A Machine Learning Modeling Method for Switched Reluctance Motors Based on Few Preprocessed Flux Linkage Data

This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the improved torque balance method is used to obtain the accurate flux linkage data without redundant experiments. Secondly, two special data pre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrical engineering & technology Vol. 20; no. 5; pp. 3445 - 3456
Main Authors: zhao, Yan, Zhu, Jingwei, Ren, Ping, Jing, Zhe
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.07.2025
Springer Nature B.V
대한전기학회
Subjects:
ISSN:1975-0102, 2093-7423
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the improved torque balance method is used to obtain the accurate flux linkage data without redundant experiments. Secondly, two special data preprocessing steps are proposed, which are nonlinear preprocessing and angle mapping, respectively. The first step provides beneficial nonlinearity for algorithms, and the second step improves the linearity of flux linkage at small angles by the proposed mapping function. Thirdly, support vector regression algorithm optimized by the improved tuna swarm algorithm (ITSO-SVR) is employed to establish the flux linkage model. Based on the flux linkage model, the current and torque models are easily built by ITSO-SVR to complete the nonlinear modelling of SRM. Finally, the effectiveness of the proposed method is verified. The preprocessing method is verified to reduce the modeling difficulty. Besides, ITSO-SVR facilitates the swift and efficient modeling without any pre-storge or complex calculations. The experiments under the CCC and APC algorithms indicate that the established model exhibits high accuracy, fast speed and strong generalization capability.
AbstractList This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the improved torque balance method is used to obtain the accurate flux linkage data without redundant experiments. Secondly, two special data preprocessing steps are proposed, which are nonlinear preprocessing and angle mapping, respectively. The first step provides beneficial nonlinearity for algorithms, and the second step improves the linearity of flux linkage at small angles by the proposed mapping function. Thirdly, support vector regression algorithm optimized by the improved tuna swarm algorithm (ITSO-SVR) is employed to establish the flux linkage model. Based on the flux linkage model, the current and torque models are easily built by ITSO-SVR to complete the nonlinear modelling of SRM. Finally, the effectiveness of the proposed method is verified. The preprocessing method is verified to reduce the modeling difficulty. Besides, ITSO-SVR facilitates the swift and efficient modeling without any pre-storge or complex calculations. The experiments under the CCC and APC algorithms indicate that the established model exhibits high accuracy, fast speed and strong generalization capability.
This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed fl ux linkage data. Firstly, the improved torque balance method is used to obtain the accurate fl ux linkage data without redundant experiments. Secondly, two special data preprocessing steps are proposed, which are nonlinear preprocessing and angle mapping, respectively. The fi rst step provides benefi cial nonlinearity for algorithms, and the second step improves the linearity of fl ux linkage at small angles by the proposed mapping function. Thirdly, support vector regression algorithm optimized by the improved tuna swarm algorithm (ITSO-SVR) is employed to establish the fl ux linkage model. Based on the fl ux linkage model, the current and torque models are easily built by ITSO-SVR to complete the nonlinear modelling of SRM. Finally, the eff ectiveness of the proposed method is verifi ed. The preprocessing method is verifi ed to reduce the modeling diffi culty. Besides, ITSO-SVR facilitates the swift and effi cient modeling without any pre-storge or complex calculations. The experiments under the CCC and APC algorithms indicate that the established model exhibits high accuracy, fast speed and strong generalization capability. KCI Citation Count: 0
Author Jing, Zhe
Ren, Ping
Zhu, Jingwei
zhao, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: zhao
  fullname: zhao, Yan
  organization: Department of Marine Electrical Engineering, Dalian Maritime University
– sequence: 2
  givenname: Jingwei
  orcidid: 0000-0002-1737-3108
  surname: Zhu
  fullname: Zhu, Jingwei
  email: zjwdl@dlmu.edu.cn
  organization: Department of Marine Electrical Engineering, Dalian Maritime University
– sequence: 3
  givenname: Ping
  surname: Ren
  fullname: Ren, Ping
  organization: Department of Marine Electrical Engineering, Dalian Maritime University
– sequence: 4
  givenname: Zhe
  surname: Jing
  fullname: Jing, Zhe
  organization: Department of Marine Electrical Engineering, Dalian Maritime University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003212876$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU9PGzEQxa0KpAbaL9CTJW5IC2N7nd0cw58UpKAiSs_WxB4nS4IN9ka03x4ni8Sth9GMZn7z9KR3xA5CDMTYDwFnAqA5z7Vsla5A7kqOddV-YSMJE1U1tVQHbCQmTTkJkF_ZUc5PAGMBWo3Y85TfoV11gficMIUuLPlddLTZD9SvouM-Jv77revtihx_oM3W9hgsFa6PKfMLzGUfA5_RG79P9JKipbzbzTbbv3zehTUuiV9hj9_YocdNpu8f_Zj9mV0_Xt5U818_by-n88oqaPrKWaQGW1r4hXfW1ZOx8ILGC0BwUi40ohY1gCXtwNXohIPWT7z2AgnBtuqYnQ66IXmztp2J2O37Mpp1MtOHx1sjoJFKNqrAJwNcjL9uKffmKW5TKP6MklproUSjCyUHyqaYcyJvXlL3jOlfETK7DMyQgSkZmH0GZudDDU-5wGFJ6VP6P1_vXViL-Q
Cites_doi 10.1109/TPEL.2024.3363027
10.1155/2021/9210050
10.1109/TMECH.2018.2803148
10.1109/TEC.2014.2343962
10.1007/s42835-022-01350-6
10.1109/TIE.2024.3352142
10.1109/TEC.2016.2517924
10.1109/ACCESS.2018.2837111
10.1109/TEC.2022.3208831
10.1109/TPEL.2023.3349283
10.1109/IECON.2005.1569136
10.1109/TMAG.2021.3111521
10.1007/s00202-022-01726-x
10.1109/TIE.2015.2390147
10.1109/TIE.2022.3199860
10.1109/TEC.2023.3307574
10.1016/j.measurement.2023.112447
10.1109/TIM.2007.904562
10.1007/s42835-023-01703-9
10.3390/app8040537
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025.
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2025.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-025-02265-8
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 3456
ExternalDocumentID oai_kci_go_kr_ARTI_10723273
10_1007_s42835_025_02265_8
GroupedDBID -~X
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGMZJ
AGQEE
AHPBZ
AHWEU
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ATHPR
AXYYD
AYFIA
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABJCF
ABRTQ
AEUYN
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ACYCR
ID FETCH-LOGICAL-c307t-dcae7a8ebfbfdcd4961f1e6b0a0d22b5aa51400ce5d0d4ad1d08f9f5f1aea0c83
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001483459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1975-0102
IngestDate Sun Jun 29 03:11:35 EDT 2025
Sun Nov 09 08:21:47 EST 2025
Sat Nov 29 07:49:50 EST 2025
Wed Jun 25 02:38:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Nonlinear modeling
Switched reluctance motor
Data preprocessing
Improved tuna swarm algorithm
Support vector regression algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-dcae7a8ebfbfdcd4961f1e6b0a0d22b5aa51400ce5d0d4ad1d08f9f5f1aea0c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1737-3108
PQID 3255513175
PQPubID 7435074
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10723273
proquest_journals_3255513175
crossref_primary_10_1007_s42835_025_02265_8
springer_journals_10_1007_s42835_025_02265_8
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
2025-07
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Seoul
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
대한전기학회
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: 대한전기학회
References JW Gan (2265_CR6) 2018; 6
L Xie (2265_CR21) 2021; 2021
2265_CR15
P Ren (2265_CR3) 2024; 39
X Sun (2265_CR1) 2018; 23
J Liu (2265_CR11) 2021; 57
M Shi (2265_CR14) 2023; 70
2265_CR2
Z Wang (2265_CR8) 2023; 38
M Shi (2265_CR13) 2023; 208
S Song (2265_CR16) 2016; 31
S Song (2265_CR10) 2015; 62
A Chiba (2265_CR7) 2015; 30
M Aydemir (2265_CR18) 2023; 105
2265_CR20
X Li (2265_CR5) 2023; 18
Y Cai (2265_CR17) 2018; 23
J Liu (2265_CR4) 2024; 19
X Sun (2265_CR19) 2024; 39
AD Cheok (2265_CR9) 2007; 56
R Rocca (2265_CR12) 2024; 39
References_xml – volume: 39
  start-page: 5298
  issue: 5
  year: 2024
  ident: 2265_CR19
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2024.3363027
– volume: 2021
  start-page: 22
  year: 2021
  ident: 2265_CR21
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/9210050
– volume: 23
  start-page: 747
  issue: 2
  year: 2018
  ident: 2265_CR1
  publication-title: IEEE ASME Trans Mechatron
  doi: 10.1109/TMECH.2018.2803148
– volume: 30
  start-page: 175
  issue: 1
  year: 2015
  ident: 2265_CR7
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2014.2343962
– volume: 18
  start-page: 981
  issue: 2
  year: 2023
  ident: 2265_CR5
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-022-01350-6
– ident: 2265_CR2
  doi: 10.1109/TIE.2024.3352142
– volume: 31
  start-page: 424
  issue: 2
  year: 2016
  ident: 2265_CR16
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2016.2517924
– volume: 6
  start-page: 31430
  year: 2018
  ident: 2265_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837111
– volume: 38
  start-page: 122
  issue: 1
  year: 2023
  ident: 2265_CR8
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2022.3208831
– volume: 39
  start-page: 4567
  issue: 4
  year: 2024
  ident: 2265_CR3
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2023.3349283
– ident: 2265_CR20
  doi: 10.1109/IECON.2005.1569136
– volume: 57
  start-page: 1
  issue: 11
  year: 2021
  ident: 2265_CR11
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2021.3111521
– volume: 105
  start-page: 1223
  issue: 2
  year: 2023
  ident: 2265_CR18
  publication-title: Electr Eng
  doi: 10.1007/s00202-022-01726-x
– volume: 62
  start-page: 4105
  issue: 7
  year: 2015
  ident: 2265_CR10
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2390147
– volume: 70
  start-page: 6099
  issue: 6
  year: 2023
  ident: 2265_CR14
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2022.3199860
– volume: 39
  start-page: 734
  issue: 1
  year: 2024
  ident: 2265_CR12
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2023.3307574
– volume: 208
  start-page: 112447
  year: 2023
  ident: 2265_CR13
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112447
– volume: 23
  start-page: 2762
  issue: 6
  year: 2018
  ident: 2265_CR17
  publication-title: IEEE ASME Trans Mechatron
– volume: 56
  start-page: 2245
  issue: 6
  year: 2007
  ident: 2265_CR9
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2007.904562
– volume: 19
  start-page: 2295
  issue: 4
  year: 2024
  ident: 2265_CR4
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-023-01703-9
– ident: 2265_CR15
  doi: 10.3390/app8040537
SSID ssj0061053
Score 2.3411195
Snippet This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed flux linkage data. Firstly, the...
This article proposes a machine learning method to build the model of a switched reluctance motor (SRM) using few preprocessed fl ux linkage data. Firstly, the...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 3445
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title A Machine Learning Modeling Method for Switched Reluctance Motors Based on Few Preprocessed Flux Linkage Data
URI https://link.springer.com/article/10.1007/s42835-025-02265-8
https://www.proquest.com/docview/3255513175
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003212876
Volume 20
WOSCitedRecordID wos001483459800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2025, 20(5), , pp.3445-3456
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2093-7423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061053
  issn: 1975-0102
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHeDAjigUZAluEMmpsx7LUsEBVLWAerMc26mqlhS1KeXzGZukUKQe4JQocRb5zXie5fEbgHMdM-V5TCACkjpeguOgkDH6FUtipVwapYGwxSbCx8eo04mbxaawcZntXi5J2pF6ttnNSoM5pvwqxp3Ad6JlWMVwFxl3bLVfyvEX-YDVnnTj0KSlmfydo8XvmAtHy9konWOavxZHbcxpbP3vb7dhs-CYpP5lFDuwpLNd2PihPLgHr3XyYNMoNSkUVrvElEUb2BNbVZognSXtac_AqkhLDyYyNyaC7UyFHnKF8U-RYUYaekqaRhzTbjnAa43B5IOYSS6OVeRG5GIfnhu3T9d3TlF5wZHo87mjpNChiHSSJqmSyosDN3V1kFBBVa2W-EIgz6JUal9R5QnlKgQ1Tv3UFVpQGbEDWMmGmT4EooTvB7H2NNMUbYIKxgTzoiSQYYLsSlXgogSAv30JbPCZlLLtRI6dyG0n8qgCZ4gR78seN7rY5tgd8v6II_u_x4dCJIghq0C1xJAXLjnmDCdPvmvoUgUuS8y-by_-5tHfmh_Des3CblJ6q7CSjyb6BNbke94bj06tqX4CmPTi-g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1RQAIO7IiWzRLcIJJTZz2yVSBKhdjUm-XYTlVRUtSmlM9nbJKySBzglChxFvmNZ57l8RuAAx0z5XlMIAKSOl6CflDIGMcVS2KlXBqlgbDFJsJWK2q345tiU9iwzHYvlyStp55sdrPSYI4pv4pxJ_CdqAIzHkYsk8h3e_dY-l_kA1Z70o1Dk5Zm8ndqv7_jWziqZIP0G9P8sThqY05j6X9_uwyLBcckxx9GsQJTOluFhS_Kg2vwfEyubRqlJoXCaoeYsmg9e2KrShOks-Ru3DWwKnKreyOZGxPBdqZCDznB-KdIPyMNPSY3RhzTbjnAa43e6I2YSS76KnImcrEOD43z-9MLp6i84Egc87mjpNChiHSSJqmSyosDN3V1kFBBVb2e-EIgz6JUal9R5QnlKgQ1Tv3UFVpQGbENmM76md4EooTvB7H2NNMUbYIKxgTzoiSQYYLsSlXhsASAv3wIbPCJlLLtRI6dyG0n8qgK-4gRf5JdbnSxzbHT508Djuz_Eh8KkSCGrArbJYa8GJJDznDy5LuGLlXhqMTs8_bv36z9rfkezF3cXzd587J1tQXzdWsCJr13G6bzwUjvwKx8zbvDwa4123dE-OXe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLa4hOCBGzHOSPAG1dKl5yNXBQKmiQHiLUqTdJo2OjQ64OfjZCsMJB4QT63a9FDs2J8V-zPAgY6Z8jwmUAKSOl6KdlDIGNcVS2OlXBplgbDNJsJ6PXp8jBtjVfw2273ckhzWNBiWpryoPqus-ln4ZmnCHNOKFX1Q4DvRJEx7pmmQidebD6UtRmxgeSjdODQpaiaXZ_P3d3xzTZN5P_uGOn9slFr_kyz-_8-XYGGEPcnxUFmWYULnKzA_xki4Ck_H5MamV2oyYl5tEdMurWtPbLdpgjCXNN_aRtyK3OruQBZGdXCc6dxDTtAvKtLLSaLfSMOQZtpSBLyWdAfvxAS_aMPImSjEGtwn53enF86oI4Mj0RYUjpJChyLSaZZmSiovDtzM1UFKBVW1WuoLgfiLUql9RZUnlKtQ2HHmZ67QgsqIrcNU3sv1BhAlfD-ItaeZpqgrVDAmmBelgQxTRF2qAoelMPjzkHiDf1Is20nkOIncTiKPKrCP8uId2eaGL9scWz3e6XOMCi7xoRCBY8gqsF3Kk4-W6gtnGFT5roFRFTgq5fd1-_dvbv5t-B7MNs4Sfn1Zv9qCuZrVAJP1uw1TRX-gd2BGvhbtl_6u1eAPMY_uwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Modeling+Method+for+Switched+Reluctance+Motors+Based+on+Few+Preprocessed+Flux+Linkage+Data&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=zhao%2C+Yan&rft.au=Zhu%2C+Jingwei&rft.au=Ren%2C+Ping&rft.au=Jing%2C+Zhe&rft.date=2025-07-01&rft.pub=Springer+Nature+Singapore&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=20&rft.issue=5&rft.spage=3445&rft.epage=3456&rft_id=info:doi/10.1007%2Fs42835-025-02265-8&rft.externalDocID=10_1007_s42835_025_02265_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon