Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes I
We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of ϕ -divergences measures, which includes the most common divergence measures : Renyi and Tsallis famili...
Gespeichert in:
| Veröffentlicht in: | Journal of statistical theory and applications Jg. 17; H. 1; S. 158 - 171 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.03.2018
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 1538-7887, 2214-1766, 1538-7887 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of
ϕ
-divergences measures, which includes the most common divergence measures : Renyi and Tsallis families and the Kullback-Leibler measures. Instead of using the Parzen nonparametric estimators of the probability density functions whose discrepancy is estimated, we use the wavelets approach and the geometry of Besov spaces. One-sided and two-sided statistical tests are derived. This paper is devoted to the foundations the general asymptotic theory and the exposition of the mains theoretical tools concerning the
ϕ
-forms, while proofs and next detailed and applied results will be given in the two subsequent papers which deal important key divergence measures and symmetrized estimators. |
|---|---|
| AbstractList | We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of ϕ-divergences measures, which includes the most common divergence measures : Renyi and Tsallis families and the Kullback-Leibler measures. Instead of using the Parzen nonparametric estimators of the probability density functions whose discrepancy is estimated, we use the wavelets approach and the geometry of Besov spaces. One-sided and two-sided statistical tests are derived. This paper is devoted to the foundations the general asymptotic theory and the exposition of the mains theoretical tools concerning the ϕ-forms, while proofs and next detailed and applied results will be given in the two subsequent papers which deal important key divergence measures and symmetrized estimators. We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide the asymptotic theory of the general of ϕ -divergences measures, which includes the most common divergence measures : Renyi and Tsallis families and the Kullback-Leibler measures. Instead of using the Parzen nonparametric estimators of the probability density functions whose discrepancy is estimated, we use the wavelets approach and the geometry of Besov spaces. One-sided and two-sided statistical tests are derived. This paper is devoted to the foundations the general asymptotic theory and the exposition of the mains theoretical tools concerning the ϕ -forms, while proofs and next detailed and applied results will be given in the two subsequent papers which deal important key divergence measures and symmetrized estimators. |
| Author | LO, Gane Samb Ba, Diam Ba, Amadou Diadié |
| Author_xml | – sequence: 1 givenname: Amadou Diadié surname: Ba fullname: Ba, Amadou Diadié email: amadou-diadie.ba@edu.ugb.en organization: LERSTAD, Gaston Berger University – sequence: 2 givenname: Gane Samb surname: LO fullname: LO, Gane Samb organization: LERSTAD, Gaston Berger University, LASTA, Pierre et Marie University, African University of Sciences and Technology – sequence: 3 givenname: Diam surname: Ba fullname: Ba, Diam organization: LERSTAD, Gaston Berger University |
| BookMark | eNp1kc1uEzEUhS1UJELoA7CzxHoGX_-Mx8uqhBKpBRatWFq2xx4cTcbBnlTK2-MQBKuurnx1zmcfn7foak6zR-g9kJYqBR93ZTEtJdC3IFtogb5CK0qBNyC77gqtQLC-kX0v36DrUqIlgisGkqkVGj_FZ59HPzuPH7wpx-wL3pQl7s0S04zNPODtUvBNOe0PS1qiw19T3pspLif8-NOnfMJPJc4j_mGe_eSrdLM_xBydmfD3nJwvpRK379DrYKbir__ONXr6vHm8_dLcf7vb3t7cN44RuTSBuyAtB2WoUEGJHigbCAsyGKK4UYOw3FrGvTdgOymJcKDqYRDCKRM4W6PthTsks9OHXHPkk04m6j-LlEdtck0xee0Cs1Tw-k9dz4Nyaug6SoTsLPec2aGyPlxYh5x-HX1Z9C4d81yfr6kCAE5lp6oKLiqXUynZh3-3AtHnevS5Hn2uR4PUoGukNaIXT6naefT5P_ll029dmJbz |
| ContentType | Journal Article |
| Copyright | the Authors 2018 the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: the Authors 2018 – notice: the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
| DOI | 10.2991/jsta.2018.17.1.12 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2214-1766 1538-7887 |
| EndPage | 171 |
| ExternalDocumentID | oai_doaj_org_article_cf3b254214684f9c9d6620576b4e43bd 10_2991_jsta_2018_17_1_12 |
| GroupedDBID | AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ACACY ACULB ADBBV AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS FRP GROUPED_DOAJ HCIFZ J9A K7- OK1 P2P PIMPY RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c307t-f4cf7b419a259f958123d03f7fa094a9d5b4bb34eea1b67705c19eead55c9af43 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432688000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-7887 |
| IngestDate | Tue Oct 14 19:05:14 EDT 2025 Sat Oct 18 22:43:07 EDT 2025 Sat Nov 29 05:36:20 EST 2025 Fri Feb 21 02:40:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 62G05 62G07 Divergence measures estimation Asymptotic normality 62G20 Wavelet theory Besov spaces wavelets empirical processes |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c307t-f4cf7b419a259f958123d03f7fa094a9d5b4bb34eea1b67705c19eead55c9af43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2911142769?pq-origsite=%requestingapplication% |
| PQID | 2911142769 |
| PQPubID | 5642901 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cf3b254214684f9c9d6620576b4e43bd proquest_journals_2911142769 crossref_primary_10_2991_jsta_2018_17_1_12 springer_journals_10_2991_jsta_2018_17_1_12 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Melbourne |
| PublicationTitle | Journal of statistical theory and applications |
| PublicationTitleAbbrev | J Stat Theory Appl |
| PublicationYear | 2018 |
| Publisher | Springer Netherlands Springer Nature B.V Springer |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
| References | Krishnamurthy A., Kandasamy K., Poczós B. and and Wasserman L.(2015) To appear in Proceedings of the 18th International Con- ference on Artificial Intelligence and Statistics (AISTATS) 2015, San Diego, CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the authors. Blatter, C. (1998) Wavelets, a Primer. A. K. Peters, Natick. MA. Kullback, S. and Leibler, R.(1951). On information and sufficiency. The Annals of Mathematical Statistics Vol.22,(1), pp 79–86. Daubechies, I.(1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia. Hall, P. (1987). On Kullback-Leibler loss and density estimation. The Annals of Statistics, Vol.15(4), pp.1491–1519. Liu, H., Lafferty, J., and Wasserman, L.(2012). Exponential concentration inequality for mutual information estimation . In Neural Information Processing Systems (NIPS). Topsoe, F. (2000), Some inequalities for information divergence and related measures of discrimination, IEEE Transactions on Informations Theory, vol.46, pp.1602–1609. Moon, K.R. and Hero, III. A.O. , (2014). Ensemble estimation of multivariate f-divergence. in IEEE Internatonal Symposium on Information Theory, pp. 356–360. Poczós, B. and Jeff, S.(2011). On the estimation of α—Divergences. In International Conference on Artificial Intelligence and Statistics, pp 609–617. Giné, E. and Nickl, R.(2009). Uniform limit theorems for wavelet density estimators. The Annals of Probability, Vol.37(4), pp.1605–1646. Cichocki, A. and Amari, S.(2010). Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities. Entropy, Vol.12(6), pp 1532–1568. Sricharan, K., Wei, D., and Hero, A. O. Ensemble estimators for multivariate entropy estimation. arXiv:1203.5829, 2012. Ba, A. D., LO, Lo, G.S and Ba, Diam B. (2017) Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes. ArXiv:1704.04536 Love, M.(1972). Probabily Theory I 4th Edition. Springer. Kallberg D. and Seleznjev O. 2012. Estimation of entropy-type integral functionals. arXiv:1209.2544. Hardle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A.(1998). Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statistics. Dhaker H., Ngom P ., Deme E. and Mendy Pierre (2016). Kernel-Type Estimators of Divergence Measures and Its Strong Uniform Consistency. American Journal of Theoretical and Applied Statistics. Vol. 5 (1), pp. 13–22. doi: 10.11648/j.ajtas.20160501.13 Evren, A. (2012). Some Applications of Kullback-Leibler and Jeffreys’ Divergences in Multinomial Populations. Journal of Selcuk University natural and Applied Science, Vol.1(4), pp 48–58. Akshay K., Kirthevasan K., Poczos B., and Wasserman, L.(2014). Nonparametric Estimation of Rényi Divergence and Friends. Journal of Machine Learning Research Workshop and conference Proceedings, 32. Vol.3, pp. 2. Valiron, G. (1966). Théorie des fonctions. Masson, Paris Milan Melbourne. Singh S. and Poczos, B. (2014). Generalized Exponential Concentration Inequality for Rényi Divergence Estimation. Journal of Machine Learning Research. Vol.6. Carnegie Mellon University. |
| References_xml | – reference: Singh S. and Poczos, B. (2014). Generalized Exponential Concentration Inequality for Rényi Divergence Estimation. Journal of Machine Learning Research. Vol.6. Carnegie Mellon University. – reference: Liu, H., Lafferty, J., and Wasserman, L.(2012). Exponential concentration inequality for mutual information estimation . In Neural Information Processing Systems (NIPS). – reference: Love, M.(1972). Probabily Theory I 4th Edition. Springer. – reference: Giné, E. and Nickl, R.(2009). Uniform limit theorems for wavelet density estimators. The Annals of Probability, Vol.37(4), pp.1605–1646. – reference: Ba, A. D., LO, Lo, G.S and Ba, Diam B. (2017) Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes. ArXiv:1704.04536 – reference: Krishnamurthy A., Kandasamy K., Poczós B. and and Wasserman L.(2015) To appear in Proceedings of the 18th International Con- ference on Artificial Intelligence and Statistics (AISTATS) 2015, San Diego, CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the authors. – reference: Kallberg D. and Seleznjev O. 2012. Estimation of entropy-type integral functionals. arXiv:1209.2544. – reference: Hardle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A.(1998). Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statistics. – reference: Poczós, B. and Jeff, S.(2011). On the estimation of α—Divergences. In International Conference on Artificial Intelligence and Statistics, pp 609–617. – reference: Valiron, G. (1966). Théorie des fonctions. Masson, Paris Milan Melbourne. – reference: Blatter, C. (1998) Wavelets, a Primer. A. K. Peters, Natick. MA. – reference: Topsoe, F. (2000), Some inequalities for information divergence and related measures of discrimination, IEEE Transactions on Informations Theory, vol.46, pp.1602–1609. – reference: Evren, A. (2012). Some Applications of Kullback-Leibler and Jeffreys’ Divergences in Multinomial Populations. Journal of Selcuk University natural and Applied Science, Vol.1(4), pp 48–58. – reference: Kullback, S. and Leibler, R.(1951). On information and sufficiency. The Annals of Mathematical Statistics Vol.22,(1), pp 79–86. – reference: Akshay K., Kirthevasan K., Poczos B., and Wasserman, L.(2014). Nonparametric Estimation of Rényi Divergence and Friends. Journal of Machine Learning Research Workshop and conference Proceedings, 32. Vol.3, pp. 2. – reference: Dhaker H., Ngom P ., Deme E. and Mendy Pierre (2016). Kernel-Type Estimators of Divergence Measures and Its Strong Uniform Consistency. American Journal of Theoretical and Applied Statistics. Vol. 5 (1), pp. 13–22. doi: 10.11648/j.ajtas.20160501.13 – reference: Sricharan, K., Wei, D., and Hero, A. O. Ensemble estimators for multivariate entropy estimation. arXiv:1203.5829, 2012. – reference: Moon, K.R. and Hero, III. A.O. , (2014). Ensemble estimation of multivariate f-divergence. in IEEE Internatonal Symposium on Information Theory, pp. 356–360. – reference: Hall, P. (1987). On Kullback-Leibler loss and density estimation. The Annals of Statistics, Vol.15(4), pp.1491–1519. – reference: Daubechies, I.(1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia. – reference: Cichocki, A. and Amari, S.(2010). Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities. Entropy, Vol.12(6), pp 1532–1568. |
| SSID | ssib054931739 ssj0000800523 |
| Score | 2.0416958 |
| Snippet | We deal with the normality asymptotic theory of empirical divergences measures based on wavelets in a series of three papers. In this first paper, we provide... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 158 |
| SubjectTerms | Asymptotic methods Asymptotic normality Asymptotic properties Besov spaces Divergence Divergence measures estimation Estimators Function space Normality Probability density functions Research Article Statistical analysis Statistical tests Wavelet theory wavelets empirical processes |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYMnpWvTpk1zXHVFQRcPvm4hzUNccF1sFfz3zjRddQXx4rFtmoZvOsk3yTwI2bMycwWeMOq84BE3qY60jXmUcJuVnHnvmhpLtxdiMCju7-XVt1Jf6BMW0gMH4A6NT0swYrD-dMG9NNLmeQIkIy-542lpcfaNhfxmTA1bHgQmVjjGhBmXHQ6BbKEnV9Flosu6LJlaiJp8_VMk88e5aLPcnC6RxZYn0l4Y3zKZcaMVsnD5mWS1WiUPJ-hT0STTpJdhq6-ifVDZEI1I9cjS87qiver9aVw_w0t0gAwViTcNMfm08RigdxrLT0DT_tP4sckZQtsAAujxfI3cnPavj8-itm5CZEBj68hz4wUALTXYNl5msIanNk698BqMOS1RCmWZcuc0K3Mh4swwCRc2y4zUnqfrZHb0PHIbhHqeGBFbl6fCc8vyQggHam58UUqsXtYh-xMQ1Tikx1BgViDiChFXiLhiQjHFkg45Qpg_G2Jm6-YGyFu18lZ_ybtDtidCUq26VfA9hjHBIpcdcjAR3NfjX0e0-R8j2iLz2GdwTNsms_XLq9shc-atfqxedpv_8gPrKecg priority: 102 providerName: Directory of Open Access Journals |
| Title | Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes I |
| URI | https://link.springer.com/article/10.2991/jsta.2018.17.1.12 https://www.proquest.com/docview/2911142769 https://doaj.org/article/cf3b254214684f9c9d6620576b4e43bd |
| Volume | 17 |
| WOSCitedRecordID | wos000432688000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2214-1766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800523 issn: 1538-7887 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2214-1766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800523 issn: 1538-7887 databaseCode: K7- dateStart: 20130501 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2214-1766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800523 issn: 1538-7887 databaseCode: BENPR dateStart: 20130501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2214-1766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800523 issn: 1538-7887 databaseCode: PIMPY dateStart: 20130501 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvBFbysoHTqBs14kTxyfUwlasxK5WiEc5WY4fVSt1d9mkSPx7ZhxvqyLBhWMcJ0r0ecbz8nwAr5wqfU0ZRlPVIhO2MJlxY5HlwpWN4CH4yLH09aOcz-uTE7VIAbc2lVVudWJU1G5lKUZ-kJNUilxW6u36R0asUZRdTRQat2GX56iEKSkrs-16QtcHd8fU9fI8WUdlZHyLck6FdH2iE3UyPzhHc4xqveoRlyM-4vmNrSp29L9hhv6ROY0b0vGD__2Vh3A_maLssF87j-CWXz6Ge7OrPq7tEzh9T2UbsV8nm_XRxJZNUCv0Bx6ZWTo27Vp22P66WHcrfIjNyQgm2571x_5ZLEpg3wwxXODUycX6LLYlYemMAr5x-hS-HE8-v_uQJWqGzKJS6LIgbJCIpTLoPgVVoplQuHERZDDoLxpFQDdNIbw3vKmkHJeWK7xwZWmVCaJ4BjvL1dI_BxZEbuXY-aqQQThe1VJ61CQ21I0igrQBvN6ioNd9Bw6NngtBpgkyTZBpLjXXPB_AEeF0NZGaZ8eB1eZUJ1nUNhQN-sVEaV6LoKxyVZWj3Vo1wouicQPY3-Kmk0S3-hq0AbzZIn99-69ftPfvl72AuzS7r2rbh51uc-lfwh37sztrN0PYPZrMF5-GMVIwjIsbxxbT2eL7b-2l_0U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98EYsFPABLqBs14kTxweECt2qq32IQ4He3MSPqpW6u90EUP8Uv5EZJ2lVJLj1wDGJYznx53l4xvMBvLYqdTlFGIssF5EwSREVdiCiWNi0FNx7FziWvk7kbJYfHKjPa_CrOwtDaZWdTAyC2i4M7ZFvxbQqRSwz9WF5FhFrFEVXOwqNBhZjd_4TXbbq_WgH5_dNHO8O9z_tRS2rQGQQz3XkhfESh6EKtPy9SlHDJXaQeOkLdHUKRWMsy0Q4V_Ayk3KQGq7wwqapUYUXCfZ7A26KJJe0rsYy6vCLrhZq47bK5klrjaWBYS7IFUrcawKrqAP41gmaf5Rblve57PM-j6-oxsAgcMXs_SNSGxTg7r3_7dfdh7utqc22m7XxANbc_CFsTC_q1FaP4GiH0lJCPVI2bXZLKzZEqdcc6GTF3LJRXbHt6vx0WS_wJTYjI598F9aUNWAh6YJ9K4jBA5sOT5fHoewKa89gYI-jx_DlWr70CazPF3P3FJgXsZED67JEemF5lkvpUFIan5eKCOB68Labdb1sKoxo9MwIIpogogkimkvNNY978JFwcdGQioOHG4vVkW5ljTY-KdHvJ8r2XHhllM2yGO3yrBROJKXtwWaHE91KrEpfgqQH7zqkXT7-64ie_buzV3B7b3860ZPRbPwc7tCbTQbfJqzXq-_uBdwyP-rjavUyLCUGh9cNwN8ciVl_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECuwBLiAn2fXa6z0gVEgiojZRDjzKabH3UbVSkxAHUP8av44ZP1oVCW49cLS9u1rb385jZ3Y-gOdOJz6jCGOeZjKSNs6j3A1kJKRLCslD8BXH0qd9NZtlBwd6vgW_2rMwlFbZysRKULulpT3yvqBVKYVKdT80aRHz4fjN6ltEDFIUaW3pNGqI7PnTn-i-la8nQ_zXL4QYjz68ex81DAORRWxvoiBtUDglnaMXEHSC2i52gziokKPbk2uab1HE0vucF6lSg8RyjRcuSazOg4xx3CuwjSa5FB3Ynk-m8y8tmtHxQt3c1Nw8bmyzpOKbq6QMpfHVYVbUCLx_jMYgZZplPa56vMfFBUVZ8QlcMIL_iNtW6nB863_-kLfhZmOEs9161dyBLb-4CzemZxVsy3twOKSElapSKZvW-6glG6E8rI96snzh2GRTst3y9GS1WWInNiPzn7waVhc8YFU6BvucE7cHNh2drI6qgiysOZ2BI07uw8dLedMH0FksF_4hsCCFVQPn01gF6XiaKeVRhtqQFZqo4brwskWAWdW1Rwz6bAQXQ3AxBBfDleGGiy68JYycNaSy4dWN5frQNFLI2BAXIpFE5p7JoK12aSrQYk8L6WVcuC7stJgxjSwrzTlguvCqRd3547_O6NG_B3sG1xB3Zn8y23sM16ljndq3A53N-rt_Alftj81RuX7arCsGXy8bgb8Bi7ZkAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divergence+Measures+Estimation+and+Its+Asymptotic+Normality+Theory+Using+Wavelets+Empirical+Processes+I&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Ba%2C+Amadou+Diadi%C3%A9&rft.au=LO%2C+Gane+Samb&rft.au=Ba%2C+Diam&rft.date=2018-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1538-7887&rft.eissn=2214-1766&rft.volume=17&rft.issue=1&rft.spage=158&rft.epage=171&rft_id=info:doi/10.2991%2Fjsta.2018.17.1.12&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon |