start-page: 2571 issue: 11 year: 2010 ident: 10.1016/j.energy.2025.136653_bib24 publication-title: Renew Energy doi: 10.1016/j.renene.2010.03.034 – year: 1995 ident: 10.1016/j.energy.2025.136653_bib28 – volume: 43 start-page: 14140 issue: 31 year: 2018 ident: 10.1016/j.energy.2025.136653_bib32 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.143 – volume: 6 start-page: 264 year: 2020 ident: 10.1016/j.energy.2025.136653_bib23 publication-title: Energy Rep doi: 10.1016/j.egyr.2019.12.011 – volume: 189 start-page: 279 year: 2018 ident: 10.1016/j.energy.2025.136653_bib34 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.04.049 – volume: 214 year: 2020 ident: 10.1016/j.energy.2025.136653_bib27 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112903 – volume: 121 start-page: 1059 year: 2017 ident: 10.1016/j.energy.2025.136653_bib5 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.03.116 – year: 2018 ident: 10.1016/j.energy.2025.136653_bib19 – volume: 165 start-page: 419 year: 2018 ident: 10.1016/j.energy.2025.136653_bib1 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.03.055 – volume: 247 year: 2022 ident: 10.1016/j.energy.2025.136653_bib15 publication-title: Energy (Calg) – volume: 205 year: 2020 ident: 10.1016/j.energy.2025.136653_bib26 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112207 – start-page: 105 year: 2013 ident: 10.1016/j.energy.2025.136653_bib30 – volume: 10 issue: 5 year: 2020 ident: 10.1016/j.energy.2025.136653_bib20 publication-title: Appl Sci – volume: 202 year: 2019 ident: 10.1016/j.energy.2025.136653_bib3 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112154 – volume: 120 start-page: 645 year: 2017 ident: 10.1016/j.energy.2025.136653_bib6 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.03.040 – volume: 45 start-page: 31555 issue: 56 year: 2020 ident: 10.1016/j.energy.2025.136653_bib18 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.160 – volume: 53 start-page: 733 year: 2016 ident: 10.1016/j.energy.2025.136653_bib2 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.09.032 – volume: 65 start-page: 113 year: 2017 ident: 10.1016/j.energy.2025.136653_bib33 publication-title: Geothermics doi: 10.1016/j.geothermics.2016.09.004 – volume: 114 start-page: 1090 year: 2017 ident: 10.1016/j.energy.2025.136653_bib11 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.163 – volume: 35 start-page: 48 year: 2019 ident: 10.1016/j.energy.2025.136653_bib29 publication-title: Sustain Energy Technol Assessments doi: 10.1016/j.seta.2019.06.002 – ident: 10.1016/j.energy.2025.136653_bib14 – volume: 209 start-page: 550 year: 2019 ident: 10.1016/j.energy.2025.136653_bib16 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.09.181 – volume: 130 start-page: 87 year: 2019 ident: 10.1016/j.energy.2025.136653_bib4 publication-title: Renew Energy doi: 10.1016/j.renene.2018.06.046 – volume: 38 start-page: 1795 issue: 4 year: 2013 ident: 10.1016/j.energy.2025.136653_bib21 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.11.025 – volume: 119 start-page: 513 year: 2018 ident: 10.1016/j.energy.2025.136653_bib9 publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.082 – volume: 286 start-page: 358 year: 2012 ident: 10.1016/j.energy.2025.136653_bib31 publication-title: Desalination (Amst) doi: 10.1016/j.desal.2011.11.050 – volume: 90 start-page: 2047 year: 2015 ident: 10.1016/j.energy.2025.136653_bib12 publication-title: Energy (Calg) doi: 10.1016/j.energy.2015.07.101 |
| SSID | ssj0005899 |
| Score | 2.4939852 |
| Snippet | A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 136653 |
| SubjectTerms | Energy Exergo-economic Exergy Geothermal Multi-objective genetic algorithm Optimization |
| Title | Energy, exergy, and exergy-economic optimization of a multigeneration system driven by geothermal primary heat source using multi-objective genetic algorithm (MOGA) |
| URI | https://dx.doi.org/10.1016/j.energy.2025.136653 |
| Volume | 330 |
| WOSCitedRecordID | wos001516329800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfKhgQvEwwmxgD5gQdQlqqJ4yZ9rFD5JzYQDNS3KHbsNl2bjDYd3ffhY_FhOP9J0nVosAdeotRyHCf36935cvczQs-5TDxBecdNGQvcgPmJy2hK3V7AGbgTXcI0qc-3D-HxcTQc9j61Wr-qWpjzaZjn0WrVO_uvooY2ELYqnb2BuOtBoQHOQehwBLHD8Z8EP9DVfOrVqe2UzJmKjptfrrCVyE4BymJmqzBNlaROLhxpHmrdaFienXSuNKLyU0dC12vNVPWWZalQutwxXwCcpY476FHcgk2MKlV7NAvNCjsdFfOsHM-UU3v08U2_CkJM1uet6U9XJuO-jlEMTmFFDzb1IhnbJMzM-dJusPKjyO0O8ZoUoY4aJUIuyzKZGdAftZ3Pmfye1b57dppkKntXm6HibJyJ9RiIT-skr6b2q-PSILik14n94GM0s0e6XUNLfMVomPjFpC30c7bVDdpN98sc3Ru2s85orJLlJrEZJVajxGaUW2jbD2kPdO52_91g-L5JQYr0_qb17KvSTp1_eHU2f3ad1tyhk3tox65jcN_g7z5qiXwX3anK3Be7aG_QlFBCR2tDFg_QTyPoQ2wAeYgBnHgDnHgdnLiQOMEb4MQGnNiAE7ML3IATW3BiBU5swIk1OPEGOLEFJ67BiV8oaL58iL6-Hpy8euvavUJcTjpR6Xoy4h73PdntEOLzDuMkBU-UyoDThHhUhowE4OpHKSEyFIoTKg1TFoYJqFIWSrKHtvIiF48QBgsnYBkBaxMCMqHdhCmy3IBSInyeBHIfkUoMMbdE-mo_l2l8HQj2kVtfZd_CX_qHlYRj6wwbJzcG2F575eMb3ukA3W3-U0_QVjlfiqfoNj8vs8X8mcXsb3Ej3uM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy%2C+exergy%2C+and+exergy-economic+optimization+of+a+multigeneration+system+driven+by+geothermal+primary+heat+source+using+multi-objective+genetic+algorithm+%28MOGA%29&rft.jtitle=Energy+%28Oxford%29&rft.au=Ekariansyah%2C+Andi+S.&rft.au=Muwonge%2C+Martin&rft.au=Saefuttamam%2C+M.+Rifqi&rft.au=Dikaimana%2C+Yophie&rft.date=2025-09-01&rft.issn=0360-5442&rft.volume=330&rft.spage=136653&rft_id=info:doi/10.1016%2Fj.energy.2025.136653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2025_136653 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |