Characterizing the Functional Density Power Divergence Class

Divergence measures have a long association with statistical inference, machine learning and information theory. The density power divergence and related measures have produced many useful (and popular) statistical procedures, which provide a good balance between model efficiency on one hand and out...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 69; no. 2; p. 1
Main Authors: Ray, Souvik, Pal, Subrata, Kar, Sumit Kumar, Basu, Ayanendranath
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Divergence measures have a long association with statistical inference, machine learning and information theory. The density power divergence and related measures have produced many useful (and popular) statistical procedures, which provide a good balance between model efficiency on one hand and outlier stability or robustness on the other. The logarithmic density power divergence, a particular logarithmic transform of the density power divergence, has also been very successful in producing efficient and stable inference procedures; in addition it has also led to significant demonstrated applications in information theory. The success of the minimum divergence procedures based on the density power divergence and the logarithmic density power divergence (which also go by the names β-divergence and γ-divergence, respectively) make it imperative and meaningful to look for other, similar divergences which may be obtained as transforms of the density power divergence in the same spirit.With this motivation we search for such transforms of the density power divergence, referred to herein as the functional density power divergence class. The present article characterizes this functional density power divergence class, and thus identifies the available divergence measures within this construct that may be explored further for possible applications in statistical inference, machine learning and information theory.
AbstractList Divergence measures have a long association with statistical inference, machine learning and information theory. The density power divergence and related measures have produced many useful (and popular) statistical procedures, which provide a good balance between model efficiency on one hand and outlier stability or robustness on the other. The logarithmic density power divergence, a particular logarithmic transform of the density power divergence, has also been very successful in producing efficient and stable inference procedures; in addition it has also led to significant demonstrated applications in information theory. The success of the minimum divergence procedures based on the density power divergence and the logarithmic density power divergence (which also go by the names β-divergence and γ-divergence, respectively) make it imperative and meaningful to look for other, similar divergences which may be obtained as transforms of the density power divergence in the same spirit.With this motivation we search for such transforms of the density power divergence, referred to herein as the functional density power divergence class. The present article characterizes this functional density power divergence class, and thus identifies the available divergence measures within this construct that may be explored further for possible applications in statistical inference, machine learning and information theory.
Divergence measures have a long association with statistical inference, machine learning and information theory. The density power divergence and related measures have produced many useful (and popular) statistical procedures, which provide a good balance between model efficiency on one hand and outlier stability or robustness on the other. The logarithmic density power divergence, a particular logarithmic transform of the density power divergence, has also been very successful in producing efficient and stable inference procedures; in addition it has also led to significant demonstrated applications in information theory. The success of the minimum divergence procedures based on the density power divergence and the logarithmic density power divergence (which also go by the names [Formula Omitted]-divergence and [Formula Omitted]-divergence, respectively) make it imperative and meaningful to look for other, similar divergences which may be obtained as transforms of the density power divergence in the same spirit. With this motivation we search for such transforms of the density power divergence, referred to herein as the functional density power divergence class. The present article characterizes this functional density power divergence class, and thus identifies the available divergence measures within this construct that may be explored further for possible applications in statistical inference, machine learning and information theory.
Author Ray, Souvik
Pal, Subrata
Kar, Sumit Kumar
Basu, Ayanendranath
Author_xml – sequence: 1
  givenname: Souvik
  orcidid: 0000-0002-4039-9293
  surname: Ray
  fullname: Ray, Souvik
  organization: Department of Statistics, Stanford University, Stanford, CA, USA
– sequence: 2
  givenname: Subrata
  orcidid: 0000-0002-3325-431X
  surname: Pal
  fullname: Pal, Subrata
  organization: Department of Statistics, Iowa State University, Ames, IA, USA
– sequence: 3
  givenname: Sumit Kumar
  orcidid: 0000-0002-1355-4112
  surname: Kar
  fullname: Kar, Sumit Kumar
  organization: Department of Statistics & Operations Research, University of North Carolina, Chapel Hill, NC, USA
– sequence: 4
  givenname: Ayanendranath
  orcidid: 0000-0003-1416-9109
  surname: Basu
  fullname: Basu, Ayanendranath
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, West Bengal, India
BookMark eNp9kE1LAzEQhoNUsK3eBS8Lnrdm8rUJeJGt1UJBD_Ucstlsm7Lu1mSr1F_vlhYPHjzNDLzPMPOM0KBpG4fQNeAJAFZ3y_lyQjAhE0oAMyrO0BA4z1IlOBugIcYgU8WYvECjGDf9yDiQIbrP1yYY27ngv32zSrq1S2a7xna-bUydTF0TfbdPXtsvF5Kp_3Rh5Rrrkrw2MV6i88rU0V2d6hi9zR6X-XO6eHma5w-L1FIsRSoFraiiBRTEUFkKgzG2VSH6RpS2khVkRBWOVVZmsuSqAM6ykhOQxBAQnI7R7XHvNrQfOxc7vWl3ob8vapKJjIIUQvYpcUzZ0MYYXKWt78zhkS4YX2vA-mBK96b0wZQ-mepB_AfcBv9uwv4_5OaIeOfcb1wpzARg-gNam3QX
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3366538
Cites_doi 10.1007/s10463-018-0665-x
10.3390/e20050347
10.1214/aos/1176325512
10.1109/TIT.2019.2937527
10.1109/TIT.2015.2449312
10.1109/TIT.2021.3054980
10.1214/13-EJS817
10.1016/j.jmva.2008.02.004
10.1109/TIT.2015.2449311
10.1093/biomet/85.3.549
10.1093/biomet/88.3.865
10.1016/j.jspi.2012.03.019
10.3390/e12061532
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3210436
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1
ExternalDocumentID 10_1109_TIT_2022_3210436
9904610
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
AARMG
ABAZT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3086-863f393b1b2a38d6a000cfb66a06dcf8f1729be4fc878d59b1547d52182a21653
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Jun 29 12:23:22 EDT 2025
Sat Nov 29 03:31:49 EST 2025
Tue Nov 18 21:57:15 EST 2025
Tue Nov 25 14:44:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3086-863f393b1b2a38d6a000cfb66a06dcf8f1729be4fc878d59b1547d52182a21653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4039-9293
0000-0002-1355-4112
0000-0002-3325-431X
0000-0003-1416-9109
PQID 2767318668
PQPubID 36024
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TIT_2022_3210436
ieee_primary_9904610
proquest_journals_2767318668
crossref_primary_10_1109_TIT_2022_3210436
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Basu (ref2) 2019
ref15
ref14
Donoghue (ref5) 1969
ref11
ref10
ref1
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref12
  doi: 10.1007/s10463-018-0665-x
– ident: ref8
  doi: 10.3390/e20050347
– ident: ref15
  doi: 10.1214/aos/1176325512
– ident: ref10
  doi: 10.1109/TIT.2019.2937527
– ident: ref14
  doi: 10.1109/TIT.2015.2449312
– volume-title: Distributions and Fourier Transforms
  year: 1969
  ident: ref5
– ident: ref9
  doi: 10.1109/TIT.2021.3054980
– ident: ref6
  doi: 10.1214/13-EJS817
– ident: ref7
  doi: 10.1016/j.jmva.2008.02.004
– ident: ref13
  doi: 10.1109/TIT.2015.2449311
– volume-title: Statistical Inference: The Minimum Distance Approach
  year: 2019
  ident: ref2
– ident: ref1
  doi: 10.1093/biomet/85.3.549
– ident: ref11
  doi: 10.1093/biomet/88.3.865
– ident: ref3
  doi: 10.1016/j.jspi.2012.03.019
– ident: ref4
  doi: 10.3390/e12061532
SSID ssj0014512
Score 2.4356377
Snippet Divergence measures have a long association with statistical inference, machine learning and information theory. The density power divergence and related...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Density
Density measurement
Density power divergence
efficiency
Information theory
Limiting
logarithmic density power divergence
Logarithms
Machine learning
Outliers (statistics)
Power measurement
robust statistical inference
Robustness
Statistical inference
Transforms
Title Characterizing the Functional Density Power Divergence Class
URI https://ieeexplore.ieee.org/document/9904610
https://www.proquest.com/docview/2767318668
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MenG6K0yk5eBHstjZpPsCLOIdexg4TditpmoIgm-xD0L_el7SrgiJ4CyGBktf3lbz3-wFcWhmzMBQ6QPnmAeM8R53DLEWkOKktoybWnmxCjMdyNlOTGlxXvTDWWl98Zntu6N_ys4XZuKuyPlpOBw9eh7oQoujVql4MWBwWyOAhKjDmHNsnyYHqTx-nmAhGUc_1qzAPxvzlgjynyg9D7L3LqPm_7zqA_TKKJLeF2A-hZuctaG4ZGkipsC3Y-wY32Iabuwqd-QMnCMZ-ZIR-rbgOJENXy75-JxNHnEaGrmDDI3UST5x5BE-j--ndQ1CyJwSGYp4SSE5zqmgappGmMuMajZ_JU44Dnplc5hi6qNSy3Eghs1ilGEyJLHaI7joKeUyPoTFfzO0JEJPFRnAdRhkzmAAKqYySikupWYoB1qAD_e2BJqaEFncMFy-JTzEGKkERJE4ESSmCDlxVO14LWI0_1rbdkVfrytPuQHcrs6TUu1USCS6ow_CTp7_vOoNdRxhf1F13obFebuw57Ji39fNqeeF_qU_rtMZH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagPTjfFec2DL4Ld1jbNBXyRzbHhHHuYsLfSpikIsskugv56T9KuCorgWwgJlJyeW3LO9wFcaRFQ1-WRg_JNHcpYijqHWQqPcTLS1FdBZMkm-HAoJhM5KsFN0QujtbbFZ7phhvYtP5mplbkqa6LlNPDgG7AZUOq5WbdW8WZAAzfDBndRhTHrWD9KtmRz3B9jKuh5DdOxQi0c85cTsqwqP0yx9S_dyv--bB_28jiS3GWCP4CSnlahsuZoILnKVmH3G-BgDW7bBT7zB04QjP5IFz1bdiFIOqaafflORoY6jXRMyYbF6iSWOvMQnrr343bPyfkTHOVjpuII5qe-9GM39iJfJCxC86fSmOGAJSoVKQYvMtY0VYKLJJAxhlM8CQyme-S5LPCPoDydTfUxEJUEirPI9RKqMAXkQiopJBMiojGGWK06NNcHGqocXNxwXLyENsloyRBFEBoRhLkI6nBd7HjNgDX-WFszR16sy0-7DmdrmYW55i1CjzPuGxQ_cfL7rkvY7o0fB-GgP3w4hR1DH59VYZ9BeTlf6XPYUm_L58X8wv5en2lsyY4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+Functional+Density+Power+Divergence+Class&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Ray%2C+Souvik&rft.au=Pal%2C+Subrata&rft.au=Kar%2C+Sumit+Kumar&rft.au=Basu%2C+Ayanendranath&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=2&rft.spage=1141&rft_id=info:doi/10.1109%2FTIT.2022.3210436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon