A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation

We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in the worst case. A similar approach is developed for the task of least squares segmentation, and simulations indicate substantial performance...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics Vol. 22; no. 2; pp. 246 - 260
Main Author: Johnson, Nicholas A.
Format: Journal Article
Language:English
Published: Taylor & Francis 2013
Subjects:
ISSN:1061-8600, 1537-2715
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in the worst case. A similar approach is developed for the task of least squares segmentation, and simulations indicate substantial performance improvement over existing algorithms. Examples of R and C implementations are provided in the online Supplementary materials, posted on the journal web site.
AbstractList We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in the worst case. A similar approach is developed for the task of least squares segmentation, and simulations indicate substantial performance improvement over existing algorithms. Examples of R and C implementations are provided in the online Supplementary materials, posted on the journal web site.
Author Johnson, Nicholas A.
Author_xml – sequence: 1
  givenname: Nicholas A.
  surname: Johnson
  fullname: Johnson, Nicholas A.
  organization: Department of Statistics, Stanford University
BookMark eNqFkMtKAzEUhoNUsK2-gYu8wNSTzC3jRkq1VigoqOuQ5jKNzCSSRKRv75TRjQs9m3MW__dz-GZo4rzTCF0SWBBgcEWgIqwCWFAgdFExQnN2gqakzOuM1qScDPcQyY6ZMzSL8Q0ASNXUU7RZ4tuDE72V-Cn4Noi-t67Fy671waZ9j40POO01Xn9ErfBWxOixcMOFIXvWba9dEsl6d45Ojeiivvjec_S6vntZbbLt4_3DarnNZA51yio9TFNWwlRawY5J2SipKDWqEYqZUgAtqJaGFbrYEQVMAjEDYpTe0UKzfI6ux14ZfIxBGy7t-EEKwnacAD864T9O-NEJH50McPELfg-2F-HwH3YzYtYNOnrx6UOneBKHzgcThJM28vzPhi_k53r3
CitedBy_id crossref_primary_10_1080_01621459_2016_1276461
crossref_primary_10_1016_j_jspi_2024_106221
crossref_primary_10_1093_jrsssc_qlae040
crossref_primary_10_1080_10618600_2015_1008638
crossref_primary_10_1137_15M1010257
crossref_primary_10_1093_biostatistics_kxw033
crossref_primary_10_1007_s12532_022_00229_x
crossref_primary_10_5802_smai_jcm_3
crossref_primary_10_1109_TIM_2019_2938639
crossref_primary_10_3390_computers13040093
crossref_primary_10_1093_biomet_asz071
crossref_primary_10_1080_10618600_2024_2402895
crossref_primary_10_3390_math8071141
crossref_primary_10_1093_biostatistics_kxx038
crossref_primary_10_1002_sim_8100
crossref_primary_10_1111_rssb_12130
crossref_primary_10_1007_s10107_021_01633_2
crossref_primary_10_1080_10618600_2019_1660178
crossref_primary_10_1109_LSP_2018_2867800
crossref_primary_10_1109_TMI_2017_2760104
crossref_primary_10_1137_21M142770X
crossref_primary_10_1137_20M1387869
crossref_primary_10_1080_01621459_2017_1385466
crossref_primary_10_1177_1471082X14553366
crossref_primary_10_1016_j_csda_2022_107581
crossref_primary_10_1080_10618600_2022_2097246
crossref_primary_10_1093_biomet_asaf018
crossref_primary_10_1137_17M1113436
crossref_primary_10_1002_qre_2066
crossref_primary_10_1080_10618600_2015_1054033
crossref_primary_10_1080_01621459_2017_1319838
crossref_primary_10_1080_10618600_2015_1073155
crossref_primary_10_1109_TAC_2019_2890888
crossref_primary_10_1137_23M1556915
crossref_primary_10_1007_s10589_024_00556_w
crossref_primary_10_1214_22_STS856
crossref_primary_10_1137_17M1136390
crossref_primary_10_1080_10691898_2020_1845109
crossref_primary_10_3390_e23121623
crossref_primary_10_1093_biomet_asab045
crossref_primary_10_1007_s00034_025_03175_w
crossref_primary_10_1080_10618600_2023_2170089
crossref_primary_10_1080_10618600_2022_2090367
crossref_primary_10_1088_1361_6560_ac4442
crossref_primary_10_1093_bioadv_vbaf013
crossref_primary_10_1007_s10957_021_01957_1
crossref_primary_10_1109_LSP_2017_2647948
crossref_primary_10_1287_ijoc_2021_0313
crossref_primary_10_1017_S096249291600009X
Cites_doi 10.1109/5.18626
10.1137/070690274
10.1109/TSP.2004.840786
10.1093/biostatistics/kxm013
10.1145/366573.366611
10.1016/j.csda.2008.08.005
10.1214/07-AOAS131
ContentType Journal Article
Copyright Copyright Taylor & Francis 2013
Copyright_xml – notice: Copyright Taylor & Francis 2013
DBID AAYXX
CITATION
DOI 10.1080/10618600.2012.681238
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 260
ExternalDocumentID 10_1080_10618600_2012_681238
681238
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADULT
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFRVT
AFVYC
AGDLA
AGLNM
AGMYJ
AHDZW
AIAGR
AIHAF
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
07G
29K
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ACTCW
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMATQ
AMEWO
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
D-I
DMQIW
DWIFK
FEDTE
GIFXF
HGD
HVGLF
IVXBP
LJTGL
NUSFT
QCRFL
RNS
TAQ
TFMCV
TOXWX
UB9
ID FETCH-LOGICAL-c307t-6eeee956af6ed0b8cc9dcd22fd9ad8f5a0242ecf84e4b1d08c01feeefdeb24e83
IEDL.DBID TFW
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319954000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Sat Nov 29 08:21:32 EST 2025
Tue Nov 18 22:22:19 EST 2025
Mon Oct 20 23:42:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-6eeee956af6ed0b8cc9dcd22fd9ad8f5a0242ecf84e4b1d08c01feeefdeb24e83
PageCount 15
ParticipantIDs crossref_citationtrail_10_1080_10618600_2012_681238
crossref_primary_10_1080_10618600_2012_681238
informaworld_taylorfrancis_310_1080_10618600_2012_681238
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2013
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_9_1
e_1_3_2_8_1
Durbin R. (e_1_3_2_3_1) 1999
e_1_3_2_7_1
e_1_3_2_2_1
e_1_3_2_10_1
Hofling H. (e_1_3_2_5_1) 2009
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_4_1
References_xml – volume-title: flsa: Path Algorithm for the General Fused Lasso Signal Approximator
  year: 2009
  ident: e_1_3_2_5_1
– volume-title: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
  year: 1999
  ident: e_1_3_2_3_1
– ident: e_1_3_2_9_1
  doi: 10.1109/5.18626
– ident: e_1_3_2_7_1
  doi: 10.1137/070690274
– ident: e_1_3_2_8_1
  doi: 10.1109/TSP.2004.840786
– ident: e_1_3_2_11_1
  doi: 10.1093/biostatistics/kxm013
– ident: e_1_3_2_2_1
  doi: 10.1145/366573.366611
– ident: e_1_3_2_6_1
– ident: e_1_3_2_10_1
  doi: 10.1016/j.csda.2008.08.005
– ident: e_1_3_2_4_1
  doi: 10.1214/07-AOAS131
SSID ssj0001697
Score 2.2939625
Snippet We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 246
SubjectTerms Optimization
Signal processing
Total variation denoising
Viterbi
Title A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2012.681238
Volume 22
WOSCitedRecordID wos000319954000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8M8YAHP1AjfqUHr9V2K9AdibpwQEIiRm5L1w80gWFg-Pf7um4EDmqiOy77Lc17bX99zXu_h9AN70TKaC2ITdOUwAyxJGWaEsFcHluLAsUVkvn9zmAgxuNouFHF79IqXQxtvVBEsVe7xS3TZZURd-eiGAFE7RKzglsnoBW6al9gfrcyR_HreitmZXcVABCHqGrnvvnJFjdtKZducE588P_RHqL98ryJu36CHKEdkzXQ3tNarHXZQHV34PR6zceo18UPvkk9HvrUrRmQG-5OJ_PFe_42wzBaDGAcr5ZG4z6cvecYxob7mJJnM5mVtUzZCXqJH0f3PVJ2WyAK1nlO2gYeiJakbRtNU6FUpJUOAqsjqYVtScfmRlnBDXfuFIoyCxCrITjnRoSnqJbNM3OGMDWMG2uk5FzyQIWR1ZSmDF5LwWSn00RhZedElVLkriPGNGGlYmlltMQZLfFGayKyRn14KY5fvhebLkzy4grE-n4lSfgT9Pzv0AtUD4qOGe6W5hLV8sXKXKFd9QmOXFwX0_MLHiXgRw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4omogH30Z87sHrarctdHskKsFYCIkYuTXtPtAEioHi73e2DwIHNTH22PRrJrOPb2Yz-w3Atev5QknJqY7jmOIM0TRm0qKcmTq2uoUUl0nmB163ywcDv1dUE86KskqTQ-tcKCLbq83iNofRZUncrUljODK1qcyyb4yClsPXYaOOVGvk8_ut18VmzIr-KoigBlLenvvmLyvstKJdusQ6rd1_sHcPdoqQkzTzObIPayo5gO3OQq91dgBVE3Pmks2H0G6S-7xPPenl1Vtj5DfSHA0n0_f0bUzQXIJg0prPlCQBht8TgsaRgFj0WQ3HxXWm5AheWg_9uzYtGi5QgUs9pQ2FDyZMkW4oacVcCF8Kadta-pHkuh4ZQldCc1e5ZkS5sJhGiJaYn7uKO8dQSSaJOgFiKeYqraLIdSPXFo6vpWXFDF9HnEWeVwOndHQoCjVy0xRjFLJCtLR0WmicFuZOqwFdoD5yNY5fvufLYxim2SmIzluWhM5P0NO_Q69gq93vBGHw2H06g6qdNdAwhzbnUEmnc3UBm-ITB3V6mc3VL2Yx5HE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oGoMHH6gRn3vwutoXdHskYoOxEhIxcmvafaAJFALF3-9sHwQOaqI9Nv2azczszsxm5huAG8f1uBSCURXHMUULUTQ2hUGZqevYGga6uIwyP3C7XTYYeL2VLn5dVqlzaJUTRWRntd7cU6HKirg7ncUwdNS6MMu61QRaNtuELYycm9rG-_7b8iw2i_EqiKAaUjbPffOXNee0Rl264nT8_f8v9wD2ioCTtHILOYQNmdRg93nJ1jqvQVVHnDlh8xF0WqSdT6knvbx2a4zejbRGw8nsI30fE1wtQTDxF3MpSIDB94Tg2khADPoih-OimSk5hlf_oX_focW4Bcpxo6e0KfHBdClSTSmMmHHuCS4sSwkvEkw1Iu3OJVfMkY7WJ-OGqRCiBGbnjmT2CVSSSSJPgRjSdKSSUeQ4kWNx21PCMGITX0fMjFy3DnYp55AXXOR6JMYoNAvK0lJooRZamAutDnSJmuZcHL98z1ZVGKbZHYjKB5aE9k_Qs79Dr2Gn1_bD4LH7dA5VK5ueoW9sLqCSzhbyErb5J-p0dpVZ6hfDyOMj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Programming+Algorithm+for+the+Fused+Lasso+and+L+0-Segmentation&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Johnson%2C+Nicholas+A.&rft.date=2013&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=22&rft.issue=2&rft.spage=246&rft.epage=260&rft_id=info:doi/10.1080%2F10618600.2012.681238&rft.externalDocID=681238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon