Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes I

We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of ϕ -divergences measures, which includes the most common divergence measures : Renyi and Tsallis famili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical theory and applications Jg. 17; H. 1; S. 158 - 171
Hauptverfasser: Ba, Amadou Diadié, LO, Gane Samb, Ba, Diam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2018
Springer Nature B.V
Springer
Schlagworte:
ISSN:1538-7887, 2214-1766, 1538-7887
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of ϕ -divergences measures, which includes the most common divergence measures : Renyi and Tsallis families and the Kullback-Leibler measures. Instead of using the Parzen nonparametric estimators of the probability density functions whose discrepancy is estimated, we use the wavelets approach and the geometry of Besov spaces. One-sided and two-sided statistical tests are derived. This paper is devoted to the foundations the general asymptotic theory and the exposition of the mains theoretical tools concerning the ϕ -forms, while proofs and next detailed and applied results will be given in the two subsequent papers which deal important key divergence measures and symmetrized estimators.
AbstractList We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of ϕ-divergences measures, which includes the most common divergence measures : Renyi and Tsallis families and the Kullback-Leibler measures. Instead of using the Parzen nonparametric estimators of the probability density functions whose discrepancy is estimated, we use the wavelets approach and the geometry of Besov spaces. One-sided and two-sided statistical tests are derived. This paper is devoted to the foundations the general asymptotic theory and the exposition of the mains theoretical tools concerning the ϕ-forms, while proofs and next detailed and applied results will be given in the two subsequent papers which deal important key divergence measures and symmetrized estimators.
We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of ϕ -divergences measures, which includes the most common divergence measures : Renyi and Tsallis families and the Kullback-Leibler measures. Instead of using the Parzen nonparametric estimators of the probability density functions whose discrepancy is estimated, we use the wavelets approach and the geometry of Besov spaces. One-sided and two-sided statistical tests are derived. This paper is devoted to the foundations the general asymptotic theory and the exposition of the mains theoretical tools concerning the ϕ -forms, while proofs and next detailed and applied results will be given in the two subsequent papers which deal important key divergence measures and symmetrized estimators.
Author LO, Gane Samb
Ba, Diam
Ba, Amadou Diadié
Author_xml – sequence: 1
  givenname: Amadou Diadié
  surname: Ba
  fullname: Ba, Amadou Diadié
  email: amadou-diadie.ba@edu.ugb.en
  organization: LERSTAD, Gaston Berger University
– sequence: 2
  givenname: Gane Samb
  surname: LO
  fullname: LO, Gane Samb
  organization: LERSTAD, Gaston Berger University, LASTA, Pierre et Marie University, African University of Sciences and Technology
– sequence: 3
  givenname: Diam
  surname: Ba
  fullname: Ba, Diam
  organization: LERSTAD, Gaston Berger University
BookMark eNp1kc1uEzEUhS1UJELoA7CzxHoGX_-Mx8uqhBKpBRatWFq2xx4cTcbBnlTK2-MQBKuurnx1zmcfn7foak6zR-g9kJYqBR93ZTEtJdC3IFtogb5CK0qBNyC77gqtQLC-kX0v36DrUqIlgisGkqkVGj_FZ59HPzuPH7wpx-wL3pQl7s0S04zNPODtUvBNOe0PS1qiw19T3pspLif8-NOnfMJPJc4j_mGe_eSrdLM_xBydmfD3nJwvpRK379DrYKbir__ONXr6vHm8_dLcf7vb3t7cN44RuTSBuyAtB2WoUEGJHigbCAsyGKK4UYOw3FrGvTdgOymJcKDqYRDCKRM4W6PthTsks9OHXHPkk04m6j-LlEdtck0xee0Cs1Tw-k9dz4Nyaug6SoTsLPec2aGyPlxYh5x-HX1Z9C4d81yfr6kCAE5lp6oKLiqXUynZh3-3AtHnevS5Hn2uR4PUoGukNaIXT6naefT5P_ll029dmJbz
ContentType Journal Article
Copyright the Authors 2018
the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: the Authors 2018
– notice: the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.2991/jsta.2018.17.1.12
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2214-1766
1538-7887
EndPage 171
ExternalDocumentID oai_doaj_org_article_cf3b254214684f9c9d6620576b4e43bd
10_2991_jsta_2018_17_1_12
GroupedDBID AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ADBBV
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
FRP
GROUPED_DOAJ
HCIFZ
J9A
K7-
OK1
P2P
PIMPY
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c307t-f4cf7b419a259f958123d03f7fa094a9d5b4bb34eea1b67705c19eead55c9af43
IEDL.DBID K7-
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432688000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-7887
IngestDate Tue Oct 14 19:05:14 EDT 2025
Sat Oct 18 22:43:07 EDT 2025
Sat Nov 29 05:36:20 EST 2025
Fri Feb 21 02:40:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 62G05
62G07
Divergence measures estimation
Asymptotic normality
62G20
Wavelet theory
Besov spaces
wavelets empirical processes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-f4cf7b419a259f958123d03f7fa094a9d5b4bb34eea1b67705c19eead55c9af43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2911142769?pq-origsite=%requestingapplication%
PQID 2911142769
PQPubID 5642901
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_cf3b254214684f9c9d6620576b4e43bd
proquest_journals_2911142769
crossref_primary_10_2991_jsta_2018_17_1_12
springer_journals_10_2991_jsta_2018_17_1_12
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Melbourne
PublicationTitle Journal of statistical theory and applications
PublicationTitleAbbrev J Stat Theory Appl
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References Krishnamurthy A., Kandasamy K., Poczós B. and and Wasserman L.(2015) To appear in Proceedings of the 18th International Con- ference on Artificial Intelligence and Statistics (AISTATS) 2015, San Diego, CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the authors.
Blatter, C. (1998) Wavelets, a Primer. A. K. Peters, Natick. MA.
Kullback, S. and Leibler, R.(1951). On information and sufficiency. The Annals of Mathematical Statistics Vol.22,(1), pp 79–86.
Daubechies, I.(1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia.
Hall, P. (1987). On Kullback-Leibler loss and density estimation. The Annals of Statistics, Vol.15(4), pp.1491–1519.
Liu, H., Lafferty, J., and Wasserman, L.(2012). Exponential concentration inequality for mutual information estimation . In Neural Information Processing Systems (NIPS).
Topsoe, F. (2000), Some inequalities for information divergence and related measures of discrimination, IEEE Transactions on Informations Theory, vol.46, pp.1602–1609.
Moon, K.R. and Hero, III. A.O. , (2014). Ensemble estimation of multivariate f-divergence. in IEEE Internatonal Symposium on Information Theory, pp. 356–360.
Poczós, B. and Jeff, S.(2011). On the estimation of α—Divergences. In International Conference on Artificial Intelligence and Statistics, pp 609–617.
Giné, E. and Nickl, R.(2009). Uniform limit theorems for wavelet density estimators. The Annals of Probability, Vol.37(4), pp.1605–1646.
Cichocki, A. and Amari, S.(2010). Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities. Entropy, Vol.12(6), pp 1532–1568.
Sricharan, K., Wei, D., and Hero, A. O. Ensemble estimators for multivariate entropy estimation. arXiv:1203.5829, 2012.
Ba, A. D., LO, Lo, G.S and Ba, Diam B. (2017) Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes. ArXiv:1704.04536
Love, M.(1972). Probabily Theory I 4th Edition. Springer.
Kallberg D. and Seleznjev O. 2012. Estimation of entropy-type integral functionals. arXiv:1209.2544.
Hardle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A.(1998). Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statistics.
Dhaker H., Ngom P ., Deme E. and Mendy Pierre (2016). Kernel-Type Estimators of Divergence Measures and Its Strong Uniform Consistency. American Journal of Theoretical and Applied Statistics. Vol. 5 (1), pp. 13–22. doi: 10.11648/j.ajtas.20160501.13
Evren, A. (2012). Some Applications of Kullback-Leibler and Jeffreys’ Divergences in Multinomial Populations. Journal of Selcuk University natural and Applied Science, Vol.1(4), pp 48–58.
Akshay K., Kirthevasan K., Poczos B., and Wasserman, L.(2014). Nonparametric Estimation of Rényi Divergence and Friends. Journal of Machine Learning Research Workshop and conference Proceedings, 32. Vol.3, pp. 2.
Valiron, G. (1966). Théorie des fonctions. Masson, Paris Milan Melbourne.
Singh S. and Poczos, B. (2014). Generalized Exponential Concentration Inequality for Rényi Divergence Estimation. Journal of Machine Learning Research. Vol.6. Carnegie Mellon University.
References_xml – reference: Singh S. and Poczos, B. (2014). Generalized Exponential Concentration Inequality for Rényi Divergence Estimation. Journal of Machine Learning Research. Vol.6. Carnegie Mellon University.
– reference: Liu, H., Lafferty, J., and Wasserman, L.(2012). Exponential concentration inequality for mutual information estimation . In Neural Information Processing Systems (NIPS).
– reference: Love, M.(1972). Probabily Theory I 4th Edition. Springer.
– reference: Giné, E. and Nickl, R.(2009). Uniform limit theorems for wavelet density estimators. The Annals of Probability, Vol.37(4), pp.1605–1646.
– reference: Ba, A. D., LO, Lo, G.S and Ba, Diam B. (2017) Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes. ArXiv:1704.04536
– reference: Krishnamurthy A., Kandasamy K., Poczós B. and and Wasserman L.(2015) To appear in Proceedings of the 18th International Con- ference on Artificial Intelligence and Statistics (AISTATS) 2015, San Diego, CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the authors.
– reference: Kallberg D. and Seleznjev O. 2012. Estimation of entropy-type integral functionals. arXiv:1209.2544.
– reference: Hardle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A.(1998). Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statistics.
– reference: Poczós, B. and Jeff, S.(2011). On the estimation of α—Divergences. In International Conference on Artificial Intelligence and Statistics, pp 609–617.
– reference: Valiron, G. (1966). Théorie des fonctions. Masson, Paris Milan Melbourne.
– reference: Blatter, C. (1998) Wavelets, a Primer. A. K. Peters, Natick. MA.
– reference: Topsoe, F. (2000), Some inequalities for information divergence and related measures of discrimination, IEEE Transactions on Informations Theory, vol.46, pp.1602–1609.
– reference: Evren, A. (2012). Some Applications of Kullback-Leibler and Jeffreys’ Divergences in Multinomial Populations. Journal of Selcuk University natural and Applied Science, Vol.1(4), pp 48–58.
– reference: Kullback, S. and Leibler, R.(1951). On information and sufficiency. The Annals of Mathematical Statistics Vol.22,(1), pp 79–86.
– reference: Akshay K., Kirthevasan K., Poczos B., and Wasserman, L.(2014). Nonparametric Estimation of Rényi Divergence and Friends. Journal of Machine Learning Research Workshop and conference Proceedings, 32. Vol.3, pp. 2.
– reference: Dhaker H., Ngom P ., Deme E. and Mendy Pierre (2016). Kernel-Type Estimators of Divergence Measures and Its Strong Uniform Consistency. American Journal of Theoretical and Applied Statistics. Vol. 5 (1), pp. 13–22. doi: 10.11648/j.ajtas.20160501.13
– reference: Sricharan, K., Wei, D., and Hero, A. O. Ensemble estimators for multivariate entropy estimation. arXiv:1203.5829, 2012.
– reference: Moon, K.R. and Hero, III. A.O. , (2014). Ensemble estimation of multivariate f-divergence. in IEEE Internatonal Symposium on Information Theory, pp. 356–360.
– reference: Hall, P. (1987). On Kullback-Leibler loss and density estimation. The Annals of Statistics, Vol.15(4), pp.1491–1519.
– reference: Daubechies, I.(1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia.
– reference: Cichocki, A. and Amari, S.(2010). Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities. Entropy, Vol.12(6), pp 1532–1568.
SSID ssib054931739
ssj0000800523
Score 2.0416958
Snippet We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 158
SubjectTerms Asymptotic methods
Asymptotic normality
Asymptotic properties
Besov spaces
Divergence
Divergence measures estimation
Estimators
Function space
Normality
Probability density functions
Research Article
Statistical analysis
Statistical tests
Wavelet theory
wavelets empirical processes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYMnpWvTpk1zXHVFQRcPvm4hzUNccF1sFfz3zjRddQXx4rFtmoZvOsk3yTwI2bMycwWeMOq84BE3qY60jXmUcJuVnHnvmhpLtxdiMCju7-XVt1Jf6BMW0gMH4A6NT0swYrD-dMG9NNLmeQIkIy-542lpcfaNhfxmTA1bHgQmVjjGhBmXHQ6BbKEnV9Flosu6LJlaiJp8_VMk88e5aLPcnC6RxZYn0l4Y3zKZcaMVsnD5mWS1WiUPJ-hT0STTpJdhq6-ifVDZEI1I9cjS87qiver9aVw_w0t0gAwViTcNMfm08RigdxrLT0DT_tP4sckZQtsAAujxfI3cnPavj8-itm5CZEBj68hz4wUALTXYNl5msIanNk698BqMOS1RCmWZcuc0K3Mh4swwCRc2y4zUnqfrZHb0PHIbhHqeGBFbl6fCc8vyQggHam58UUqsXtYh-xMQ1Tikx1BgViDiChFXiLhiQjHFkg45Qpg_G2Jm6-YGyFu18lZ_ybtDtidCUq26VfA9hjHBIpcdcjAR3NfjX0e0-R8j2iLz2GdwTNsms_XLq9shc-atfqxedpv_8gPrKecg
  priority: 102
  providerName: Directory of Open Access Journals
Title Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes I
URI https://link.springer.com/article/10.2991/jsta.2018.17.1.12
https://www.proquest.com/docview/2911142769
https://doaj.org/article/cf3b254214684f9c9d6620576b4e43bd
Volume 17
WOSCitedRecordID wos000432688000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-1766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800523
  issn: 1538-7887
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2214-1766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800523
  issn: 1538-7887
  databaseCode: K7-
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2214-1766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800523
  issn: 1538-7887
  databaseCode: BENPR
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2214-1766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800523
  issn: 1538-7887
  databaseCode: PIMPY
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvBFbysoHTqBs14kTxyfUwlasxK5WiEc5WY4fVSt1d9mkSPx7ZhxvqyLBhWMcJ0r0ecbz8nwAr5wqfU0ZRlPVIhO2MJlxY5HlwpWN4CH4yLH09aOcz-uTE7VIAbc2lVVudWJU1G5lKUZ-kJNUilxW6u36R0asUZRdTRQat2GX56iEKSkrs-16QtcHd8fU9fI8WUdlZHyLck6FdH2iE3UyPzhHc4xqveoRlyM-4vmNrSp29L9hhv6ROY0b0vGD__2Vh3A_maLssF87j-CWXz6Ge7OrPq7tEzh9T2UbsV8nm_XRxJZNUCv0Bx6ZWTo27Vp22P66WHcrfIjNyQgm2571x_5ZLEpg3wwxXODUycX6LLYlYemMAr5x-hS-HE8-v_uQJWqGzKJS6LIgbJCIpTLoPgVVoplQuHERZDDoLxpFQDdNIbw3vKmkHJeWK7xwZWmVCaJ4BjvL1dI_BxZEbuXY-aqQQThe1VJ61CQ21I0igrQBvN6ioNd9Bw6NngtBpgkyTZBpLjXXPB_AEeF0NZGaZ8eB1eZUJ1nUNhQN-sVEaV6LoKxyVZWj3Vo1wouicQPY3-Kmk0S3-hq0AbzZIn99-69ftPfvl72AuzS7r2rbh51uc-lfwh37sztrN0PYPZrMF5-GMVIwjIsbxxbT2eL7b-2l_0U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98EYsFPABLqBs14kTxweECt2qq32IQ4He3MSPqpW6u90EUP8Uv5EZJ2lVJLj1wDGJYznx53l4xvMBvLYqdTlFGIssF5EwSREVdiCiWNi0FNx7FziWvk7kbJYfHKjPa_CrOwtDaZWdTAyC2i4M7ZFvxbQqRSwz9WF5FhFrFEVXOwqNBhZjd_4TXbbq_WgH5_dNHO8O9z_tRS2rQGQQz3XkhfESh6EKtPy9SlHDJXaQeOkLdHUKRWMsy0Q4V_Ayk3KQGq7wwqapUYUXCfZ7A26KJJe0rsYy6vCLrhZq47bK5klrjaWBYS7IFUrcawKrqAP41gmaf5Rblve57PM-j6-oxsAgcMXs_SNSGxTg7r3_7dfdh7utqc22m7XxANbc_CFsTC_q1FaP4GiH0lJCPVI2bXZLKzZEqdcc6GTF3LJRXbHt6vx0WS_wJTYjI598F9aUNWAh6YJ9K4jBA5sOT5fHoewKa89gYI-jx_DlWr70CazPF3P3FJgXsZED67JEemF5lkvpUFIan5eKCOB68Labdb1sKoxo9MwIIpogogkimkvNNY978JFwcdGQioOHG4vVkW5ljTY-KdHvJ8r2XHhllM2yGO3yrBROJKXtwWaHE91KrEpfgqQH7zqkXT7-64ie_buzV3B7b3860ZPRbPwc7tCbTQbfJqzXq-_uBdwyP-rjavUyLCUGh9cNwN8ciVl_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECuwBLiAn2fXa6z0gVEgiojZRDjzKabH3UbVSkxAHUP8av44ZP1oVCW49cLS9u1rb385jZ3Y-gOdOJz6jCGOeZjKSNs6j3A1kJKRLCslD8BXH0qd9NZtlBwd6vgW_2rMwlFbZysRKULulpT3yvqBVKYVKdT80aRHz4fjN6ltEDFIUaW3pNGqI7PnTn-i-la8nQ_zXL4QYjz68ex81DAORRWxvoiBtUDglnaMXEHSC2i52gziokKPbk2uab1HE0vucF6lSg8RyjRcuSazOg4xx3CuwjSa5FB3Ynk-m8y8tmtHxQt3c1Nw8bmyzpOKbq6QMpfHVYVbUCLx_jMYgZZplPa56vMfFBUVZ8QlcMIL_iNtW6nB863_-kLfhZmOEs9161dyBLb-4CzemZxVsy3twOKSElapSKZvW-6glG6E8rI96snzh2GRTst3y9GS1WWInNiPzn7waVhc8YFU6BvucE7cHNh2drI6qgiysOZ2BI07uw8dLedMH0FksF_4hsCCFVQPn01gF6XiaKeVRhtqQFZqo4brwskWAWdW1Rwz6bAQXQ3AxBBfDleGGiy68JYycNaSy4dWN5frQNFLI2BAXIpFE5p7JoK12aSrQYk8L6WVcuC7stJgxjSwrzTlguvCqRd3547_O6NG_B3sG1xB3Zn8y23sM16ljndq3A53N-rt_Alftj81RuX7arCsGXy8bgb8Bi7ZkAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divergence+Measures+Estimation+and+Its+Asymptotic+Normality+Theory+Using+Wavelets+Empirical+Processes+I&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Ba%2C+Amadou+Diadi%C3%A9&rft.au=LO%2C+Gane+Samb&rft.au=Ba%2C+Diam&rft.date=2018-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1538-7887&rft.eissn=2214-1766&rft.volume=17&rft.issue=1&rft.spage=158&rft.epage=171&rft_id=info:doi/10.2991%2Fjsta.2018.17.1.12&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon