The combinatorial structure of generalized eigenspaces – from nonnegative matrices to general matrices

The Perron–Frobenius spectral theory of nonnegative matrices motivated an intensive study of the relationship between graph theoretic properties and spectral properties of matrices. While for about seventy years research focused on nonnegative matrices, in the past fifteen years the study has been e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 302-303; s. 173 - 191
Hlavní autor: Hershkowitz, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.1999
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Perron–Frobenius spectral theory of nonnegative matrices motivated an intensive study of the relationship between graph theoretic properties and spectral properties of matrices. While for about seventy years research focused on nonnegative matrices, in the past fifteen years the study has been extended to general matrices over an arbitrary field. One of the major original problems in this context is determining the relations between the matrix analytic height characteristic of a matrix and the graph theoretic level characteristic. In this article the history of this problem is reviewed, from its introduction for nonnegative matrices, through its complete solution for nonnegative matrices, to the solution of the generalized version of the problem for general matrices.
AbstractList The Perron–Frobenius spectral theory of nonnegative matrices motivated an intensive study of the relationship between graph theoretic properties and spectral properties of matrices. While for about seventy years research focused on nonnegative matrices, in the past fifteen years the study has been extended to general matrices over an arbitrary field. One of the major original problems in this context is determining the relations between the matrix analytic height characteristic of a matrix and the graph theoretic level characteristic. In this article the history of this problem is reviewed, from its introduction for nonnegative matrices, through its complete solution for nonnegative matrices, to the solution of the generalized version of the problem for general matrices.
Author Hershkowitz, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Hershkowitz
  fullname: Hershkowitz, Daniel
  email: hershkow@techunix.technion.ac.il
  organization: Department of Mathematics, Technion, Israel Institute of Technology, 32000 Haifa, Israel
BookMark eNqFkM9KAzEQxoNUsK0-gpCjHlaTzW52gweR4j8oeLCeQ5qdtJHdTUnSgj35Dr6hT-K21R689DTMzPcbvvkGqNe6FhA6p-SKEsqvXwlJs4QVIr8Q4pIQwrOEH6E-LQuW0DLnPdTfS07QIIT3TpQVJO2j-WQOWLtmalsVnbeqxiH6pY5LD9gZPIMWvKrtGioMtuvCQmkI-PvzCxvvGtx5aWGmol0BblT0drON7g_cz07RsVF1gLPfOkRvD_eT0VMyfnl8Ht2NE81IEROtCDUmI5SlhkFhysKAyvNpRhkvOck4LWmqlBCpMVOlmSYVBQ3UcJEbKhgbopvdXe1dCB6M1DZ29lwbvbK1pERuQpPb0OQmESmE3IYmeUfn_-iFt43yHwe52x0H3WsrC14GbaHVUFkPOsrK2QMXfgBBfInT
CitedBy_id crossref_primary_10_1016_S0024_3795_03_00534_2
crossref_primary_10_1016_S0024_3795_03_00580_9
crossref_primary_10_1016_j_laa_2003_11_021
crossref_primary_10_1016_j_laa_2009_05_003
crossref_primary_10_1016_j_laa_2008_05_014
crossref_primary_10_1016_S0024_3795_02_00492_5
crossref_primary_10_1016_j_laa_2004_08_020
crossref_primary_10_1016_j_laa_2015_02_029
crossref_primary_10_1016_S0024_3795_02_00616_X
Cites_doi 10.1016/S0024-3795(96)00589-7
10.1017/S0013091500021507
10.1016/0024-3795(89)90034-7
10.1016/0024-3795(93)90369-Y
10.1016/0024-3795(86)90313-7
10.1080/03081089108818054
10.1016/0097-3165(76)90078-9
10.1016/0024-3795(85)90233-2
10.1016/0024-3795(88)90234-0
10.1016/0024-3795(92)90335-8
10.1016/0024-3795(89)90394-7
10.1137/0602046
10.1006/jctb.1993.1063
10.1080/03081088908817937
10.1007/BF01818561
10.1007/BF02787184
10.1016/0024-3795(75)90050-6
10.1016/0024-3795(94)90408-1
10.1016/0024-3795(88)90019-5
ContentType Journal Article
Copyright 1999 Elsevier Science Inc.
Copyright_xml – notice: 1999 Elsevier Science Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0024-3795(99)00064-6
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 191
ExternalDocumentID 10_1016_S0024_3795_99_00064_6
S0024379599000646
GroupedDBID --K
--M
--Z
-~X
.~1
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
OAUVE
OK1
OZT
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
0R~
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADNMO
ADVLN
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
FA8
G-2
GBLVA
HZ~
MVM
O9-
OHT
P-8
SEW
T9H
WUQ
~HD
ID FETCH-LOGICAL-c307t-ca01ff40132f3e7f87fea55b4136860461812aa992ffbac3c0d1ece1f695f1933
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000084403400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Tue Nov 18 21:45:47 EST 2025
Sat Nov 29 06:00:07 EST 2025
Fri Feb 23 02:18:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-ca01ff40132f3e7f87fea55b4136860461812aa992ffbac3c0d1ece1f695f1933
OpenAccessLink https://dx.doi.org/10.1016/S0024-3795(99)00064-6
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_S0024_3795_99_00064_6
crossref_primary_10_1016_S0024_3795_99_00064_6
elsevier_sciencedirect_doi_10_1016_S0024_3795_99_00064_6
PublicationCentury 1900
PublicationDate 1999-12-01
1999-12-00
PublicationDateYYYYMMDD 1999-12-01
PublicationDate_xml – month: 12
  year: 1999
  text: 1999-12-01
  day: 01
PublicationDecade 1990
PublicationTitle Linear algebra and its applications
PublicationYear 1999
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References M. Saks, Duality properties of finite set systems, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1980
Hershkowitz (BIB9) 1992; 167
Hershkowitz, Schneider (BIB13) 1988; 106
Schneider (BIB25) 1986; 84
matrix, Proceedings of the Edinburgh Math. Soc. 2(10), (1956) 108–122
Brualdi (BIB1) 1985; 71
Hershkowitz, Schneider (BIB14) 1989; 25
Greene (BIB7) 1976; 20
Brualdi (BIB2) 1987; 58
Röbenack, Reinschke (BIB20) 1997; 263
H. Schneider, The elementary divisors associated with 0 of a singular
Hershkowitz, Schneider (BIB17) 1993; 59
H. Schneider, Matrices with non-negative elements, Thesis, University of Edinburgh, 1952
G.F. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsber, Kön. Preuss. Akad. Wiss., Berlin, 1912, pp. 456–477
Frobenius (BIB5) 1968; 3
Friedland, Hershkowitz (BIB3) 1988; 107
Hershkowitz (BIB8) 1989; 125
Hershkowitz, Schneider (BIB15) 1991; 29
Gansner (BIB6) 1981; 2
Richman, Schneider (BIB19) 1978; 17
Hershkowitz, Schneider (BIB16) 1991; 75
Rothblum (BIB21) 1975; 12
Hershkowitz (BIB10) 1993; 184
H.W. Turnbull, A.C. Aitken, An Introduction to the Theory of Canonical Matrices, 3rd imp., Blackie, 1952
Hershkowitz (BIB11) 1994; 212/213
Hershkowitz, Rothblum, Schneider (BIB12) 1989; 116
A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979
Gansner (10.1016/S0024-3795(99)00064-6_BIB6) 1981; 2
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB12) 1989; 116
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB14) 1989; 25
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB15) 1991; 29
Brualdi (10.1016/S0024-3795(99)00064-6_BIB1) 1985; 71
Frobenius (10.1016/S0024-3795(99)00064-6_BIB5) 1968; 3
10.1016/S0024-3795(99)00064-6_BIB18
10.1016/S0024-3795(99)00064-6_BIB22
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB11) 1994; 212/213
10.1016/S0024-3795(99)00064-6_BIB23
10.1016/S0024-3795(99)00064-6_BIB4
Röbenack (10.1016/S0024-3795(99)00064-6_BIB20) 1997; 263
Schneider (10.1016/S0024-3795(99)00064-6_BIB25) 1986; 84
Rothblum (10.1016/S0024-3795(99)00064-6_BIB21) 1975; 12
Brualdi (10.1016/S0024-3795(99)00064-6_BIB2) 1987; 58
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB13) 1988; 106
Richman (10.1016/S0024-3795(99)00064-6_BIB19) 1978; 17
10.1016/S0024-3795(99)00064-6_BIB26
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB10) 1993; 184
10.1016/S0024-3795(99)00064-6_BIB24
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB9) 1992; 167
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB16) 1991; 75
Greene (10.1016/S0024-3795(99)00064-6_BIB7) 1976; 20
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB17) 1993; 59
Hershkowitz (10.1016/S0024-3795(99)00064-6_BIB8) 1989; 125
Friedland (10.1016/S0024-3795(99)00064-6_BIB3) 1988; 107
References_xml – reference: -matrix, Proceedings of the Edinburgh Math. Soc. 2(10), (1956) 108–122
– volume: 12
  start-page: 281
  year: 1975
  end-page: 292
  ident: BIB21
  article-title: Algebraic egienspaces of non-negative matrices
  publication-title: Linear Algebra Appl.
– volume: 212/213
  start-page: 309
  year: 1994
  end-page: 337
  ident: BIB11
  article-title: Paths in directed graphs and spectral properties of matrices
  publication-title: Linear Algebra Appl.
– reference: H. Schneider, The elementary divisors associated with 0 of a singular
– volume: 125
  start-page: 97
  year: 1989
  end-page: 101
  ident: BIB8
  article-title: A majorization relation between the height and the level characteristics
  publication-title: Linear Algebra Appl.
– reference: G.F. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsber, Kön. Preuss. Akad. Wiss., Berlin, 1912, pp. 456–477
– volume: 58
  start-page: 193
  year: 1987
  end-page: 216
  ident: BIB2
  article-title: Combinatorially determined elementary divisors
  publication-title: Congressus Numerantium
– volume: 107
  start-page: 17
  year: 1988
  end-page: 22
  ident: BIB3
  article-title: The rank of powers of matrices in a block triangular form
  publication-title: Linear Algebra Appl.
– volume: 25
  start-page: 149
  year: 1989
  end-page: 171
  ident: BIB14
  article-title: Height bases, level bases, and the equality of the height and the level characteristics of an
  publication-title: Linear Multilinear Algebra
– volume: 71
  start-page: 31
  year: 1985
  end-page: 47
  ident: BIB1
  article-title: Combinatorial verification of the elementary divisors of tensor products
  publication-title: Linear Algebra Appl.
– volume: 84
  start-page: 161
  year: 1986
  end-page: 189
  ident: BIB25
  article-title: The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: A survey
  publication-title: Linear Algebra Appl.
– reference: A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979
– volume: 263
  start-page: 333
  year: 1997
  end-page: 348
  ident: BIB20
  article-title: Graph-theoretically determined Jordan-block-size structure of regular matrix pencils
  publication-title: Linear Algebra Appl.
– volume: 17
  start-page: 208
  year: 1978
  end-page: 234
  ident: BIB19
  article-title: On the singular graph and the Weyr characteristic of an
  publication-title: Aequ. Math.
– reference: H. Schneider, Matrices with non-negative elements, Thesis, University of Edinburgh, 1952
– volume: 59
  start-page: 172
  year: 1993
  end-page: 187
  ident: BIB17
  article-title: Path coverings of graphs and height characteristics of matrices
  publication-title: J. Combin. Theory, Ser. B
– volume: 167
  start-page: 3
  year: 1992
  end-page: 15
  ident: BIB9
  article-title: The height characteristic of block triangular matrices
  publication-title: Linear Algebra Appl.
– volume: 75
  start-page: 105
  year: 1991
  end-page: 117
  ident: BIB16
  article-title: On the existence of matrices with prescribed height and level characteristics
  publication-title: Israel Math. J.
– volume: 116
  start-page: 9
  year: 1989
  end-page: 26
  ident: BIB12
  article-title: The combinatorial structure of the generalized nullspace of a block triangular matrix
  publication-title: Linear Algebra Appl.
– volume: 29
  start-page: 21
  year: 1991
  end-page: 42
  ident: BIB15
  article-title: Combinatorial bases, derived Jordan sets and the equality of the height and the level characteristics of an M-matrix
  publication-title: Linear Multilinear Algebra
– reference: M. Saks, Duality properties of finite set systems, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1980
– volume: 184
  start-page: 55
  year: 1993
  end-page: 69
  ident: BIB10
  article-title: The relation between the Jordan structure of a matrix and its graph
  publication-title: Linear Algebra Appl.
– reference: H.W. Turnbull, A.C. Aitken, An Introduction to the Theory of Canonical Matrices, 3rd imp., Blackie, 1952
– volume: 2
  start-page: 429
  year: 1981
  end-page: 440
  ident: BIB6
  article-title: Acyclic digraphs, Young tableaux and nilpotent matrices
  publication-title: SIAM J. Alg. Disc. Meth.
– volume: 3
  start-page: 546
  year: 1968
  end-page: 567
  ident: BIB5
  article-title: Über Matrizen aus nicht negativen Elementen
  publication-title: Ges. Abh. Springer
– volume: 20
  start-page: 69
  year: 1976
  end-page: 79
  ident: BIB7
  article-title: Some partitions associated with a partially ordered set
  publication-title: J. Combin. Theory, Ser. A
– volume: 106
  start-page: 5
  year: 1988
  end-page: 23
  ident: BIB13
  article-title: On the generalized nullspace of M-matrices and Z-matrices
  publication-title: Linear Algebra Appl.
– volume: 263
  start-page: 333
  year: 1997
  ident: 10.1016/S0024-3795(99)00064-6_BIB20
  article-title: Graph-theoretically determined Jordan-block-size structure of regular matrix pencils
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(96)00589-7
– ident: 10.1016/S0024-3795(99)00064-6_BIB24
  doi: 10.1017/S0013091500021507
– volume: 125
  start-page: 97
  year: 1989
  ident: 10.1016/S0024-3795(99)00064-6_BIB8
  article-title: A majorization relation between the height and the level characteristics
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(89)90034-7
– volume: 184
  start-page: 55
  year: 1993
  ident: 10.1016/S0024-3795(99)00064-6_BIB10
  article-title: The relation between the Jordan structure of a matrix and its graph
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(93)90369-Y
– volume: 3
  start-page: 546
  year: 1968
  ident: 10.1016/S0024-3795(99)00064-6_BIB5
  article-title: Über Matrizen aus nicht negativen Elementen
  publication-title: Ges. Abh. Springer
– ident: 10.1016/S0024-3795(99)00064-6_BIB23
– ident: 10.1016/S0024-3795(99)00064-6_BIB4
– volume: 84
  start-page: 161
  year: 1986
  ident: 10.1016/S0024-3795(99)00064-6_BIB25
  article-title: The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: A survey
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(86)90313-7
– volume: 29
  start-page: 21
  year: 1991
  ident: 10.1016/S0024-3795(99)00064-6_BIB15
  article-title: Combinatorial bases, derived Jordan sets and the equality of the height and the level characteristics of an M-matrix
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081089108818054
– volume: 20
  start-page: 69
  year: 1976
  ident: 10.1016/S0024-3795(99)00064-6_BIB7
  article-title: Some partitions associated with a partially ordered set
  publication-title: J. Combin. Theory, Ser. A
  doi: 10.1016/0097-3165(76)90078-9
– volume: 71
  start-page: 31
  year: 1985
  ident: 10.1016/S0024-3795(99)00064-6_BIB1
  article-title: Combinatorial verification of the elementary divisors of tensor products
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(85)90233-2
– volume: 107
  start-page: 17
  year: 1988
  ident: 10.1016/S0024-3795(99)00064-6_BIB3
  article-title: The rank of powers of matrices in a block triangular form
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(88)90234-0
– volume: 167
  start-page: 3
  year: 1992
  ident: 10.1016/S0024-3795(99)00064-6_BIB9
  article-title: The height characteristic of block triangular matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(92)90335-8
– volume: 116
  start-page: 9
  year: 1989
  ident: 10.1016/S0024-3795(99)00064-6_BIB12
  article-title: The combinatorial structure of the generalized nullspace of a block triangular matrix
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(89)90394-7
– volume: 2
  start-page: 429
  year: 1981
  ident: 10.1016/S0024-3795(99)00064-6_BIB6
  article-title: Acyclic digraphs, Young tableaux and nilpotent matrices
  publication-title: SIAM J. Alg. Disc. Meth.
  doi: 10.1137/0602046
– volume: 58
  start-page: 193
  year: 1987
  ident: 10.1016/S0024-3795(99)00064-6_BIB2
  article-title: Combinatorially determined elementary divisors
  publication-title: Congressus Numerantium
– volume: 59
  start-page: 172
  year: 1993
  ident: 10.1016/S0024-3795(99)00064-6_BIB17
  article-title: Path coverings of graphs and height characteristics of matrices
  publication-title: J. Combin. Theory, Ser. B
  doi: 10.1006/jctb.1993.1063
– volume: 25
  start-page: 149
  year: 1989
  ident: 10.1016/S0024-3795(99)00064-6_BIB14
  article-title: Height bases, level bases, and the equality of the height and the level characteristics of an M-matrix
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081088908817937
– ident: 10.1016/S0024-3795(99)00064-6_BIB22
– ident: 10.1016/S0024-3795(99)00064-6_BIB26
– volume: 17
  start-page: 208
  year: 1978
  ident: 10.1016/S0024-3795(99)00064-6_BIB19
  article-title: On the singular graph and the Weyr characteristic of an M-matrix
  publication-title: Aequ. Math.
  doi: 10.1007/BF01818561
– volume: 75
  start-page: 105
  year: 1991
  ident: 10.1016/S0024-3795(99)00064-6_BIB16
  article-title: On the existence of matrices with prescribed height and level characteristics
  publication-title: Israel Math. J.
  doi: 10.1007/BF02787184
– volume: 12
  start-page: 281
  year: 1975
  ident: 10.1016/S0024-3795(99)00064-6_BIB21
  article-title: Algebraic egienspaces of non-negative matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(75)90050-6
– ident: 10.1016/S0024-3795(99)00064-6_BIB18
– volume: 212/213
  start-page: 309
  year: 1994
  ident: 10.1016/S0024-3795(99)00064-6_BIB11
  article-title: Paths in directed graphs and spectral properties of matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)90408-1
– volume: 106
  start-page: 5
  year: 1988
  ident: 10.1016/S0024-3795(99)00064-6_BIB13
  article-title: On the generalized nullspace of M-matrices and Z-matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(88)90019-5
SSID ssj0004702
Score 1.6166674
Snippet The Perron–Frobenius spectral theory of nonnegative matrices motivated an intensive study of the relationship between graph theoretic properties and spectral...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 173
Title The combinatorial structure of generalized eigenspaces – from nonnegative matrices to general matrices
URI https://dx.doi.org/10.1016/S0024-3795(99)00064-6
Volume 302-303
WOSCitedRecordID wos000084403400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6-DnoQn_gmBwU9VJumbZqjiKKCIqiwt9JmE13U3cVdH3jyP_gP_SVOmjStD3wcvJQlkGnZmUy-SWa-QWg1asK2lUWRR3iWe6HUa44GuUfzENC2kD4Tqmg2wY6Pk0aDn9jUoV7RToC128njI-_-q6phDJStS2f_oG4nFAbgNygdnqB2eP5a8SAXIl4dT9t6kDtzUwDI8MLwTLeeAGlKTcUJLkVnZZVZD9RUnLR1AsyFYQW_KWj8DReEne7G6uAW4lpNC6Q7h0AM7q4l6nfk1dHrbe_yqvPQKtrJ2kL36gSiYC2osjnKioAQHJVplll6VQpapz6t-UZiepbYbZaYJl2fPLg5TDh1Mtd0RLgW8AI8eV-wZn_YzVyOYZW-BqJSLSrlPC3EpPEgGg5YxMExDm8f7DYOq1Ja5luCefP6quhrq_qmdc437Pd8DWdqEOVsAo3b2AJvG5uYRAOyPYXGjhwxb28aXYJ14HfWgZ114I7CNevANevAr88vWNsFrtkFLm0A9zvlRDc2g873ds929j3bbMMT4Ob7nsh8opSOtgNFJVMJUxLWcA4gJ05iTcsPUDDLOA-UyjNBhd8kUkiiYh4piALoLBqCT5BzCCspACdz2EyCZkg03lGMKBEHoWSC5OE8Csv_LBWWiV43RLlOv9XZPNp007qGiuWnCUmpkNTiSYMTUzC276cu_PVdi2i0WhpLaAhUJ5fRiLjvt3q3K9bK3gB3t5L2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+combinatorial+structure+of+generalized+eigenspaces+%E2%80%93+from+nonnegative+matrices+to+general+matrices&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Hershkowitz%2C+Daniel&rft.date=1999-12-01&rft.issn=0024-3795&rft.volume=302-303&rft.spage=173&rft.epage=191&rft_id=info:doi/10.1016%2FS0024-3795%2899%2900064-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0024_3795_99_00064_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon