Anomaly detection in KOMAC high-power systems using transformer-based conditional variational autoencoder
This study applies a transformer-based conditional variational autoencoder (T-CVAE) model for anomaly detection in pulse waveform signals from the High Voltage Converter Modulator (HVCM) and Klystron at the Korea Multipurpose Accelerator Complex (KOMAC). Building upon prior work using CVAE models fo...
Uloženo v:
| Vydáno v: | Journal of the Korean Physical Society Ročník 87; číslo 7; s. 883 - 891 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Seoul
The Korean Physical Society
01.10.2025
Springer Nature B.V 한국물리학회 |
| Témata: | |
| ISSN: | 0374-4884, 1976-8524 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This study applies a transformer-based conditional variational autoencoder (T-CVAE) model for anomaly detection in pulse waveform signals from the High Voltage Converter Modulator (HVCM) and Klystron at the Korea Multipurpose Accelerator Complex (KOMAC). Building upon prior work using CVAE models for anomaly detection in Spallation Neutron Source (SNS) accelerators, the T-CVAE model was tailored to the specific characteristics of KOMAC data by optimizing hyperparameters and leveraging transformer-based architectures for enhanced feature extraction. Experimental results demonstrate that the model effectively learns the distribution of normal signals, as validated through boxplots, the receiver operation characteristics (ROC) curve and kernel density estimation (KDE) analyses. Anomalies are detected through significant reconstruction loss differences between normal and abnormal signals. By reliably identifying pre-fault conditions, the proposed system offers a promising approach to improving operational reliability and minimizing unplanned downtime in KOMAC's proton linear accelerator. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0374-4884 1976-8524 |
| DOI: | 10.1007/s40042-025-01339-0 |