A domain decomposition method for linear exterior boundary value problems

In this paper, we present a domain decomposition method, based on the general theory of Steklov-Poincaré operators, for a class of linear exterior boundary value problems arising in potential theory and heat conductivity. We first use a Dirichlet-to-Neumann mapping, derived from boundary integral eq...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters Vol. 11; no. 6; pp. 1 - 9
Main Authors: Gatica, G.N., Hernandez, E.C., Mellado, M.E.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.1998
Subjects:
ISSN:0893-9659, 1873-5452
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present a domain decomposition method, based on the general theory of Steklov-Poincaré operators, for a class of linear exterior boundary value problems arising in potential theory and heat conductivity. We first use a Dirichlet-to-Neumann mapping, derived from boundary integral equation methods, to transform the exterior problem into an equivalent mixed boundary value problem on a bounded domain. This domain is decomposed into a finite number of annular subregions, and the Dirichlet data on the interfaces is introduced as the unknown of the associated Steklov-Poincaré problem. This problem is solved with the Richardson method by introducing a Dirichlet-Robin-type preconditioner, which yields an iteration-by-subdomains algorithm well suited for parallel computations. The corresponding analysis for the finite element approximations and some numerical experiments are also provided.
AbstractList In this paper, we present a domain decomposition method, based on the general theory of Steklov-Poincaré operators, for a class of linear exterior boundary value problems arising in potential theory and heat conductivity. We first use a Dirichlet-to-Neumann mapping, derived from boundary integral equation methods, to transform the exterior problem into an equivalent mixed boundary value problem on a bounded domain. This domain is decomposed into a finite number of annular subregions, and the Dirichlet data on the interfaces is introduced as the unknown of the associated Steklov-Poincaré problem. This problem is solved with the Richardson method by introducing a Dirichlet-Robin-type preconditioner, which yields an iteration-by-subdomains algorithm well suited for parallel computations. The corresponding analysis for the finite element approximations and some numerical experiments are also provided.
Author Hernandez, E.C.
Gatica, G.N.
Mellado, M.E.
Author_xml – sequence: 1
  givenname: G.N.
  surname: Gatica
  fullname: Gatica, G.N.
– sequence: 2
  givenname: E.C.
  surname: Hernandez
  fullname: Hernandez, E.C.
– sequence: 3
  givenname: M.E.
  surname: Mellado
  fullname: Mellado, M.E.
BookMark eNqFUE1LAzEUDFLBtvoThBz1sJo0m2SDBynFj0LBg3oO2eQtRnY3JdkW_femrXjw0sPjMY-Z4c1M0KgPPSB0SckNJVTcvpJKsUIJrq5UdU0IyUieoDGtJCt4yWcjNP6jnKFJSp-ZxBSrxmg5xy50xvfYgQ3dOiQ_-NDjDoaP4HATIm59DyZi-Bog-ozrsOmdid94a9oN4HUMdQtdOkenjWkTXPzuKXp_fHhbPBerl6flYr4qLCNyKKziFGoJxpo8omZlyZ0QhjhpqCvzuRakdEya0jgpZkKxZsalpbxpGuEUm6K7g6-NIaUIjbZ-MLunh2h8qynRu1b0vhW9i6xVpfetaJnV_J96HX2X0xzV3R90kKNtPUSdrIfegvMR7KBd8EccfgD6HX5t
CitedBy_id crossref_primary_10_1006_jmaa_2001_7537
Cites_doi 10.1006/jmaa.1995.1029
10.1016/0022-247X(77)90186-X
10.1007/BF01398917
10.1137/0731036
ContentType Journal Article
Copyright 1998
Copyright_xml – notice: 1998
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0893-9659(98)00093-7
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5452
EndPage 9
ExternalDocumentID 10_1016_S0893_9659_98_00093_7
S0893965998000937
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-c951eb7eacaeac6b3445d66a0d7a1d4acab604d37a4ad762693f257c15fff6d93
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000076372800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-9659
IngestDate Sat Nov 29 07:13:30 EST 2025
Tue Nov 18 22:11:45 EST 2025
Fri Feb 23 02:28:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Steklov-Poincaré operator
Dirichlet-Robin sweep
Iteration by subdomains
Dirichlet-to-Neumann mapping
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-c951eb7eacaeac6b3445d66a0d7a1d4acab604d37a4ad762693f257c15fff6d93
OpenAccessLink https://dx.doi.org/10.1016/S0893-9659(98)00093-7
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_S0893_9659_98_00093_7
crossref_primary_10_1016_S0893_9659_98_00093_7
elsevier_sciencedirect_doi_10_1016_S0893_9659_98_00093_7
PublicationCentury 1900
PublicationDate 1998-11-01
PublicationDateYYYYMMDD 1998-11-01
PublicationDate_xml – month: 11
  year: 1998
  text: 1998-11-01
  day: 01
PublicationDecade 1990
PublicationTitle Applied mathematics letters
PublicationYear 1998
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Le Tallec (BIB1) 1994; 1
Gatica, Hsiao (BIB5) 1995; 189
Gatica, Mellado (BIB9) 1998
Hsiao, Zhang (BIB6) 1994; 31
Hsiao, Khoromskij, Wendland (BIB3) 1994
Hsiao, Wendland (BIB7) 1977; 58
Marini, Quarteroni (BIB8) 1989; 55
M.E. Mellado, Domain decomposition methods for exterior problems in potential theory and elasticity, Ph.D. Thesis, Universidad de Concepción, (in preparation).
Quarteroni, Valli (BIB2) 1991
Langer (BIB4) 1994; 157
Marini (10.1016/S0893-9659(98)00093-7_BIB8) 1989; 55
Le Tallec (10.1016/S0893-9659(98)00093-7_BIB1) 1994; 1
10.1016/S0893-9659(98)00093-7_BIB10
Quarteroni (10.1016/S0893-9659(98)00093-7_BIB2) 1991
Hsiao (10.1016/S0893-9659(98)00093-7_BIB7) 1977; 58
Gatica (10.1016/S0893-9659(98)00093-7_BIB9) 1998
Gatica (10.1016/S0893-9659(98)00093-7_BIB5) 1995; 189
Hsiao (10.1016/S0893-9659(98)00093-7_BIB6) 1994; 31
Hsiao (10.1016/S0893-9659(98)00093-7_BIB3) 1994
Langer (10.1016/S0893-9659(98)00093-7_BIB4) 1994; 157
References_xml – volume: 55
  start-page: 575
  year: 1989
  end-page: 598
  ident: BIB8
  article-title: A relaxation procedure for domain decomposition methods using finite elements
  publication-title: Numerische Mathematik
– reference: M.E. Mellado, Domain decomposition methods for exterior problems in potential theory and elasticity, Ph.D. Thesis, Universidad de Concepción, (in preparation).
– year: 1994
  ident: BIB3
  article-title: Boundary integral operators and domain decomposition
– volume: 157
  start-page: 335
  year: 1994
  end-page: 344
  ident: BIB4
  article-title: Parallel iterative solution of symmetric coupled FE/BE-equations via domain decomposition
  publication-title: Domain Decomposition Methods in Science and Engineering
– volume: 189
  start-page: 442
  year: 1995
  end-page: 461
  ident: BIB5
  article-title: The uncoupling of boundary integral and finite element methods for nonlinear boundary value problems
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 31
  start-page: 680
  year: 1994
  end-page: 694
  ident: BIB6
  article-title: Optimal order multigrid methods for solving exterior boundary value problems
  publication-title: SIAM Journal on Numerical Analysis
– year: 1998
  ident: BIB9
  article-title: Nonoverlapping domain decomposition methods for linear and nonlinear exterior boundary value problems
  publication-title: Technical Report 98-02
– start-page: 179
  year: 1991
  end-page: 203
  ident: BIB2
  article-title: Theory and application of Steklov-Poincaré operators for boundary value problems
  publication-title: Applied and Industrial Mathematics
– volume: 58
  start-page: 449
  year: 1977
  end-page: 481
  ident: BIB7
  article-title: A finite element method for some integral equations of the first kind
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 1
  start-page: 121
  year: 1994
  end-page: 220
  ident: BIB1
  article-title: Domain decomposition methods in computational mechanics
  publication-title: Computational Mechanics Advances
– year: 1994
  ident: 10.1016/S0893-9659(98)00093-7_BIB3
  article-title: Boundary integral operators and domain decomposition
– ident: 10.1016/S0893-9659(98)00093-7_BIB10
– volume: 189
  start-page: 442
  year: 1995
  ident: 10.1016/S0893-9659(98)00093-7_BIB5
  article-title: The uncoupling of boundary integral and finite element methods for nonlinear boundary value problems
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1006/jmaa.1995.1029
– year: 1998
  ident: 10.1016/S0893-9659(98)00093-7_BIB9
  article-title: Nonoverlapping domain decomposition methods for linear and nonlinear exterior boundary value problems
– volume: 58
  start-page: 449
  year: 1977
  ident: 10.1016/S0893-9659(98)00093-7_BIB7
  article-title: A finite element method for some integral equations of the first kind
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(77)90186-X
– start-page: 179
  year: 1991
  ident: 10.1016/S0893-9659(98)00093-7_BIB2
  article-title: Theory and application of Steklov-Poincaré operators for boundary value problems
– volume: 1
  start-page: 121
  year: 1994
  ident: 10.1016/S0893-9659(98)00093-7_BIB1
  article-title: Domain decomposition methods in computational mechanics
  publication-title: Computational Mechanics Advances
– volume: 55
  start-page: 575
  year: 1989
  ident: 10.1016/S0893-9659(98)00093-7_BIB8
  article-title: A relaxation procedure for domain decomposition methods using finite elements
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01398917
– volume: 31
  start-page: 680
  year: 1994
  ident: 10.1016/S0893-9659(98)00093-7_BIB6
  article-title: Optimal order multigrid methods for solving exterior boundary value problems
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0731036
– volume: 157
  start-page: 335
  year: 1994
  ident: 10.1016/S0893-9659(98)00093-7_BIB4
  article-title: Parallel iterative solution of symmetric coupled FE/BE-equations via domain decomposition
SSID ssj0003938
Score 1.5129248
Snippet In this paper, we present a domain decomposition method, based on the general theory of Steklov-Poincaré operators, for a class of linear exterior boundary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Dirichlet-Robin sweep
Dirichlet-to-Neumann mapping
Iteration by subdomains
Steklov-Poincaré operator
Title A domain decomposition method for linear exterior boundary value problems
URI https://dx.doi.org/10.1016/S0893-9659(98)00093-7
Volume 11
WOSCitedRecordID wos000076372800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5452
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003938
  issn: 0893-9659
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbuoftYeyTtvtADxtsBHlxLOvjMZSs6yBhsA7yZmTLgkLrliQr3X-_04clB8q-YA8x8UWyQPfL3c_HnQ6hN0KYpjQ1I7oWjNCGtURNc0bKOjcM3INiRrhmE3y5FKuV_BJiuhvXToB3nbi5kVf_VdUgA2Xb0tm_UHd8KAjgOygdrqB2uP6R4mdjfXmhXJKrzRcPSVmhVbTLKrTMUq3Hziyf2WxN11pp_WNsT_62hVOux8xmyFt7snoRT3ndjM9dJVDk5MdW6qjocbbMUox1EKeeZ0fxh4VNu9IuULvI5lmKPrhyvHwn-hDLYlIOkrNcsiD2pELvZLxlFdxmYZS7pjcfQGxoR_OBQ5a3WnofdPgalwI-LsXbqXQxGsKTe4tJh26sHSqFG8Tvor0ph9sR2pudzFefowcvpOuAHp-dKr8-pAXfSfE-LHY7pxnwlNNH6GF4wcAzD4zH6E7bPUEPFklvT9HJDHuI4B2IYA8RDBDBHiK4hwjuIYIdRHAPkWfo28f56dEnElpqkAaM-ZY0QKjbmoO3VfBhdUFpqRlTE81VrimIazahuuCKKg1-ksnCgFFv8tIYw7QsnqNRd9m1-wjrekoLeBnmwFmpgvHFREmqBchl3hp1gGi_KVUTzpu3bU_Oq5RYCHtZ2b2spKjcXlb8AGVx2pU_cOV3E0S_41VgjZ4NVgCVX089_PepL9D99Hd4iUbb9ff2FbrXXG_PNuvXAVA_AfwgjbU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+domain+decomposition+method+for+linear+exterior+boundary+value+problems&rft.jtitle=Applied+mathematics+letters&rft.au=Gatica%2C+G.N.&rft.au=Hernandez%2C+E.C.&rft.au=Mellado%2C+M.E.&rft.date=1998-11-01&rft.pub=Elsevier+Ltd&rft.issn=0893-9659&rft.eissn=1873-5452&rft.volume=11&rft.issue=6&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2FS0893-9659%2898%2900093-7&rft.externalDocID=S0893965998000937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon