The Largest Eigenvalue of a Convex Function, Duality, and a Theorem of Slodkowski
First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The...
Saved in:
| Published in: | The Journal of geometric analysis Vol. 26; no. 4; pp. 3027 - 3055 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1050-6926, 1559-002X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for
C
2
functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e. lower bound on this largest “eigenvalue” to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirichlet problem. Second, using the Legendre–Fenchel transform we derive a dual characterization of this largest eigenvalue in terms of convexity of the conjugate function. This dual characterization offers further insight into the nature of this largest eigenvalue and allows for an alternative proof of a necessary bound for the theorem. |
|---|---|
| AbstractList | First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e. lower bound on this largest “eigenvalue” to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirichlet problem. Second, using the Legendre–Fenchel transform we derive a dual characterization of this largest eigenvalue in terms of convexity of the conjugate function. This dual characterization offers further insight into the nature of this largest eigenvalue and allows for an alternative proof of a necessary bound for the theorem. First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e. lower bound on this largest “eigenvalue” to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirichlet problem. Second, using the Legendre–Fenchel transform we derive a dual characterization of this largest eigenvalue in terms of convexity of the conjugate function. This dual characterization offers further insight into the nature of this largest eigenvalue and allows for an alternative proof of a necessary bound for the theorem. |
| Author | Dellatorre, Matthew |
| Author_xml | – sequence: 1 givenname: Matthew surname: Dellatorre fullname: Dellatorre, Matthew email: mdellato@math.umd.edu organization: University of Maryland |
| BookMark | eNp1kEFLAzEQhYMo2FZ_gLeA165Ospvs7lFqq0JBxAreQjbJ1m23SU261f57U9aDF0_zYL73ZnhDdGqdNQhdEbghAPltIJRSSICwpOQ8ihM0IIyVCQB9P40aGCS8pPwcDUNYAWQ8zfIBell8GDyXfmnCDk-bpbF72XYGuxpLPHF2b77xrLNq1zg7xvedbJvdYYyl1XEfvc6bzRF-bZ1eu6-wbi7QWS3bYC5_5wi9zaaLyWMyf354mtzNE5VCvktqIDWtDNecywo4YyrVipc1q6SuS8VkVaQ5U7IkXFdKsaKgqSZpRSvNFOEyHaHrPnfr3WcX3xcr13kbTwpSFFDkWcZopEhPKe9C8KYWW99spD8IAuLYnOibE7E5cWxOQPTQ3hMia5fG_0n-1_QDdVhyNA |
| Cites_doi | 10.1002/cpa.20265 10.1515/9781400873173 10.1007/978-3-662-02796-7 10.1201/9781420022605 |
| ContentType | Journal Article |
| Copyright | Mathematica Josephina, Inc. 2015 Copyright Springer Science & Business Media 2016 |
| Copyright_xml | – notice: Mathematica Josephina, Inc. 2015 – notice: Copyright Springer Science & Business Media 2016 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12220-015-9660-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1559-002X |
| EndPage | 3055 |
| ExternalDocumentID | 10_1007_s12220_015_9660_0 |
| GrantInformation_xml | – fundername: University of Maryland funderid: http://dx.doi.org/10.13039/100008510 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 2.D 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP D-I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IAO IGS IJ- IKXTQ ITC ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJN SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c307t-f01f2be6d66ab0655c3dc69f5badf9c5ab8375ca916dbcc58823d13b2bd5c16a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382893800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1050-6926 |
| IngestDate | Thu Sep 25 00:45:21 EDT 2025 Sat Nov 29 04:58:13 EST 2025 Fri Feb 21 02:29:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 52A41 35J60 Dualilty 26B25 Convex analysis Legendre transform estimates |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c307t-f01f2be6d66ab0655c3dc69f5badf9c5ab8375ca916dbcc58823d13b2bd5c16a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1880874452 |
| PQPubID | 2043891 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_1880874452 crossref_primary_10_1007_s12220_015_9660_0 springer_journals_10_1007_s12220_015_9660_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | The Journal of geometric analysis |
| PublicationTitleAbbrev | J Geom Anal |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Rogers (CR8) 1970 CR3 Hiriart-Urruty, Lemaráchal (CR6) 1993 Rockafellar (CR7) 1970 CR5 Slodkowski (CR9) 1984; 11 Animov (CR2) 2001 Harvey, Lawson (CR4) 2009; 62 Alexandrov (CR1) 1939; 37 CA Rogers (9660_CR8) 1970 AD Alexandrov (9660_CR1) 1939; 37 Y Animov (9660_CR2) 2001 FR Harvey (9660_CR4) 2009; 62 9660_CR3 Z Slodkowski (9660_CR9) 1984; 11 J-B Hiriart-Urruty (9660_CR6) 1993 9660_CR5 RT Rockafellar (9660_CR7) 1970 |
| References_xml | – year: 2001 ident: CR2 publication-title: Differential Geometry and Topology of Curves – volume: 62 start-page: 396 year: 2009 end-page: 443 ident: CR4 article-title: Dirichlet duality and the non-linear Dirichlet problem publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20265 – ident: CR5 – year: 1993 ident: CR6 publication-title: Convex Analysis and Minimization Algorithms – ident: CR3 – year: 1970 ident: CR7 publication-title: Convex Analysis doi: 10.1515/9781400873173 – year: 1970 ident: CR8 publication-title: Hausdorff Measures – volume: 11 start-page: 303 issue: 2 year: 1984 end-page: 326 ident: CR9 article-title: The Bremermann–Dirichlet problem for q-Plurisubharmonic functions publication-title: Analli della Scuola Normale – volume: 37 start-page: 3 year: 1939 end-page: 35 ident: CR1 article-title: Almost everywhere existence of the second differential of a convex function and properties of convex surfaces connected with it (in Russian) publication-title: Leningrad State Univ. Ann. Math. – volume-title: Convex Analysis and Minimization Algorithms year: 1993 ident: 9660_CR6 doi: 10.1007/978-3-662-02796-7 – volume: 37 start-page: 3 year: 1939 ident: 9660_CR1 publication-title: Leningrad State Univ. Ann. Math. – volume: 62 start-page: 396 year: 2009 ident: 9660_CR4 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20265 – volume-title: Hausdorff Measures year: 1970 ident: 9660_CR8 – volume-title: Differential Geometry and Topology of Curves year: 2001 ident: 9660_CR2 doi: 10.1201/9781420022605 – ident: 9660_CR5 – volume-title: Convex Analysis year: 1970 ident: 9660_CR7 doi: 10.1515/9781400873173 – volume: 11 start-page: 303 issue: 2 year: 1984 ident: 9660_CR9 publication-title: Analli della Scuola Normale – ident: 9660_CR3 |
| SSID | ssj0046347 |
| Score | 2.038539 |
| Snippet | First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3027 |
| SubjectTerms | Abstract Harmonic Analysis Convex and Discrete Geometry Convexity Differential Geometry Dirichlet problem Dynamical Systems and Ergodic Theory Eigenvalues Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Lower bounds Mathematics Mathematics and Statistics Theorems |
| Title | The Largest Eigenvalue of a Convex Function, Duality, and a Theorem of Slodkowski |
| URI | https://link.springer.com/article/10.1007/s12220-015-9660-0 https://www.proquest.com/docview/1880874452 |
| Volume | 26 |
| WOSCitedRecordID | wos000382893800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1559-002X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0046347 issn: 1050-6926 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYCBQgFRKMgDEzRSmsSmGVGhYigVUEDdIj-lqpCgJrz-PXd5UEAwwGzLss53_r6T7z4TchBYi8JkXccHOuKgwhxK3kpHArYYwHtlikbhwfFw2B2Pw8uyjzutqt2rJ8n8pp43uwGUYREVyxUlHcjTFwHtuhiN16O76voNuJ__Kga8AfKi0OPVU-ZPS3wFoznD_PYommNNv_6vXa6R1ZJa0pPCF9bJgokbpF7STFoGcdogKxcfUq3pBrkCR6EDrAdPM3qG2pyo_21oYqmgPaxJf6V9AD88wDY9zXsw39pUxBrG885-84CTR_eJniYv6XSySW77Zze9c6f8Z8FREOGZY92O9aThmnMhgZIw5WvFQ8uk0DZUTEjIYpkSwCS1VIoBKfd1x5ee1Ex1uPC3SC1OYrNNKNYpwo1lTSDcwLpK-FpaBd5gJWSinmmSw8rg0WMhpxHNhZPRdBGYLkLTRW6TtKojicrISiPUj0PJfuY1yVF1BJ-Gf1ts50-zd8kyMCNeVO21SC2bPZk9sqSes0k6288d7h2Ous5X |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kCurBalWsVt2DJ22gzcvmKLWlYlrUVukt7BNKNZEmvv69s3lYFT3oeZcQZmf3-4b95luAI1spbUzWMiykI4Z2mNOWt8xgiC0S8Z7LrFHYPx0MWuOxd5X3cceF2r24kkxP6nmzG0KZFlE5qaOkgXX6oo2ApXV8N8O74vi1XSt9VQx5A9ZFnukWV5k_feIrGM0Z5rdL0RRruuV__eU6rOXUkpxlubABCzKsQDmnmSTfxHEFVvsfVq3xJlxjohBf68HjhHS0N6f2_5YkUoSSttakv5Iugp9ewDo5T3sw3-qEhgLH085--aAnD-8jMY1e4ulkC267nVG7Z-TvLBgcd3hiqEZTmUy6wnUpQ0ricEtw11MOo0J53KEMq1iHU2SSgnHuICm3RNNiJhMOb7rU2oZSGIVyB4jWKeKJpaRNG7ZqcGoJpjhmg2JYiZqyCsdFwIPHzE4jmBsn69AFGLpAhy5oVKFWLEmQ76w40P5x2rLfMatwUizBp-HfPrb7p9mHsNwb9f3Avxhc7sEKsiQ3U_DVoJTMnuQ-LPHnZBLPDtLkewdEr9E7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwNBDA6iInqwWhWrVefgSV3c7sv2KK1FsZZKVbwt84RS3Zbu-vr3JvuwKnoQzzMMQyaZfCHJF4B9zxgiJqtbLsIRixjmiPJWWAJ9i0Z_L3XWKNw56Xbr9_eNXj7nNC6q3YuUZNbTQCxNUXI8VuZ42viGbo0KqvyUXdLCmH3Oo5lBFK7374qv2AvcdMIYYgiMkRpOUKQ1fzriq2Oaos1vCdLU77RL_77xCiznkJOdZjqyCjM6KkMph58sN-64DEtXHxSu8RpcowKxDtWJxwk7I85O4gXXbGQYZ02qVX9lbXSK9LBHrJX2Zr4dMR4pXE87_vUjbe4_jNRw9BIPB-tw2z67aZ5b-fwFS6LlJ5axa8YROlBBwAVCFV-6SgYN4wuuTEP6XGB060uOCFMJKX0E666qucIRype1gLsbMBuNIr0JjOoX8Scz2uO2Z2zJXSWMRC0xAiNUR1fgoBB-OM5oNsIpoTKJLkTRhSS60K5AtXieMLe4OCReOaLy950KHBbP8Wn5t8O2_rR7DxZ6rXbYuehebsMigqcgK-yrwmwyedI7MC-fk0E82U318B0hY9of |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Largest+Eigenvalue+of+a+Convex+Function%2C+Duality%2C+and+a+Theorem+of+Slodkowski&rft.jtitle=The+Journal+of+geometric+analysis&rft.au=Dellatorre%2C+Matthew&rft.date=2016-10-01&rft.issn=1050-6926&rft.eissn=1559-002X&rft.volume=26&rft.issue=4&rft.spage=3027&rft.epage=3055&rft_id=info:doi/10.1007%2Fs12220-015-9660-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12220_015_9660_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6926&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6926&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6926&client=summon |