Energy, exergy, and exergy-economic optimization of a multigeneration system driven by geothermal primary heat source using multi-objective genetic algorithm (MOGA)

A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through seawater desalination, has been proposed and analyzed. It uses liquefied natural gas (LNG) as a heat sink during the process and enhanced by inco...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 330; s. 136653
Hlavní autoři: Ekariansyah, Andi S., Muwonge, Martin, Saefuttamam, M. Rifqi, Dikaimana, Yophie, Nasruddin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2025
Témata:
ISSN:0360-5442
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through seawater desalination, has been proposed and analyzed. It uses liquefied natural gas (LNG) as a heat sink during the process and enhanced by incorporating a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit. The modified system has been evaluated in terms of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP) to assess its thermal, exergy, and exergy-economic performances. These three objective functions were then optimized using the Multi-objective Genetic Algorithm (MOGA) based on selected decision variables from the Engineering Equation Solver (EES) code connected with the MATLAB module and the TOPSIS method to obtain their most optimal values. The system could generate a heating capacity of 3577 kW, cooling capacity of 505.9 kW, output power of 282.5 kW, hydrogen production of 2.969 kg/h, and distillate water of 145.8 m3/hr. The most optimal values for thermal efficiency, exergy efficiency, and SUCP are 60.08 %, 18.65 %, and 159.389 $/GJ, respectively. With the TEG and RO desalination unit, the MGS resulted in a decrease in both thermal and exergy efficiency but with an increase in the SUCP. •Geothermal heat as the energy source and LNG as heat sink drive a multigeneration system (MGS) providing cooling, heating, and hydrogen products.•Introduction of a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit changes the systems into modified MGS.•Those additional systems into the MGS affect the performances of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP).•MOGA in MATLAB optimizes system performance using EES decision variables, reducing thermal/exergy inefficiencies while increasing SUCP.
AbstractList A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through seawater desalination, has been proposed and analyzed. It uses liquefied natural gas (LNG) as a heat sink during the process and enhanced by incorporating a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit. The modified system has been evaluated in terms of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP) to assess its thermal, exergy, and exergy-economic performances. These three objective functions were then optimized using the Multi-objective Genetic Algorithm (MOGA) based on selected decision variables from the Engineering Equation Solver (EES) code connected with the MATLAB module and the TOPSIS method to obtain their most optimal values. The system could generate a heating capacity of 3577 kW, cooling capacity of 505.9 kW, output power of 282.5 kW, hydrogen production of 2.969 kg/h, and distillate water of 145.8 m3/hr. The most optimal values for thermal efficiency, exergy efficiency, and SUCP are 60.08 %, 18.65 %, and 159.389 $/GJ, respectively. With the TEG and RO desalination unit, the MGS resulted in a decrease in both thermal and exergy efficiency but with an increase in the SUCP. •Geothermal heat as the energy source and LNG as heat sink drive a multigeneration system (MGS) providing cooling, heating, and hydrogen products.•Introduction of a thermoelectric generation (TEG) module and reverse osmosis (RO) desalination unit changes the systems into modified MGS.•Those additional systems into the MGS affect the performances of thermal efficiency, exergy efficiency, and the sum unit cost of products (SUCP).•MOGA in MATLAB optimizes system performance using EES decision variables, reducing thermal/exergy inefficiencies while increasing SUCP.
ArticleNumber 136653
Author Saefuttamam, M. Rifqi
Nasruddin
Dikaimana, Yophie
Ekariansyah, Andi S.
Muwonge, Martin
Author_xml – sequence: 1
  givenname: Andi S.
  surname: Ekariansyah
  fullname: Ekariansyah, Andi S.
  organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia
– sequence: 2
  givenname: Martin
  surname: Muwonge
  fullname: Muwonge, Martin
  organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia
– sequence: 3
  givenname: M. Rifqi
  surname: Saefuttamam
  fullname: Saefuttamam, M. Rifqi
  organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia
– sequence: 4
  givenname: Yophie
  surname: Dikaimana
  fullname: Dikaimana, Yophie
  organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia
– sequence: 5
  orcidid: 0000-0002-5289-0039
  surname: Nasruddin
  fullname: Nasruddin
  email: nasruddin@eng.ui.ac.id
  organization: Department of Mechanical Engineering, University of Indonesia, Depok, 16424, Indonesia
BookMark eNqFkMtOwzAQRb0AifL4AxZegkSCHefJAqlC5SGBuoG15Tjj1FFiI9utKN_Dh5KSrljA6o5Gc-_onmN0YKwBhM4piSmh-XUXgwHXbuOEJFlMWZ5n7ADNCMtJlKVpcoSOve8IIVlZVTP0tfi5vsLwMakwzX6OQFpjBy2xfQ960J8iaGuwVVjgYd0H3e4-TUu_9QEG3Di9AYPrLW7BhhW4QfT43elBuC1egQjY27WTgNdem3ZKiWzdgQyjEe8Cw_hP9K11OqwGfPGyfJhfnqJDJXoPZ3s9QW_3i9e7x-h5-fB0N3-OJCNliKgqJZUJVTlhLJGklqwpM5apVGaC0UwVNUvzhJUNY6qAKq_ypmjqohAgRlHsBN1MudJZ7x0oLnX4KRic0D2nhO8Y845PjPmOMZ8Yj-b0l3lf_D_b7WSDsdhGg-NeajASGu1GLLyx-u-AbxJfoWE
CitedBy_id crossref_primary_10_1016_j_energy_2025_137424
crossref_primary_10_1016_j_energy_2025_137927
Cites_doi 10.1016/j.enconman.2017.08.052
10.1016/j.geothermics.2021.102042
10.1016/j.desal.2017.08.012
10.1016/j.applthermaleng.2021.116596
10.1016/j.applthermaleng.2017.01.114
10.1016/j.solener.2014.11.027
10.1016/j.desal.2016.09.034
10.1016/j.renene.2010.03.034
10.1016/j.ijhydene.2018.05.143
10.1016/j.egyr.2019.12.011
10.1016/j.jclepro.2018.04.049
10.1016/j.enconman.2020.112903
10.1016/j.applthermaleng.2017.03.116
10.1016/j.enconman.2018.03.055
10.1016/j.enconman.2019.112207
10.1016/j.enconman.2019.112154
10.1016/j.applthermaleng.2017.03.040
10.1016/j.ijhydene.2020.08.160
10.1016/j.rser.2015.09.032
10.1016/j.geothermics.2016.09.004
10.1016/j.applthermaleng.2016.11.163
10.1016/j.seta.2019.06.002
10.1016/j.jclepro.2018.09.181
10.1016/j.renene.2018.06.046
10.1016/j.ijhydene.2012.11.025
10.1016/j.renene.2017.11.082
10.1016/j.desal.2011.11.050
10.1016/j.energy.2015.07.101
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2025.136653
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_136653
S0360544225022959
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
~HD
29G
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ID FETCH-LOGICAL-c308t-1f8c1c21f60332c0bc3d8535f4c5a315f7b346238d33f7e9696d7db77aeadb7f3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516329800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sat Nov 29 07:00:09 EST 2025
Tue Nov 18 22:36:14 EST 2025
Sat Sep 27 17:13:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective genetic algorithm
Exergy
Energy
Exergo-economic
Geothermal
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-1f8c1c21f60332c0bc3d8535f4c5a315f7b346238d33f7e9696d7db77aeadb7f3
ORCID 0000-0002-5289-0039
ParticipantIDs crossref_citationtrail_10_1016_j_energy_2025_136653
crossref_primary_10_1016_j_energy_2025_136653
elsevier_sciencedirect_doi_10_1016_j_energy_2025_136653
PublicationCentury 2000
PublicationDate 2025-09-01
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahmadi, Dincer, Rosen (bib21) 2013; 38
Mehrpooya, Moftakhari Sharifzadeh, Rosen (bib12) 2015; 90
Nemati, Sadeghi, Yari (bib25) 2017; 422
Salcedo, Antipova, Boer, Jiménez, Guillén-Gosálbez (bib31) 2012; 286
Musharavati, Khanmohammadi, Pakseresht (bib17) 2021; 187
Alirahmi, Assareh (bib18) 2020; 45
Kim, Ko, Han (bib20) 2020; 10
Houshfar (bib26) 2020; 205
Abbasi, Pourrahmani (bib27) 2020; 214
Hogerwaard, Dincer, Naterer (bib5) 2017; 121
Ghaebi, Shekari Namin, Rostamzadeh (bib1) 2018; 165
Hekmatshoar, Deymi-Dashtebayaz, Gholizadeh, Dadpour, Delpisheh (bib15) 2022; 247
Yilmaz, Ozturk, Selbas (bib3) 2019; 202
Assareh, Alirahmi, Ahmadi (bib13) 2021; 92
Bejan, Tsatsaronis, Moran (bib28) 1995
Azhar, Rizvi, Dincer (bib8) 2017; 404
Habibollahzade, Gholamian, Ahmadi, Behzadi (bib32) 2018; 43
Nasruddin, Satrio, Mahlia, Giannetti, Saito (bib29) 2019; 35
Dinçer (bib19) 2018
Parikhani, Gholizadeh, Ghaebi, Sattari Sadat, Sarabi (bib16) 2019; 209
Khalid, Dincer, Rosen (bib6) 2017; 120
Khalid, Dincer, Rosen (bib7) 2015; 112
Jahan, Edwards (bib30) 2013
.
Ghaebi, Namin, Rostamzadeh (bib34) 2018; 189
Ghaebi, Parikhani, Rostamzadeh (bib9) 2018; 119
Jaziri, Boughamoura, Müller, Mezghani, Tounsi, Ismail (bib23) 2020; 6
Nasruddin, Daud, Surachman, Sugiyono, Aditya, Mahlia (bib2) 2016; 53
Nafey, Sharaf (bib24) 2010; 35
Mehrpooya, Sharifzadeh (bib11) 2017; 114
Ghaebi, Yari, Gargari, Rostamzadeh (bib4) 2019; 130
Mohammadi, Mehrpooya (bib22) 2017; 116
Ghaebi, Parikhani, Rostamzadeh (bib10) 2017; 150
Mosaffa, Mokarram, Farshi (bib33) 2017; 65
Jaziri (10.1016/j.energy.2025.136653_bib23) 2020; 6
Habibollahzade (10.1016/j.energy.2025.136653_bib32) 2018; 43
Nemati (10.1016/j.energy.2025.136653_bib25) 2017; 422
Salcedo (10.1016/j.energy.2025.136653_bib31) 2012; 286
Abbasi (10.1016/j.energy.2025.136653_bib27) 2020; 214
Parikhani (10.1016/j.energy.2025.136653_bib16) 2019; 209
Musharavati (10.1016/j.energy.2025.136653_bib17) 2021; 187
Khalid (10.1016/j.energy.2025.136653_bib7) 2015; 112
Bejan (10.1016/j.energy.2025.136653_bib28) 1995
Nasruddin (10.1016/j.energy.2025.136653_bib29) 2019; 35
Azhar (10.1016/j.energy.2025.136653_bib8) 2017; 404
Dinçer (10.1016/j.energy.2025.136653_bib19) 2018
Ahmadi (10.1016/j.energy.2025.136653_bib21) 2013; 38
Ghaebi (10.1016/j.energy.2025.136653_bib34) 2018; 189
Jahan (10.1016/j.energy.2025.136653_bib30) 2013
10.1016/j.energy.2025.136653_bib14
Ghaebi (10.1016/j.energy.2025.136653_bib10) 2017; 150
Ghaebi (10.1016/j.energy.2025.136653_bib1) 2018; 165
Mosaffa (10.1016/j.energy.2025.136653_bib33) 2017; 65
Ghaebi (10.1016/j.energy.2025.136653_bib9) 2018; 119
Kim (10.1016/j.energy.2025.136653_bib20) 2020; 10
Alirahmi (10.1016/j.energy.2025.136653_bib18) 2020; 45
Mohammadi (10.1016/j.energy.2025.136653_bib22) 2017; 116
Nasruddin (10.1016/j.energy.2025.136653_bib2) 2016; 53
Nafey (10.1016/j.energy.2025.136653_bib24) 2010; 35
Houshfar (10.1016/j.energy.2025.136653_bib26) 2020; 205
Assareh (10.1016/j.energy.2025.136653_bib13) 2021; 92
Hekmatshoar (10.1016/j.energy.2025.136653_bib15) 2022; 247
Hogerwaard (10.1016/j.energy.2025.136653_bib5) 2017; 121
Mehrpooya (10.1016/j.energy.2025.136653_bib12) 2015; 90
Yilmaz (10.1016/j.energy.2025.136653_bib3) 2019; 202
Mehrpooya (10.1016/j.energy.2025.136653_bib11) 2017; 114
Ghaebi (10.1016/j.energy.2025.136653_bib4) 2019; 130
Khalid (10.1016/j.energy.2025.136653_bib6) 2017; 120
References_xml – volume: 92
  year: 2021
  ident: bib13
  publication-title: Geothermics
– volume: 214
  year: 2020
  ident: bib27
  publication-title: Energy Convers Manag
– volume: 35
  start-page: 2571
  year: 2010
  end-page: 2580
  ident: bib24
  publication-title: Renew Energy
– volume: 121
  start-page: 1059
  year: 2017
  end-page: 1069
  ident: bib5
  publication-title: Appl Therm Eng
– volume: 53
  start-page: 733
  year: 2016
  end-page: 740
  ident: bib2
  publication-title: Renew Sustain Energy Rev
– volume: 45
  start-page: 31555
  year: 2020
  end-page: 31573
  ident: bib18
  publication-title: Int J Hydrogen Energy
– volume: 422
  start-page: 113
  year: 2017
  end-page: 123
  ident: bib25
  publication-title: Desalination (Amst)
– volume: 165
  start-page: 419
  year: 2018
  end-page: 439
  ident: bib1
  publication-title: Energy Convers Manag
– volume: 189
  start-page: 279
  year: 2018
  end-page: 296
  ident: bib34
  publication-title: J Clean Prod
– volume: 43
  start-page: 14140
  year: 2018
  end-page: 14157
  ident: bib32
  publication-title: Int J Hydrogen Energy
– volume: 112
  start-page: 290
  year: 2015
  end-page: 299
  ident: bib7
  publication-title: Sol Energy
– volume: 404
  start-page: 72
  year: 2017
  end-page: 78
  ident: bib8
  publication-title: Desalination (Amst)
– volume: 247
  year: 2022
  ident: bib15
  publication-title: Energy (Calg)
– volume: 202
  year: 2019
  ident: bib3
  publication-title: Energy Convers Manag
– volume: 150
  start-page: 678
  year: 2017
  end-page: 692
  ident: bib10
  publication-title: Energy Convers Manag
– volume: 6
  start-page: 264
  year: 2020
  end-page: 287
  ident: bib23
  publication-title: Energy Rep
– volume: 90
  start-page: 2047
  year: 2015
  end-page: 2069
  ident: bib12
  publication-title: Energy (Calg)
– volume: 38
  start-page: 1795
  year: 2013
  end-page: 1805
  ident: bib21
  publication-title: Int J Hydrogen Energy
– volume: 119
  start-page: 513
  year: 2018
  end-page: 527
  ident: bib9
  publication-title: Renew Energy
– year: 1995
  ident: bib28
  article-title: Thermal design and optimization
– volume: 65
  start-page: 113
  year: 2017
  end-page: 125
  ident: bib33
  publication-title: Geothermics
– volume: 10
  year: 2020
  ident: bib20
  publication-title: Appl Sci
– volume: 286
  start-page: 358
  year: 2012
  end-page: 371
  ident: bib31
  publication-title: Desalination (Amst)
– reference: .
– year: 2018
  ident: bib19
  article-title: Comprehensive energy systems
– start-page: 105
  year: 2013
  end-page: 108
  ident: bib30
  publication-title: Multi-criteria decision analysis for supporting the selection of engineering materials in product design
– volume: 120
  start-page: 645
  year: 2017
  end-page: 653
  ident: bib6
  publication-title: Appl Therm Eng
– volume: 116
  start-page: 685
  year: 2017
  end-page: 694
  ident: bib22
  publication-title: Appl Therm Eng
– volume: 130
  start-page: 87
  year: 2019
  end-page: 102
  ident: bib4
  publication-title: Renew Energy
– volume: 114
  start-page: 1090
  year: 2017
  end-page: 1104
  ident: bib11
  publication-title: Appl Therm Eng
– volume: 209
  start-page: 550
  year: 2019
  end-page: 571
  ident: bib16
  publication-title: J Clean Prod
– volume: 187
  year: 2021
  ident: bib17
  publication-title: Appl Therm Eng
– volume: 205
  year: 2020
  ident: bib26
  publication-title: Energy Convers Manag
– volume: 35
  start-page: 48
  year: 2019
  end-page: 57
  ident: bib29
  publication-title: Sustain Energy Technol Assessments
– volume: 150
  start-page: 678
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib10
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.08.052
– volume: 92
  year: 2021
  ident: 10.1016/j.energy.2025.136653_bib13
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102042
– volume: 422
  start-page: 113
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib25
  publication-title: Desalination (Amst)
  doi: 10.1016/j.desal.2017.08.012
– volume: 187
  year: 2021
  ident: 10.1016/j.energy.2025.136653_bib17
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.116596
– volume: 116
  start-page: 685
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib22
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.01.114
– volume: 112
  start-page: 290
  year: 2015
  ident: 10.1016/j.energy.2025.136653_bib7
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2014.11.027
– volume: 404
  start-page: 72
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib8
  publication-title: Desalination (Amst)
  doi: 10.1016/j.desal.2016.09.034
– volume: 35
  start-page: 2571
  issue: 11
  year: 2010
  ident: 10.1016/j.energy.2025.136653_bib24
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.03.034
– year: 1995
  ident: 10.1016/j.energy.2025.136653_bib28
– volume: 43
  start-page: 14140
  issue: 31
  year: 2018
  ident: 10.1016/j.energy.2025.136653_bib32
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.05.143
– volume: 6
  start-page: 264
  year: 2020
  ident: 10.1016/j.energy.2025.136653_bib23
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2019.12.011
– volume: 189
  start-page: 279
  year: 2018
  ident: 10.1016/j.energy.2025.136653_bib34
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.04.049
– volume: 214
  year: 2020
  ident: 10.1016/j.energy.2025.136653_bib27
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112903
– volume: 121
  start-page: 1059
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib5
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.03.116
– year: 2018
  ident: 10.1016/j.energy.2025.136653_bib19
– volume: 165
  start-page: 419
  year: 2018
  ident: 10.1016/j.energy.2025.136653_bib1
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.03.055
– volume: 247
  year: 2022
  ident: 10.1016/j.energy.2025.136653_bib15
  publication-title: Energy (Calg)
– volume: 205
  year: 2020
  ident: 10.1016/j.energy.2025.136653_bib26
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112207
– start-page: 105
  year: 2013
  ident: 10.1016/j.energy.2025.136653_bib30
– volume: 10
  issue: 5
  year: 2020
  ident: 10.1016/j.energy.2025.136653_bib20
  publication-title: Appl Sci
– volume: 202
  year: 2019
  ident: 10.1016/j.energy.2025.136653_bib3
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112154
– volume: 120
  start-page: 645
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib6
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.03.040
– volume: 45
  start-page: 31555
  issue: 56
  year: 2020
  ident: 10.1016/j.energy.2025.136653_bib18
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.160
– volume: 53
  start-page: 733
  year: 2016
  ident: 10.1016/j.energy.2025.136653_bib2
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.09.032
– volume: 65
  start-page: 113
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib33
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.09.004
– volume: 114
  start-page: 1090
  year: 2017
  ident: 10.1016/j.energy.2025.136653_bib11
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.163
– volume: 35
  start-page: 48
  year: 2019
  ident: 10.1016/j.energy.2025.136653_bib29
  publication-title: Sustain Energy Technol Assessments
  doi: 10.1016/j.seta.2019.06.002
– ident: 10.1016/j.energy.2025.136653_bib14
– volume: 209
  start-page: 550
  year: 2019
  ident: 10.1016/j.energy.2025.136653_bib16
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.09.181
– volume: 130
  start-page: 87
  year: 2019
  ident: 10.1016/j.energy.2025.136653_bib4
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.06.046
– volume: 38
  start-page: 1795
  issue: 4
  year: 2013
  ident: 10.1016/j.energy.2025.136653_bib21
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.11.025
– volume: 119
  start-page: 513
  year: 2018
  ident: 10.1016/j.energy.2025.136653_bib9
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.082
– volume: 286
  start-page: 358
  year: 2012
  ident: 10.1016/j.energy.2025.136653_bib31
  publication-title: Desalination (Amst)
  doi: 10.1016/j.desal.2011.11.050
– volume: 90
  start-page: 2047
  year: 2015
  ident: 10.1016/j.energy.2025.136653_bib12
  publication-title: Energy (Calg)
  doi: 10.1016/j.energy.2015.07.101
SSID ssj0005899
Score 2.4939852
Snippet A modified multigeneration system (MGS) using geothermal heat to provide products of cooling, heating, power generation, hydrogen, and fresh water through...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136653
SubjectTerms Energy
Exergo-economic
Exergy
Geothermal
Multi-objective genetic algorithm
Optimization
Title Energy, exergy, and exergy-economic optimization of a multigeneration system driven by geothermal primary heat source using multi-objective genetic algorithm (MOGA)
URI https://dx.doi.org/10.1016/j.energy.2025.136653
Volume 330
WOSCitedRecordID wos001516329800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2FFgleEBSqlpv2gQeQu1Hstb3OY4TCTWpBtEh5s7zedeI0sUvilPR_-A6-jdmL7ZAibhIvlmPZ68uczB6P58wg9Iy7GWdpLyWhJygBfisJFzwgLEr7VDDBhTDNJtjJSTQa9T90Ot9qLczljBVFtF73L_6rqWEbGFtJZ__C3M2gsAHWweiwBLPD8o8MP9RqPvXoVDsls6ai4-YXkVaJ7JTgLOZWhWlUkjq5cKzrUOuNpsqzIxbKIyqeOpZarzVX6i1bpUL5csd8AXBWOu6gRyElnxpXqno0S10VdjYuF3k1mStSe_z-9aAOQkw3r1uXP12bjPsmRjE8hzd6mFOvkolNwsyd026LlS9lYTvE66IITdQokdmqqpK5Af1x1_mYZ5_zhrvn50musnf1NFReTHK5GQPxgibJywbmanFOmwllBGE9Evj-D86emq9A1yYOE8OYdqW-1646icoADE0l462S3KdqaDUy8EfVDr1_A-16LOiDV90dvB2O3rVJRpHuYNpcSi3e1BmG18_1c3K0QXjO7qI79k0FDwzC7qGOLPbQrVrIvtxD-8NWJAk72llieR99NaY8wgZyRxjgh7fghzfhh8sMJ3gLftjADxv4YX6FW_hhCz-s4IcN_LCGH96CH7bwww388HMFvhcP0KdXw7OXb4jtBkJS2osq4mZR6qaem4U9Sr20x1MqgGsGmZ8GCXWDjHHqA5mPBKUZk6rqk_I1jCXgLDnL6D7aKcpCHiAcwgCJ57MoCYFQC-Dsnp9IjwNZ46EXiENEazPEqS2Vrzq2zOI6J3IaG-PFynixMd4hIs1R9in8Zn9WWzi2dNfQ2BhA-csjH_7zkY_Q7fb_8xjtVIuVfIJuppdVvlw8tej9Do2H2Yc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy%2C+exergy%2C+and+exergy-economic+optimization+of+a+multigeneration+system+driven+by+geothermal+primary+heat+source+using+multi-objective+genetic+algorithm+%28MOGA%29&rft.jtitle=Energy+%28Oxford%29&rft.au=Ekariansyah%2C+Andi+S.&rft.au=Muwonge%2C+Martin&rft.au=Saefuttamam%2C+M.+Rifqi&rft.au=Dikaimana%2C+Yophie&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=330&rft_id=info:doi/10.1016%2Fj.energy.2025.136653&rft.externalDocID=S0360544225022959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon