Convergence estimates for multigrid algorithms
To estimate convergence of the multigrid algorithms, we need some assumptions on smoothers. The assumptions for typical smoothers are well analyzed in the multigrid literature [1,2]. However, numerical evidence shows that Kaczmarz smoother does not satisfy above assumptions. Thus, we introduce a wea...
Uloženo v:
| Vydáno v: | Computers & mathematics with applications (1987) Ročník 34; číslo 9; s. 15 - 22 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.1997
|
| Témata: | |
| ISSN: | 0898-1221, 1873-7668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To estimate convergence of the multigrid algorithms, we need some assumptions on smoothers. The assumptions for typical smoothers are well analyzed in the multigrid literature [1,2]. However, numerical evidence shows that Kaczmarz smoother does not satisfy above assumptions. Thus, we introduce a weaker condition which is satisfied by Kaczmarz smoother as well as Jacobi and Gauss-Seidel smoother. Under these weaker assumptions, we show that the convergence factor of
V-cycle multigrid algorithm is
δ =
1 − 1
(C(j − 1))
. assumptions for Kaczmarz smoother are verified by numerical experiment. |
|---|---|
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/S0898-1221(97)00185-5 |