Bases for projective modules in An( k)

Let A n ( k) be the Weyl algebra, with k a field of characteristic zero. It is known that every projective finitely generated left module is free or isomorphic to a left ideal. Let M be a left submodule of a free module. In this paper we give an algorithm to compute the projective dimension of M. If...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of symbolic computation Ročník 36; číslo 6; s. 845 - 853
Hlavní autor: Gago-Vargas, Jesús
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2003
Témata:
ISSN:0747-7171, 1095-855X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let A n ( k) be the Weyl algebra, with k a field of characteristic zero. It is known that every projective finitely generated left module is free or isomorphic to a left ideal. Let M be a left submodule of a free module. In this paper we give an algorithm to compute the projective dimension of M. If M is projective and rank( M)≥2 we give a procedure to find a basis.
AbstractList Let A n ( k) be the Weyl algebra, with k a field of characteristic zero. It is known that every projective finitely generated left module is free or isomorphic to a left ideal. Let M be a left submodule of a free module. In this paper we give an algorithm to compute the projective dimension of M. If M is projective and rank( M)≥2 we give a procedure to find a basis.
Author Gago-Vargas, Jesús
Author_xml – sequence: 1
  givenname: Jesús
  surname: Gago-Vargas
  fullname: Gago-Vargas, Jesús
  email: gago@algebra.us.es
  organization: Departamento de Álgebra, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain
BookMark eNqFkEtLAzEUhYNUcFr9CcKspF2M3mteU1xILb6g4MIu3IVMJoHUdlKSseC_d6YVF266unA434HvDsmgCY0l5BLhGgHFzTtIJguJEsdAJwAgaMFOSIYw5UXJ-ceAZH-VMzJMadWVpozyjFw96GRT7kLMtzGsrGn9zuabUH-tu9g3-awZ55-Tc3Lq9DrZi987Isunx-X8pVi8Pb_OZ4vCUJBtUVvtqNBclmikraxzDGtXCS10pUunpbhlAikHjiVWcuoYZ8DBIa81VoyOyN1h1sSQUrROGd_q1oemjdqvFYLqjdXeWPU6CqjaG6ue5v_obfQbHb-PcvcHznZmO2-jSsbbxtjax-4hqg7-yMIPa1xuVQ
CitedBy_id crossref_primary_10_1016_j_jsc_2004_04_011
crossref_primary_10_1088_1751_8121_ad1343
crossref_primary_10_1007_s10440_013_9864_x
crossref_primary_10_5402_2011_926165
crossref_primary_10_1016_j_laa_2007_07_008
crossref_primary_10_1016_j_jsc_2005_05_002
crossref_primary_10_1016_j_jsc_2007_06_005
crossref_primary_10_1007_s11045_014_0280_9
Cites_doi 10.1006/jsco.2001.0491
10.1142/9789812777171_0017
10.1016/0021-8693(77)90308-8
10.1016/0021-8693(92)90189-S
10.1016/S0022-4049(01)00136-0
10.1112/jlms/s2-18.3.429
ContentType Journal Article
Copyright 2003 Elsevier Ltd
Copyright_xml – notice: 2003 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0747-7171(03)00063-4
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 853
ExternalDocumentID 10_1016_S0747_7171_03_00063_4
S0747717103000634
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-deaf36a5781c7ebeff41dfb6a6aba8fa7624613505181b79f454050f15da1b43
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000187114700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Sat Nov 29 02:50:56 EST 2025
Tue Nov 18 22:35:09 EST 2025
Fri Feb 23 02:31:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Gröbner bases
Non-commutative rings
Projective modules
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-deaf36a5781c7ebeff41dfb6a6aba8fa7624613505181b79f454050f15da1b43
OpenAccessLink https://dx.doi.org/10.1016/S0747-7171(03)00063-4
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_S0747_7171_03_00063_4
crossref_primary_10_1016_S0747_7171_03_00063_4
elsevier_sciencedirect_doi_10_1016_S0747_7171_03_00063_4
PublicationCentury 2000
PublicationDate 2003-12-01
PublicationDateYYYYMMDD 2003-12-01
PublicationDate_xml – month: 12
  year: 2003
  text: 2003-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of symbolic computation
PublicationYear 2003
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stafford (B13) 1978; 18
Gago-Vargas (B5) 2002; 171
Leykin, A., Tsai, H., 2002.
Eisenbud (B4) 1995; vol. 150
Swan (B14) 1968; vol. 76
Bueso, Gómez-Torrecillas, Lobillo, Castro (B1) 1998; vol. 197
McConnell, Robson (B11) 1987
Logar, Sturmfels (B10) 1992; 145
Stafford (B12) 1977; 48
Cohen (B3) 1999; vol. 4
Laubenbacher, Woodburn (B8) 1997; 117–118
Grayson, D.R., Stillman, M.E., 2000. Macaulay 2, a software system for research in algebraic geometry. Available from
Hillebrand, Schmale (B7) 2002; 32
modules for Macaulay 2. Available from
Castro (B2) 1987; vol. 24
10.1016/S0747-7171(03)00063-4_B6
Stafford (10.1016/S0747-7171(03)00063-4_B12) 1977; 48
Hillebrand (10.1016/S0747-7171(03)00063-4_B7) 2002; 32
Swan (10.1016/S0747-7171(03)00063-4_B14) 1968; vol. 76
Cohen (10.1016/S0747-7171(03)00063-4_B3) 1999; vol. 4
Eisenbud (10.1016/S0747-7171(03)00063-4_B4) 1995; vol. 150
Gago-Vargas (10.1016/S0747-7171(03)00063-4_B5) 2002; 171
Bueso (10.1016/S0747-7171(03)00063-4_B1) 1998; vol. 197
Castro (10.1016/S0747-7171(03)00063-4_B2) 1987; vol. 24
Laubenbacher (10.1016/S0747-7171(03)00063-4_B8) 1997; 117–118
Stafford (10.1016/S0747-7171(03)00063-4_B13) 1978; 18
McConnell (10.1016/S0747-7171(03)00063-4_B11) 1987
10.1016/S0747-7171(03)00063-4_B9
Logar (10.1016/S0747-7171(03)00063-4_B10) 1992; 145
References_xml – volume: vol. 150
  year: 1995
  ident: B4
  article-title: Commutative Algebra. With a View Toward Algebraic Geometry
  publication-title: Graduate Texts in Mathematics
– volume: 117–118
  start-page: 397
  year: 1997
  end-page: 429
  ident: B8
  article-title: An algorithm for the Quillen–Suslin theorem for monoid rings
  publication-title: J. Pure Appl. Algebra
– volume: 18
  start-page: 429
  year: 1978
  end-page: 442
  ident: B13
  article-title: Module structure of Weyl algebras
  publication-title: J. London Math. Soc.
– volume: 145
  start-page: 231
  year: 1992
  end-page: 239
  ident: B10
  article-title: Algorithms for the Quillen–Suslin theorem
  publication-title: J. Algebra
– volume: 171
  start-page: 185
  year: 2002
  end-page: 196
  ident: B5
  article-title: Constructions in
  publication-title: J. Pure Appl. Algebra
– volume: vol. 197
  year: 1998
  ident: B1
  article-title: An introduction to effective calculus in quantum groups
  publication-title: Rings, Hopf Algebras, and Brauer Groups
– volume: 32
  start-page: 699
  year: 2002
  end-page: 716
  ident: B7
  article-title: Towards an effective version of a theorem of Stafford
  publication-title: J. Symbolic Comput.
– volume: 48
  start-page: 297
  year: 1977
  end-page: 304
  ident: B12
  article-title: Weyl Algebras are stably free
  publication-title: J. Algebra
– reference: Leykin, A., Tsai, H., 2002.
– volume: vol. 24
  year: 1987
  ident: B2
  article-title: Calculs effectives pour les idéaux d’opérateurs différentiels
  publication-title: Géometrie et Applications, III, Travaux en cours
– year: 1987
  ident: B11
  article-title: Noncommutative Noetherian Rings
– volume: vol. 76
  year: 1968
  ident: B14
  article-title: Algebraic K-Theory
  publication-title: Lecture Notes in Mathematics
– reference: Grayson, D.R., Stillman, M.E., 2000. Macaulay 2, a software system for research in algebraic geometry. Available from
– volume: vol. 4
  year: 1999
  ident: B3
  article-title: Gröbner bases, an introduction
  publication-title: Some Tapas of Computer Algebra
– reference: -modules for Macaulay 2. Available from
– volume: 32
  start-page: 699
  issue: 6
  year: 2002
  ident: 10.1016/S0747-7171(03)00063-4_B7
  article-title: Towards an effective version of a theorem of Stafford
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.2001.0491
– ident: 10.1016/S0747-7171(03)00063-4_B9
  doi: 10.1142/9789812777171_0017
– ident: 10.1016/S0747-7171(03)00063-4_B6
– volume: vol. 24
  year: 1987
  ident: 10.1016/S0747-7171(03)00063-4_B2
  article-title: Calculs effectives pour les idéaux d’opérateurs différentiels
– volume: vol. 76
  year: 1968
  ident: 10.1016/S0747-7171(03)00063-4_B14
  article-title: Algebraic K-Theory
– volume: vol. 150
  year: 1995
  ident: 10.1016/S0747-7171(03)00063-4_B4
  article-title: Commutative Algebra. With a View Toward Algebraic Geometry
– volume: 48
  start-page: 297
  year: 1977
  ident: 10.1016/S0747-7171(03)00063-4_B12
  article-title: Weyl Algebras are stably free
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(77)90308-8
– volume: 145
  start-page: 231
  year: 1992
  ident: 10.1016/S0747-7171(03)00063-4_B10
  article-title: Algorithms for the Quillen–Suslin theorem
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(92)90189-S
– year: 1987
  ident: 10.1016/S0747-7171(03)00063-4_B11
– volume: vol. 4
  year: 1999
  ident: 10.1016/S0747-7171(03)00063-4_B3
  article-title: Gröbner bases, an introduction
– volume: 117–118
  start-page: 397
  year: 1997
  ident: 10.1016/S0747-7171(03)00063-4_B8
  article-title: An algorithm for the Quillen–Suslin theorem for monoid rings
  publication-title: J. Pure Appl. Algebra
– volume: 171
  start-page: 185
  year: 2002
  ident: 10.1016/S0747-7171(03)00063-4_B5
  article-title: Constructions in R[x1,…,xn]. Applications to K-theory
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(01)00136-0
– volume: vol. 197
  year: 1998
  ident: 10.1016/S0747-7171(03)00063-4_B1
  article-title: An introduction to effective calculus in quantum groups
– volume: 18
  start-page: 429
  year: 1978
  ident: 10.1016/S0747-7171(03)00063-4_B13
  article-title: Module structure of Weyl algebras
  publication-title: J. London Math. Soc.
  doi: 10.1112/jlms/s2-18.3.429
SSID ssj0009435
Score 1.6817905
Snippet Let A n ( k) be the Weyl algebra, with k a field of characteristic zero. It is known that every projective finitely generated left module is free or isomorphic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 845
SubjectTerms Gröbner bases
Non-commutative rings
Projective modules
Title Bases for projective modules in An( k)
URI https://dx.doi.org/10.1016/S0747-7171(03)00063-4
Volume 36
WOSCitedRecordID wos000187114700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT4MwFG5088EX78Z7eHDJlgWFUaA8MjNvMYuJi9kbaRk1yyYzbjPz33tKC2zOTPfgCyEkPVC-cs7XcvodhM49wkyLUJiW1AysY4dSHYKwobuYkZpJRZRJJPMf3GaTtNveoypcOEzKCbhxTCYT7-1foYZrALbYOrsE3JlRuADnADocAXY4_gn4OsSlRGShqlZZRG7Q66Az7ie5V1VfJH_00hWAeV46_HxlQiw4yTYfz_6pv6EvA_1Z1MZV28CG4kd73Z9dPLCmEjGkj4HZhA4zOnPaIUpFEgX8tHcjUvkxDZRS5XfOB8vlgKfMdEkUwIJeJXRIbemZ0b3-Fo-yLME8AQ1MBcJUYFhBYibAq6hYc22PFFDRv2u073OlZSyrqqa3z7dtXebPVDasinqenwnJFMlobaENhYLmS1S30UoU76DNtPKGphzxLiolIGsAspaDrCmQtW6s-XG5V9lDretG6-pWVwUv9BBc7UjvRJRbDgUnaoYufF2cY7PDmUMdyijhFAIXBvoFpBV4GXM9LuQTbYObdoeaDFv7qBAP4ugAaR6JbMMMmeNFEAo5pZbFYC7MI25HIbCyQ4TTTgehEoMXNUn6wcKXfogusmZvUg3ltwYkfaOBonSSqgUwWhY3PVr2XsdoPR_iJ6gweh9Hp2gt_Bh1h-9naph8AcG3X7E
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bases+for+projective+modules+in+An%28k%29&rft.jtitle=Journal+of+symbolic+computation&rft.au=Gago-Vargas%2C+Jes%C3%BAs&rft.date=2003-12-01&rft.issn=0747-7171&rft.volume=36&rft.issue=6&rft.spage=845&rft.epage=853&rft_id=info:doi/10.1016%2FS0747-7171%2803%2900063-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0747_7171_03_00063_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon