A Machine Learning Modeling Method for Switched Reluctance Motors Based on Few Preprocessed Flux Linkage Data
This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the improved torque balance method is used to obtain the accurate flux linkage data without redundant experiments. Secondly, two special data pre...
Saved in:
| Published in: | Journal of electrical engineering & technology Vol. 20; no. 5; pp. 3445 - 3456 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Nature Singapore
01.07.2025
Springer Nature B.V 대한전기학회 |
| Subjects: | |
| ISSN: | 1975-0102, 2093-7423 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the improved torque balance method is used to obtain the accurate flux linkage data without redundant experiments. Secondly, two special data preprocessing steps are proposed, which are nonlinear preprocessing and angle mapping, respectively. The first step provides beneficial nonlinearity for algorithms, and the second step improves the linearity of flux linkage at small angles by the proposed mapping function. Thirdly, support vector regression algorithm optimized by the improved tuna swarm algorithm (ITSO-SVR) is employed to establish the flux linkage model. Based on the flux linkage model, the current and torque models are easily built by ITSO-SVR to complete the nonlinear modelling of SRM. Finally, the effectiveness of the proposed method is verified. The preprocessing method is verified to reduce the modeling difficulty. Besides, ITSO-SVR facilitates the swift and efficient modeling without any pre-storge or complex calculations. The experiments under the CCC and APC algorithms indicate that the established model exhibits high accuracy, fast speed and strong generalization capability. |
|---|---|
| AbstractList | This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the improved torque balance method is used to obtain the accurate flux linkage data without redundant experiments. Secondly, two special data preprocessing steps are proposed, which are nonlinear preprocessing and angle mapping, respectively. The first step provides beneficial nonlinearity for algorithms, and the second step improves the linearity of flux linkage at small angles by the proposed mapping function. Thirdly, support vector regression algorithm optimized by the improved tuna swarm algorithm (ITSO-SVR) is employed to establish the flux linkage model. Based on the flux linkage model, the current and torque models are easily built by ITSO-SVR to complete the nonlinear modelling of SRM. Finally, the effectiveness of the proposed method is verified. The preprocessing method is verified to reduce the modeling difficulty. Besides, ITSO-SVR facilitates the swift and efficient modeling without any pre-storge or complex calculations. The experiments under the CCC and APC algorithms indicate that the established model exhibits high accuracy, fast speed and strong generalization capability. This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed fl ux linkage data. Firstly, the improved torque balance method is used to obtain the accurate fl ux linkage data without redundant experiments. Secondly, two special data preprocessing steps are proposed, which are nonlinear preprocessing and angle mapping, respectively. The fi rst step provides benefi cial nonlinearity for algorithms, and the second step improves the linearity of fl ux linkage at small angles by the proposed mapping function. Thirdly, support vector regression algorithm optimized by the improved tuna swarm algorithm (ITSO-SVR) is employed to establish the fl ux linkage model. Based on the fl ux linkage model, the current and torque models are easily built by ITSO-SVR to complete the nonlinear modelling of SRM. Finally, the eff ectiveness of the proposed method is verifi ed. The preprocessing method is verifi ed to reduce the modeling diffi culty. Besides, ITSO-SVR facilitates the swift and effi cient modeling without any pre-storge or complex calculations. The experiments under the CCC and APC algorithms indicate that the established model exhibits high accuracy, fast speed and strong generalization capability. KCI Citation Count: 0 |
| Author | Jing, Zhe Ren, Ping Zhu, Jingwei zhao, Yan |
| Author_xml | – sequence: 1 givenname: Yan surname: zhao fullname: zhao, Yan organization: Department of Marine Electrical Engineering, Dalian Maritime University – sequence: 2 givenname: Jingwei orcidid: 0000-0002-1737-3108 surname: Zhu fullname: Zhu, Jingwei email: zjwdl@dlmu.edu.cn organization: Department of Marine Electrical Engineering, Dalian Maritime University – sequence: 3 givenname: Ping surname: Ren fullname: Ren, Ping organization: Department of Marine Electrical Engineering, Dalian Maritime University – sequence: 4 givenname: Zhe surname: Jing fullname: Jing, Zhe organization: Department of Marine Electrical Engineering, Dalian Maritime University |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003212876$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kU9PGzEQxa0KpAbaL9CTJW5IC2N7nd0cw58UpKAiSs_WxB4nS4IN9ka03x4ni8Sth9GMZn7z9KR3xA5CDMTYDwFnAqA5z7Vsla5A7kqOddV-YSMJE1U1tVQHbCQmTTkJkF_ZUc5PAGMBWo3Y85TfoV11gficMIUuLPlddLTZD9SvouM-Jv77revtihx_oM3W9hgsFa6PKfMLzGUfA5_RG79P9JKipbzbzTbbv3zehTUuiV9hj9_YocdNpu8f_Zj9mV0_Xt5U818_by-n88oqaPrKWaQGW1r4hXfW1ZOx8ILGC0BwUi40ohY1gCXtwNXohIPWT7z2AgnBtuqYnQ66IXmztp2J2O37Mpp1MtOHx1sjoJFKNqrAJwNcjL9uKffmKW5TKP6MklproUSjCyUHyqaYcyJvXlL3jOlfETK7DMyQgSkZmH0GZudDDU-5wGFJ6VP6P1_vXViL-Q |
| Cites_doi | 10.1109/TPEL.2024.3363027 10.1155/2021/9210050 10.1109/TMECH.2018.2803148 10.1109/TEC.2014.2343962 10.1007/s42835-022-01350-6 10.1109/TIE.2024.3352142 10.1109/TEC.2016.2517924 10.1109/ACCESS.2018.2837111 10.1109/TEC.2022.3208831 10.1109/TPEL.2023.3349283 10.1109/IECON.2005.1569136 10.1109/TMAG.2021.3111521 10.1007/s00202-022-01726-x 10.1109/TIE.2015.2390147 10.1109/TIE.2022.3199860 10.1109/TEC.2023.3307574 10.1016/j.measurement.2023.112447 10.1109/TIM.2007.904562 10.1007/s42835-023-01703-9 10.3390/app8040537 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025. |
| DBID | AAYXX CITATION ACYCR |
| DOI | 10.1007/s42835-025-02265-8 |
| DatabaseName | CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2093-7423 |
| EndPage | 3456 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10723273 10_1007_s42835_025_02265_8 |
| GroupedDBID | -~X 0R~ 2WC 406 9ZL AACDK AAHNG AAJBT AASML AATNV AAUYE AAYYP ABAKF ABBRH ABDBE ABECU ABFSG ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGDGC AGMZJ AGQEE AHPBZ AHWEU AIGIU AILAN AITGF AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ATHPR AXYYD AYFIA BGNMA CSCUP DBRKI DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GW5 IKXTQ IWAJR JDI JZLTJ KOV KVFHK LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABJCF ABRTQ AEUYN AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS ACYCR |
| ID | FETCH-LOGICAL-c307t-dcae7a8ebfbfdcd4961f1e6b0a0d22b5aa51400ce5d0d4ad1d08f9f5f1aea0c83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001483459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1975-0102 |
| IngestDate | Sun Jun 29 03:11:35 EDT 2025 Sun Nov 09 08:21:47 EST 2025 Sat Nov 29 07:49:50 EST 2025 Wed Jun 25 02:38:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Nonlinear modeling Switched reluctance motor Data preprocessing Improved tuna swarm algorithm Support vector regression algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c307t-dcae7a8ebfbfdcd4961f1e6b0a0d22b5aa51400ce5d0d4ad1d08f9f5f1aea0c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1737-3108 |
| PQID | 3255513175 |
| PQPubID | 7435074 |
| PageCount | 12 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10723273 proquest_journals_3255513175 crossref_primary_10_1007_s42835_025_02265_8 springer_journals_10_1007_s42835_025_02265_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 2025-07-00 20250701 2025-07 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Seoul |
| PublicationTitle | Journal of electrical engineering & technology |
| PublicationTitleAbbrev | J. Electr. Eng. Technol |
| PublicationYear | 2025 |
| Publisher | Springer Nature Singapore Springer Nature B.V 대한전기학회 |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: 대한전기학회 |
| References | JW Gan (2265_CR6) 2018; 6 L Xie (2265_CR21) 2021; 2021 2265_CR15 P Ren (2265_CR3) 2024; 39 X Sun (2265_CR1) 2018; 23 J Liu (2265_CR11) 2021; 57 M Shi (2265_CR14) 2023; 70 2265_CR2 Z Wang (2265_CR8) 2023; 38 M Shi (2265_CR13) 2023; 208 S Song (2265_CR16) 2016; 31 S Song (2265_CR10) 2015; 62 A Chiba (2265_CR7) 2015; 30 M Aydemir (2265_CR18) 2023; 105 2265_CR20 X Li (2265_CR5) 2023; 18 Y Cai (2265_CR17) 2018; 23 J Liu (2265_CR4) 2024; 19 X Sun (2265_CR19) 2024; 39 AD Cheok (2265_CR9) 2007; 56 R Rocca (2265_CR12) 2024; 39 |
| References_xml | – volume: 39 start-page: 5298 issue: 5 year: 2024 ident: 2265_CR19 publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2024.3363027 – volume: 2021 start-page: 22 year: 2021 ident: 2265_CR21 publication-title: Comput Intell Neurosci doi: 10.1155/2021/9210050 – volume: 23 start-page: 747 issue: 2 year: 2018 ident: 2265_CR1 publication-title: IEEE ASME Trans Mechatron doi: 10.1109/TMECH.2018.2803148 – volume: 30 start-page: 175 issue: 1 year: 2015 ident: 2265_CR7 publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2014.2343962 – volume: 18 start-page: 981 issue: 2 year: 2023 ident: 2265_CR5 publication-title: J Electr Eng Technol doi: 10.1007/s42835-022-01350-6 – ident: 2265_CR2 doi: 10.1109/TIE.2024.3352142 – volume: 31 start-page: 424 issue: 2 year: 2016 ident: 2265_CR16 publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2016.2517924 – volume: 6 start-page: 31430 year: 2018 ident: 2265_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2837111 – volume: 38 start-page: 122 issue: 1 year: 2023 ident: 2265_CR8 publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2022.3208831 – volume: 39 start-page: 4567 issue: 4 year: 2024 ident: 2265_CR3 publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2023.3349283 – ident: 2265_CR20 doi: 10.1109/IECON.2005.1569136 – volume: 57 start-page: 1 issue: 11 year: 2021 ident: 2265_CR11 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2021.3111521 – volume: 105 start-page: 1223 issue: 2 year: 2023 ident: 2265_CR18 publication-title: Electr Eng doi: 10.1007/s00202-022-01726-x – volume: 62 start-page: 4105 issue: 7 year: 2015 ident: 2265_CR10 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2390147 – volume: 70 start-page: 6099 issue: 6 year: 2023 ident: 2265_CR14 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2022.3199860 – volume: 39 start-page: 734 issue: 1 year: 2024 ident: 2265_CR12 publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2023.3307574 – volume: 208 start-page: 112447 year: 2023 ident: 2265_CR13 publication-title: Measurement doi: 10.1016/j.measurement.2023.112447 – volume: 23 start-page: 2762 issue: 6 year: 2018 ident: 2265_CR17 publication-title: IEEE ASME Trans Mechatron – volume: 56 start-page: 2245 issue: 6 year: 2007 ident: 2265_CR9 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2007.904562 – volume: 19 start-page: 2295 issue: 4 year: 2024 ident: 2265_CR4 publication-title: J Electr Eng Technol doi: 10.1007/s42835-023-01703-9 – ident: 2265_CR15 doi: 10.3390/app8040537 |
| SSID | ssj0061053 |
| Score | 2.3411195 |
| Snippet | This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the... This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed fl ux linkage data. Firstly, the... |
| SourceID | nrf proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 3445 |
| SubjectTerms | Electrical Engineering Electrical Machines and Networks Electronics and Microelectronics Engineering Instrumentation Original Article Power Electronics 전기공학 |
| Title | A Machine Learning Modeling Method for Switched Reluctance Motors Based on Few Preprocessed Flux Linkage Data |
| URI | https://link.springer.com/article/10.1007/s42835-025-02265-8 https://www.proquest.com/docview/3255513175 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003212876 |
| Volume | 20 |
| WOSCitedRecordID | wos001483459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Electrical Engineering & Technology, 2025, 20(5), , pp.3445-3456 |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2093-7423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061053 issn: 1975-0102 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHeDAjigUZAluEMmpsx7LUsEBVLWAerMc26mqlhS1KeXzGZukUKQe4JQocRb5zXie5fEbgHMdM-V5TCACkjpeguOgkDH6FUtipVwapYGwxSbCx8eo04mbxaawcZntXi5J2pF6ttnNSoM5pvwqxp3Ad6JlWMVwFxl3bLVfyvEX-YDVnnTj0KSlmfydo8XvmAtHy9konWOavxZHbcxpbP3vb7dhs-CYpP5lFDuwpLNd2PihPLgHr3XyYNMoNSkUVrvElEUb2BNbVZognSXtac_AqkhLDyYyNyaC7UyFHnKF8U-RYUYaekqaRhzTbjnAa43B5IOYSS6OVeRG5GIfnhu3T9d3TlF5wZHo87mjpNChiHSSJqmSyosDN3V1kFBBVa2W-EIgz6JUal9R5QnlKgQ1Tv3UFVpQGbEDWMmGmT4EooTvB7H2NNMUbYIKxgTzoiSQYYLsSlXgogSAv30JbPCZlLLtRI6dyG0n8qgCZ4gR78seN7rY5tgd8v6II_u_x4dCJIghq0C1xJAXLjnmDCdPvmvoUgUuS8y-by_-5tHfmh_Des3CblJ6q7CSjyb6BNbke94bj06tqX4CmPTi-g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1RQAIO7IiWzRLcIJJTZz2yVSBKhdjUm-XYTlVRUtSmlM9nbJKySBzglChxFvmNZ57l8RuAAx0z5XlMIAKSOl6CflDIGMcVS2KlXBqlgbDFJsJWK2q345tiU9iwzHYvlyStp55sdrPSYI4pv4pxJ_CdqAIzHkYsk8h3e_dY-l_kA1Z70o1Dk5Zm8ndqv7_jWziqZIP0G9P8sThqY05j6X9_uwyLBcckxx9GsQJTOluFhS_Kg2vwfEyubRqlJoXCaoeYsmg9e2KrShOks-Ru3DWwKnKreyOZGxPBdqZCDznB-KdIPyMNPSY3RhzTbjnAa43e6I2YSS76KnImcrEOD43z-9MLp6i84Egc87mjpNChiHSSJqmSyosDN3V1kFBBVb2e-EIgz6JUal9R5QnlKgQ1Tv3UFVpQGbENmM76md4EooTvB7H2NNMUbYIKxgTzoiSQYYLsSlXhsASAv3wIbPCJlLLtRI6dyG0n8qgK-4gRf5JdbnSxzbHT508Djuz_Eh8KkSCGrArbJYa8GJJDznDy5LuGLlXhqMTs8_bv36z9rfkezF3cXzd587J1tQXzdWsCJr13G6bzwUjvwKx8zbvDwa4123dE-OXe |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLa4hOCBGzHOSPAG1dKl5yNXBQKmiQHiLUqTdJo2OjQ64OfjZCsMJB4QT63a9FDs2J8V-zPAgY6Z8jwmUAKSOl6KdlDIGNcVS2OlXBplgbDNJsJ6PXp8jBtjVfw2273ckhzWNBiWpryoPqus-ln4ZmnCHNOKFX1Q4DvRJEx7pmmQidebD6UtRmxgeSjdODQpaiaXZ_P3d3xzTZN5P_uGOn9slFr_kyz-_8-XYGGEPcnxUFmWYULnKzA_xki4Ck_H5MamV2oyYl5tEdMurWtPbLdpgjCXNN_aRtyK3OruQBZGdXCc6dxDTtAvKtLLSaLfSMOQZtpSBLyWdAfvxAS_aMPImSjEGtwn53enF86oI4Mj0RYUjpJChyLSaZZmSiovDtzM1UFKBVW1WuoLgfiLUql9RZUnlKtQ2HHmZ67QgsqIrcNU3sv1BhAlfD-ItaeZpqgrVDAmmBelgQxTRF2qAoelMPjzkHiDf1Is20nkOIncTiKPKrCP8uId2eaGL9scWz3e6XOMCi7xoRCBY8gqsF3Kk4-W6gtnGFT5roFRFTgq5fd1-_dvbv5t-B7MNs4Sfn1Zv9qCuZrVAJP1uw1TRX-gd2BGvhbtl_6u1eAPMY_uwg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Modeling+Method+for+Switched+Reluctance+Motors+Based+on+Few+Preprocessed+Flux+Linkage+Data&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=zhao%2C+Yan&rft.au=Zhu%2C+Jingwei&rft.au=Ren%2C+Ping&rft.au=Jing%2C+Zhe&rft.date=2025-07-01&rft.pub=Springer+Nature+Singapore&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=20&rft.issue=5&rft.spage=3445&rft.epage=3456&rft_id=info:doi/10.1007%2Fs42835-025-02265-8&rft.externalDocID=10_1007_s42835_025_02265_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon |