Numerical solution of special linear and quadratic programs via a parallel interior-point method

This paper concerns a parallel inexact interior-point (IP) method for solving linear and quadratic programs with a special structure in the constraint matrix and in the objective function. In order to exploit these features, a preconditioned conjugate gradient (PCG) algorithm is used to approximatel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing Jg. 29; H. 4; S. 485 - 503
Hauptverfasser: Durazzi, C., Ruggiero, V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2003
Schlagworte:
ISSN:0167-8191, 1872-7336
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper concerns a parallel inexact interior-point (IP) method for solving linear and quadratic programs with a special structure in the constraint matrix and in the objective function. In order to exploit these features, a preconditioned conjugate gradient (PCG) algorithm is used to approximately solve the normal equations or the reduced KKT system obtained from the linear inner system arising at each iteration of the IP method. A suitable adaptive termination rule for the PCG method enables to save computing time at the early steps of the outer scheme and, at the same time, it assures the global and the local superlinear convergence of the whole method. We analyse a parallel implementation of the method, referring some kinds of meaningful large-scale problems. In particular we discuss the data allocation and the workload distribution among the processors. The results of a numerical experimentation carried out on Cray T3E and SGI Origin 3800 show a good scalability of the parallel code and confirm the effectiveness of the method for problems with special structure.
AbstractList This paper concerns a parallel inexact interior-point (IP) method for solving linear and quadratic programs with a special structure in the constraint matrix and in the objective function. In order to exploit these features, a preconditioned conjugate gradient (PCG) algorithm is used to approximately solve the normal equations or the reduced KKT system obtained from the linear inner system arising at each iteration of the IP method. A suitable adaptive termination rule for the PCG method enables to save computing time at the early steps of the outer scheme and, at the same time, it assures the global and the local superlinear convergence of the whole method. We analyse a parallel implementation of the method, referring some kinds of meaningful large-scale problems. In particular we discuss the data allocation and the workload distribution among the processors. The results of a numerical experimentation carried out on Cray T3E and SGI Origin 3800 show a good scalability of the parallel code and confirm the effectiveness of the method for problems with special structure.
Author Ruggiero, V.
Durazzi, C.
Author_xml – sequence: 1
  givenname: C.
  surname: Durazzi
  fullname: Durazzi, C.
  email: c.durazzi@unife.it
– sequence: 2
  givenname: V.
  surname: Ruggiero
  fullname: Ruggiero, V.
  email: v.ruggiero@unife.it
BookMark eNqFkEtLAzEUhYNUsK3-BCFLXYwm80imuBApvkB0oa7jbXJHIzOTMUkL_nvTVly46eI-uJxz4H4TMupdj4Qcc3bGGRfnz6nJrOYzfsKKU8YYr7N6j4x5LfNMFoUYkfGf5IBMQvhMIlHWbEzeHpcdequhpcG1y2hdT11Dw4DapltrewRPoTf0awnGQ7SaDt69e-gCXVmgQAfw0LbYUtvHFOV8Nri00g7jhzOHZL-BNuDR75yS15vrl_ld9vB0ez-_esh0wWTMZizXppEGRc1FIxayElpgiamSoNIogc8awXK2kKYomSnqiuUSShAmT1VMSbXN1d6F4LFRg7cd-G_FmVpjUhtMas1AsUJtMKk6-S7--bSNsOYQPdh2p_ty68b02sqiV0Fb7DUa61FHZZzdkfADPROFRA
CitedBy_id crossref_primary_10_1016_S0167_8191_03_00013_9
crossref_primary_10_1007_s10589_007_9012_5
crossref_primary_10_1007_BF02844922
Cites_doi 10.1023/A:1017523228692
10.1023/A:1022663100715
10.1137/S0363012996298795
10.1007/BF01449023
10.1007/978-1-4613-0239-1_8
10.1023/A:1004624721836
10.1137/0614019
10.1002/(SICI)1099-1506(199805/06)5:3<219::AID-NLA134>3.0.CO;2-7
ContentType Journal Article
Copyright 2003 Elsevier Science B.V.
Copyright_xml – notice: 2003 Elsevier Science B.V.
DBID AAYXX
CITATION
DOI 10.1016/S0167-8191(03)00018-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7336
EndPage 503
ExternalDocumentID 10_1016_S0167_8191_03_00018_8
S0167819103000188
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-902cdf7de6816f6b756c6e4e6e4c305ce7a19f6020b7d340d385027a4a6d2a6d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000182061100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8191
IngestDate Tue Nov 18 22:28:10 EST 2025
Sat Nov 29 03:58:56 EST 2025
Fri Feb 23 02:30:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Preconditioned conjugate gradient method
Distributed memory multiprocessor system
Inexact interior-point methods
Parallel preconditioners
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-902cdf7de6816f6b756c6e4e6e4c305ce7a19f6020b7d340d385027a4a6d2a6d3
PageCount 19
ParticipantIDs crossref_primary_10_1016_S0167_8191_03_00018_8
crossref_citationtrail_10_1016_S0167_8191_03_00018_8
elsevier_sciencedirect_doi_10_1016_S0167_8191_03_00018_8
PublicationCentury 2000
PublicationDate 2003-04-01
PublicationDateYYYYMMDD 2003-04-01
PublicationDate_xml – month: 04
  year: 2003
  text: 2003-04-01
  day: 01
PublicationDecade 2000
PublicationTitle Parallel computing
PublicationYear 2003
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bertsekas, Tsitsiklis (BIB2) 1989
Hullet (BIB9) 1974; 1
Liu, Ng, Peyton (BIB11) 1993; 1
F. Potra, C. Roos, T. Terlaky (Eds.), Interior Point Methods, Optim. Methods Softw. 11–12 (1999) 1–690 (special issue)
Durazzi (BIB4) 2000; 104
SHMEM technical note for Fortran, Cray Research, Seattle, Washington, 1994
Wright (BIB15) 1997
Bellavia (BIB1) 1998; 96
C. Durazzi, V. Ruggiero, G. Zanghirati, Solving a special class of discrete optimal control problems via a parallel interior-point method, in: P. Daniele, F. Giannessi, A. Maugeri (Eds.), Equilibrium Problems and Variational Models, Kluwer Academic Publishers, in press
Rönsch (BIB14) 1984
Leifritz, Sachs (BIB10) 1999; 38
MPI: a message-passing interface standard, University of Tennessee, Knoxville, Tennessee, 1995
Lukšan, Vlček (BIB12) 1998; 5
Durazzi, Galligani (BIB5) 2001
Durazzi, Ruggiero, Zanghirati (BIB7) 2001; 110
Censor, Zenios (BIB3) 1997
C. Durazzi, V. Ruggiero, Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic programs, Numer. Linear Algebra Appl., in press
10.1016/S0167-8191(03)00018-8_BIB6
Censor (10.1016/S0167-8191(03)00018-8_BIB3) 1997
10.1016/S0167-8191(03)00018-8_BIB8
10.1016/S0167-8191(03)00018-8_BIB17
10.1016/S0167-8191(03)00018-8_BIB16
Leifritz (10.1016/S0167-8191(03)00018-8_BIB10) 1999; 38
Rönsch (10.1016/S0167-8191(03)00018-8_BIB14) 1984
Hullet (10.1016/S0167-8191(03)00018-8_BIB9) 1974; 1
Durazzi (10.1016/S0167-8191(03)00018-8_BIB5) 2001
Wright (10.1016/S0167-8191(03)00018-8_BIB15) 1997
10.1016/S0167-8191(03)00018-8_BIB13
Liu (10.1016/S0167-8191(03)00018-8_BIB11) 1993; 1
Lukšan (10.1016/S0167-8191(03)00018-8_BIB12) 1998; 5
Bellavia (10.1016/S0167-8191(03)00018-8_BIB1) 1998; 96
Bertsekas (10.1016/S0167-8191(03)00018-8_BIB2) 1989
Durazzi (10.1016/S0167-8191(03)00018-8_BIB4) 2000; 104
Durazzi (10.1016/S0167-8191(03)00018-8_BIB7) 2001; 110
References_xml – start-page: 71
  year: 2001
  end-page: 99
  ident: BIB5
  article-title: Nonlinear programming methods for solving optimal control problems
  publication-title: Equilibrium Problems: Nonsmooth Optimization and Variational Inequalities Models, Nonsmooth Optimization
– volume: 96
  start-page: 109
  year: 1998
  end-page: 121
  ident: BIB1
  article-title: Inexact interior-point method
  publication-title: J. Optim. Theory Appl.
– volume: 110
  start-page: 289
  year: 2001
  end-page: 313
  ident: BIB7
  article-title: Parallel interior-point method for linear and quadratic programs with special structure
  publication-title: J. Optim. Theory Appl.
– reference: MPI: a message-passing interface standard, University of Tennessee, Knoxville, Tennessee, 1995
– reference: C. Durazzi, V. Ruggiero, Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic programs, Numer. Linear Algebra Appl., in press
– year: 1984
  ident: BIB14
  article-title: Timing and stability analysis of summation algorithm
  publication-title: Parallel Computing 83
– volume: 1
  start-page: 20
  year: 1974
  end-page: 63
  ident: BIB9
  article-title: Optimal estuary aeration: an application of distributed parameter control theory
  publication-title: Appl. Math. Optim.
– reference: F. Potra, C. Roos, T. Terlaky (Eds.), Interior Point Methods, Optim. Methods Softw. 11–12 (1999) 1–690 (special issue)
– volume: 38
  start-page: 272
  year: 1999
  end-page: 293
  ident: BIB10
  article-title: Inexact SQP interior point methods and large scale optimal control problems
  publication-title: SIAM J. Control Optim.
– reference: SHMEM technical note for Fortran, Cray Research, Seattle, Washington, 1994
– volume: 1
  start-page: 242
  year: 1993
  end-page: 252
  ident: BIB11
  article-title: On finding supernodes for sparse matrix computations
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 104
  start-page: 73
  year: 2000
  end-page: 90
  ident: BIB4
  article-title: On the Newton interior-point method for nonlinear programming problems
  publication-title: J. Optim. Theory Appl.
– year: 1997
  ident: BIB3
  article-title: Parallel optimization
  publication-title: Theory, Algorithms and Applications
– volume: 5
  start-page: 219
  year: 1998
  end-page: 247
  ident: BIB12
  article-title: Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems
  publication-title: Numer. Linear Algebra Appl.
– year: 1997
  ident: BIB15
  article-title: Primal-Dual Interior-Point Methods
– reference: C. Durazzi, V. Ruggiero, G. Zanghirati, Solving a special class of discrete optimal control problems via a parallel interior-point method, in: P. Daniele, F. Giannessi, A. Maugeri (Eds.), Equilibrium Problems and Variational Models, Kluwer Academic Publishers, in press
– year: 1989
  ident: BIB2
  article-title: Parallel and Distributed Computation-Numerical Methods
– year: 1989
  ident: 10.1016/S0167-8191(03)00018-8_BIB2
– volume: 110
  start-page: 289
  year: 2001
  ident: 10.1016/S0167-8191(03)00018-8_BIB7
  article-title: Parallel interior-point method for linear and quadratic programs with special structure
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017523228692
– start-page: 71
  year: 2001
  ident: 10.1016/S0167-8191(03)00018-8_BIB5
  article-title: Nonlinear programming methods for solving optimal control problems
– year: 1997
  ident: 10.1016/S0167-8191(03)00018-8_BIB15
– ident: 10.1016/S0167-8191(03)00018-8_BIB6
– year: 1997
  ident: 10.1016/S0167-8191(03)00018-8_BIB3
  article-title: Parallel optimization
– volume: 96
  start-page: 109
  year: 1998
  ident: 10.1016/S0167-8191(03)00018-8_BIB1
  article-title: Inexact interior-point method
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022663100715
– ident: 10.1016/S0167-8191(03)00018-8_BIB17
– ident: 10.1016/S0167-8191(03)00018-8_BIB16
– volume: 38
  start-page: 272
  year: 1999
  ident: 10.1016/S0167-8191(03)00018-8_BIB10
  article-title: Inexact SQP interior point methods and large scale optimal control problems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012996298795
– volume: 1
  start-page: 20
  year: 1974
  ident: 10.1016/S0167-8191(03)00018-8_BIB9
  article-title: Optimal estuary aeration: an application of distributed parameter control theory
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01449023
– ident: 10.1016/S0167-8191(03)00018-8_BIB8
  doi: 10.1007/978-1-4613-0239-1_8
– ident: 10.1016/S0167-8191(03)00018-8_BIB13
– volume: 104
  start-page: 73
  year: 2000
  ident: 10.1016/S0167-8191(03)00018-8_BIB4
  article-title: On the Newton interior-point method for nonlinear programming problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1004624721836
– volume: 1
  start-page: 242
  year: 1993
  ident: 10.1016/S0167-8191(03)00018-8_BIB11
  article-title: On finding supernodes for sparse matrix computations
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0614019
– volume: 5
  start-page: 219
  year: 1998
  ident: 10.1016/S0167-8191(03)00018-8_BIB12
  article-title: Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/(SICI)1099-1506(199805/06)5:3<219::AID-NLA134>3.0.CO;2-7
– year: 1984
  ident: 10.1016/S0167-8191(03)00018-8_BIB14
  article-title: Timing and stability analysis of summation algorithm
SSID ssj0006480
Score 1.6363846
Snippet This paper concerns a parallel inexact interior-point (IP) method for solving linear and quadratic programs with a special structure in the constraint matrix...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms Distributed memory multiprocessor system
Inexact interior-point methods
Parallel preconditioners
Preconditioned conjugate gradient method
Title Numerical solution of special linear and quadratic programs via a parallel interior-point method
URI https://dx.doi.org/10.1016/S0167-8191(03)00018-8
Volume 29
WOSCitedRecordID wos000182061100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7336
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006480
  issn: 0167-8191
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4ELb0R5yQcqgVZZsk5iO8eqKgIOq0oUtLfgV6qVouyS3a2q_nrGr2wKqNADh0RRFNtR5svMeDyeD6E3ZS15LYVOQPGRBDxwmZRE6sQQVcuMEZlJ5cgm2GzG5_PyJOSqrh2dAGtbfnFRrv6rqOEeCNtunb2BuPtO4QZcg9DhDGKH8z8Jfrb1izDNOI5jHcK155kfW69S-LzJH1uhO1ewNSRprcfndovW2JYDbxrTuFoS3WLZJaslXAa26aE7exKfVI4cIppB5xh34vLSpQocTfpVne3ZGZhhF539NrkScMgGeSohBgm61c7zhko0hC0WwwiB04i5Z-QJxrVwBQ1-19s-hPCl7_rAkmYdEMtoOuUJ3xmruED_iw3rMwsHSWuUVbarKs3cCjuv-G20R1hR8hHaO_x0PP_cm2yaO4q9fvjdVq_3u3d6m2bvwvv82YkZOCanD9C9MKPAhx4JD9Et0z5C9yNbBw7K-zH63gMDR2DgZY0DMLAHBgZg4B4YOAIDAzCwwBEY-CowsAfGE_T1w_Hp0cck8GskCjT7JilTonTNtKF8SmsqWUEVNbmBAx4olGFiWtYUJhSS6SxPdcaLlDCRC6oJHNlTNGqXrXmGsDacGV1DZ0rnXAsJrpdi0zoXmlFK6n2Uxw9WqVB83nKgNNW1AttHk77Zyldf-VsDHqVRBRfSu4YVIO36ps9vOtYLdHf3e7xEo023Na_QHXW-Way71wFiPwGaXY-Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+special+linear+and+quadratic+programs+via+a+parallel+interior-point+method&rft.jtitle=Parallel+computing&rft.au=Durazzi%2C+C.&rft.au=Ruggiero%2C+V.&rft.date=2003-04-01&rft.issn=0167-8191&rft.volume=29&rft.issue=4&rft.spage=485&rft.epage=503&rft_id=info:doi/10.1016%2FS0167-8191%2803%2900018-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0167_8191_03_00018_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8191&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8191&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8191&client=summon