The Largest Eigenvalue of a Convex Function, Duality, and a Theorem of Slodkowski
First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The...
Uložené v:
| Vydané v: | The Journal of geometric analysis Ročník 26; číslo 4; s. 3027 - 3055 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2016
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1050-6926, 1559-002X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for
C
2
functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e. lower bound on this largest “eigenvalue” to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirichlet problem. Second, using the Legendre–Fenchel transform we derive a dual characterization of this largest eigenvalue in terms of convexity of the conjugate function. This dual characterization offers further insight into the nature of this largest eigenvalue and allows for an alternative proof of a necessary bound for the theorem. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1050-6926 1559-002X |
| DOI: | 10.1007/s12220-015-9660-0 |