The Largest Eigenvalue of a Convex Function, Duality, and a Theorem of Slodkowski

First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of geometric analysis Ročník 26; číslo 4; s. 3027 - 3055
Hlavný autor: Dellatorre, Matthew
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2016
Springer Nature B.V
Predmet:
ISSN:1050-6926, 1559-002X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e. lower bound on this largest “eigenvalue” to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirichlet problem. Second, using the Legendre–Fenchel transform we derive a dual characterization of this largest eigenvalue in terms of convexity of the conjugate function. This dual characterization offers further insight into the nature of this largest eigenvalue and allows for an alternative proof of a necessary bound for the theorem.
AbstractList First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e. lower bound on this largest “eigenvalue” to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirichlet problem. Second, using the Legendre–Fenchel transform we derive a dual characterization of this largest eigenvalue in terms of convexity of the conjugate function. This dual characterization offers further insight into the nature of this largest eigenvalue and allows for an alternative proof of a necessary bound for the theorem.
First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for C 2 functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e. lower bound on this largest “eigenvalue” to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirichlet problem. Second, using the Legendre–Fenchel transform we derive a dual characterization of this largest eigenvalue in terms of convexity of the conjugate function. This dual characterization offers further insight into the nature of this largest eigenvalue and allows for an alternative proof of a necessary bound for the theorem.
Author Dellatorre, Matthew
Author_xml – sequence: 1
  givenname: Matthew
  surname: Dellatorre
  fullname: Dellatorre, Matthew
  email: mdellato@math.umd.edu
  organization: University of Maryland
BookMark eNp1kEFLAzEQhYMo2FZ_gLeA165Ospvs7lFqq0JBxAreQjbJ1m23SU261f57U9aDF0_zYL73ZnhDdGqdNQhdEbghAPltIJRSSICwpOQ8ihM0IIyVCQB9P40aGCS8pPwcDUNYAWQ8zfIBell8GDyXfmnCDk-bpbF72XYGuxpLPHF2b77xrLNq1zg7xvedbJvdYYyl1XEfvc6bzRF-bZ1eu6-wbi7QWS3bYC5_5wi9zaaLyWMyf354mtzNE5VCvktqIDWtDNecywo4YyrVipc1q6SuS8VkVaQ5U7IkXFdKsaKgqSZpRSvNFOEyHaHrPnfr3WcX3xcr13kbTwpSFFDkWcZopEhPKe9C8KYWW99spD8IAuLYnOibE7E5cWxOQPTQ3hMia5fG_0n-1_QDdVhyNA
Cites_doi 10.1002/cpa.20265
10.1515/9781400873173
10.1007/978-3-662-02796-7
10.1201/9781420022605
ContentType Journal Article
Copyright Mathematica Josephina, Inc. 2015
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Mathematica Josephina, Inc. 2015
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12220-015-9660-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1559-002X
EndPage 3055
ExternalDocumentID 10_1007_s12220_015_9660_0
GrantInformation_xml – fundername: University of Maryland
  funderid: http://dx.doi.org/10.13039/100008510
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IGS
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c307t-f01f2be6d66ab0655c3dc69f5badf9c5ab8375ca916dbcc58823d13b2bd5c16a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382893800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1050-6926
IngestDate Thu Sep 25 00:45:21 EDT 2025
Sat Nov 29 04:58:13 EST 2025
Fri Feb 21 02:29:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 52A41
35J60
Dualilty
26B25
Convex analysis
Legendre transform
estimates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-f01f2be6d66ab0655c3dc69f5badf9c5ab8375ca916dbcc58823d13b2bd5c16a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880874452
PQPubID 2043891
PageCount 29
ParticipantIDs proquest_journals_1880874452
crossref_primary_10_1007_s12220_015_9660_0
springer_journals_10_1007_s12220_015_9660_0
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of geometric analysis
PublicationTitleAbbrev J Geom Anal
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rogers (CR8) 1970
CR3
Hiriart-Urruty, Lemaráchal (CR6) 1993
Rockafellar (CR7) 1970
CR5
Slodkowski (CR9) 1984; 11
Animov (CR2) 2001
Harvey, Lawson (CR4) 2009; 62
Alexandrov (CR1) 1939; 37
CA Rogers (9660_CR8) 1970
AD Alexandrov (9660_CR1) 1939; 37
Y Animov (9660_CR2) 2001
FR Harvey (9660_CR4) 2009; 62
9660_CR3
Z Slodkowski (9660_CR9) 1984; 11
J-B Hiriart-Urruty (9660_CR6) 1993
9660_CR5
RT Rockafellar (9660_CR7) 1970
References_xml – year: 2001
  ident: CR2
  publication-title: Differential Geometry and Topology of Curves
– volume: 62
  start-page: 396
  year: 2009
  end-page: 443
  ident: CR4
  article-title: Dirichlet duality and the non-linear Dirichlet problem
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20265
– ident: CR5
– year: 1993
  ident: CR6
  publication-title: Convex Analysis and Minimization Algorithms
– ident: CR3
– year: 1970
  ident: CR7
  publication-title: Convex Analysis
  doi: 10.1515/9781400873173
– year: 1970
  ident: CR8
  publication-title: Hausdorff Measures
– volume: 11
  start-page: 303
  issue: 2
  year: 1984
  end-page: 326
  ident: CR9
  article-title: The Bremermann–Dirichlet problem for q-Plurisubharmonic functions
  publication-title: Analli della Scuola Normale
– volume: 37
  start-page: 3
  year: 1939
  end-page: 35
  ident: CR1
  article-title: Almost everywhere existence of the second differential of a convex function and properties of convex surfaces connected with it (in Russian)
  publication-title: Leningrad State Univ. Ann. Math.
– volume-title: Convex Analysis and Minimization Algorithms
  year: 1993
  ident: 9660_CR6
  doi: 10.1007/978-3-662-02796-7
– volume: 37
  start-page: 3
  year: 1939
  ident: 9660_CR1
  publication-title: Leningrad State Univ. Ann. Math.
– volume: 62
  start-page: 396
  year: 2009
  ident: 9660_CR4
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20265
– volume-title: Hausdorff Measures
  year: 1970
  ident: 9660_CR8
– volume-title: Differential Geometry and Topology of Curves
  year: 2001
  ident: 9660_CR2
  doi: 10.1201/9781420022605
– ident: 9660_CR5
– volume-title: Convex Analysis
  year: 1970
  ident: 9660_CR7
  doi: 10.1515/9781400873173
– volume: 11
  start-page: 303
  issue: 2
  year: 1984
  ident: 9660_CR9
  publication-title: Analli della Scuola Normale
– ident: 9660_CR3
SSID ssj0046347
Score 2.038539
Snippet First, we provide an exposition of a theorem due to Slodkowski regarding the largest “eigenvalue” of a convex function. In his work on the Dirichlet problem,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3027
SubjectTerms Abstract Harmonic Analysis
Convex and Discrete Geometry
Convexity
Differential Geometry
Dirichlet problem
Dynamical Systems and Ergodic Theory
Eigenvalues
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Lower bounds
Mathematics
Mathematics and Statistics
Theorems
Title The Largest Eigenvalue of a Convex Function, Duality, and a Theorem of Slodkowski
URI https://link.springer.com/article/10.1007/s12220-015-9660-0
https://www.proquest.com/docview/1880874452
Volume 26
WOSCitedRecordID wos000382893800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4AAHBgPEYKAcOMEqrU2Ttkc0NnEYEzBAu1XNS5oGLVrL69_jZC0DBAc4J4oix44_y_ZnhI4kxBzgB6XjiiBwfFdosLlAOtIzZGeg1kTaRuFBMByG43F0WfZx51W1e5WStD_1otkNXJkpoqKWUdKBOH0ZvF1orPF6dFd9vz4jdqoY4AaIiyKPVanMn4746owWCPNbUtT6mn79X7fcQOsltMSnc13YREsqbaB6CTNxacR5A61dfFC15lvoChQFD0w9eF7gnuHmNPzfCmcaJ7hratJfcR-cn3nANj6zPZhvbZykEtZtZ796MJtH95mcZi_5dLKNbvu9m-65U85ZcARYeOHojqs9rphkLOEASaggUrBIU55IHQmacIhiqUgASUouBAVQTqRLuMclFS5LyA6qpVmqdhEmOmSuG3AdhtoPeBSqDudESF9RM-bab6LjSuDx45xOI14QJxvRxSC62Igu7jRRq3qSuLSsPDb8cYayn3pNdFI9wafl3w7b-9PufbQKyIjNq_ZaqFbMntQBWhHPxSSfHVqFewdVL85p
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQIAEHBgPEYEAOnGCV1kfS9ojGpiG2CdhAu1VN0kjToENref17nK5lgOAA50RR5NjxZ9n-DHAsMeZAPygNU7iu4ZhCoc250pCWJjtDtbZl1ijccXs9bzj0r_I-7qSodi9SktlPPW92Q1emi6hoxihpYJy-5KDD0nV8N_274vt1mJ1NFUPcgHGRb7EilfnTEV-d0RxhfkuKZr6mVfrXLTdgPYeW5GymC5uwEMVlKOUwk-RGnJRhrftB1ZpswTUqCunoevAkJU3Nzan5vyMyUSQkDV2T_kpa6Pz0A9bIedaD-VYjYSxxPevsjx705v79RI4nL8l4tA23reag0TbyOQuGQAtPDVU3lcUjJhkLOUISKmwpmK8oD6XyBQ05RrFUhIgkJReCIii3pWlzi0sqTBbaO7AYT-JoF4itPGaaLleepxyX-15U59wW0omoHnPtVOCkEHjwOKPTCObEyVp0AYou0KIL6hWoFk8S5JaVBJo_TlP2U6sCp8UTfFr-7bC9P-0-gpX2oNsJOhe9y31YRZTEZhV8VVhMp0_RASyL53SUTA8z5XsHC_zRTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kiujBt1itugdP2tDmsZvkKLVBsRalKr2F7G4WRE3ExNe_dzYPq6IH8bzLEuaR-YaZ-QZgT2LOgXFQGqZwXcMxhUKfc6UhLU12hmZty2JQeOAOh9547J9Xe06zutu9LkmWMw2apSnJOw9SdSaDbxjWdEMVLdglDczZpx29M0in66Pr-lfsMLvYMIYYAnMk32J1WfOnJ74Gpgna_FYgLeJOsPjvL16ChQpyksPSRpZhKk5WYLGCn6Ry7mwF5s8-KFyzVbhAAyID3See5aSvOTs1L3hMUkUi0tO96q8kwKCoFdsmR8Vs5lubRInE82LiP77Xl0d3qbxNX7LbmzW4CvqXvWOj2r9gCPT83FBdU1k8ZpKxiCNUocKWgvmK8kgqX9CIY3ZLRYQIU3IhKIJ1W5o2t7ikwmSRvQ6NJE3iDSC28phpulx5nnJc7ntxl3NbSCemev2104T9WvjhQ0mzEU4IlbXoQhRdqEUXdpvQqtUTVh6XhZpXTlP5U6sJB7U6Ph3_9tjmn27vwuz5URAOToanWzCH4ImVjX0taOSPT_E2zIjn_CZ73Cns8B3wt9ox
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Largest+Eigenvalue+of+a+Convex+Function%2C+Duality%2C+and+a+Theorem+of+Slodkowski&rft.jtitle=The+Journal+of+geometric+analysis&rft.au=Dellatorre%2C+Matthew&rft.date=2016-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1050-6926&rft.eissn=1559-002X&rft.volume=26&rft.issue=4&rft.spage=3027&rft.epage=3055&rft_id=info:doi/10.1007%2Fs12220-015-9660-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6926&client=summon