A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation
We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in the worst case. A similar approach is developed for the task of least squares segmentation, and simulations indicate substantial performance...
Saved in:
| Published in: | Journal of computational and graphical statistics Vol. 22; no. 2; pp. 246 - 260 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
2013
|
| Subjects: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in the worst case. A similar approach is developed for the task of least squares segmentation, and simulations indicate substantial performance improvement over existing algorithms. Examples of R and C implementations are provided in the online Supplementary materials, posted on the journal web site. |
|---|---|
| AbstractList | We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in the worst case. A similar approach is developed for the task of least squares segmentation, and simulations indicate substantial performance improvement over existing algorithms. Examples of R and C implementations are provided in the online Supplementary materials, posted on the journal web site. |
| Author | Johnson, Nicholas A. |
| Author_xml | – sequence: 1 givenname: Nicholas A. surname: Johnson fullname: Johnson, Nicholas A. organization: Department of Statistics, Stanford University |
| BookMark | eNqFkMtKAzEUhoNUsK2-gYu8wNSTzC3jRkq1VigoqOuQ5jKNzCSSRKRv75TRjQs9m3MW__dz-GZo4rzTCF0SWBBgcEWgIqwCWFAgdFExQnN2gqakzOuM1qScDPcQyY6ZMzSL8Q0ASNXUU7RZ4tuDE72V-Cn4Noi-t67Fy671waZ9j40POO01Xn9ErfBWxOixcMOFIXvWba9dEsl6d45Ojeiivvjec_S6vntZbbLt4_3DarnNZA51yio9TFNWwlRawY5J2SipKDWqEYqZUgAtqJaGFbrYEQVMAjEDYpTe0UKzfI6ux14ZfIxBGy7t-EEKwnacAD864T9O-NEJH50McPELfg-2F-HwH3YzYtYNOnrx6UOneBKHzgcThJM28vzPhi_k53r3 |
| CitedBy_id | crossref_primary_10_1080_01621459_2016_1276461 crossref_primary_10_1016_j_jspi_2024_106221 crossref_primary_10_1093_jrsssc_qlae040 crossref_primary_10_1080_10618600_2015_1008638 crossref_primary_10_1137_15M1010257 crossref_primary_10_1093_biostatistics_kxw033 crossref_primary_10_1007_s12532_022_00229_x crossref_primary_10_5802_smai_jcm_3 crossref_primary_10_1109_TIM_2019_2938639 crossref_primary_10_3390_computers13040093 crossref_primary_10_1093_biomet_asz071 crossref_primary_10_1080_10618600_2024_2402895 crossref_primary_10_3390_math8071141 crossref_primary_10_1093_biostatistics_kxx038 crossref_primary_10_1002_sim_8100 crossref_primary_10_1111_rssb_12130 crossref_primary_10_1007_s10107_021_01633_2 crossref_primary_10_1080_10618600_2019_1660178 crossref_primary_10_1109_LSP_2018_2867800 crossref_primary_10_1109_TMI_2017_2760104 crossref_primary_10_1137_21M142770X crossref_primary_10_1137_20M1387869 crossref_primary_10_1080_01621459_2017_1385466 crossref_primary_10_1177_1471082X14553366 crossref_primary_10_1016_j_csda_2022_107581 crossref_primary_10_1080_10618600_2022_2097246 crossref_primary_10_1093_biomet_asaf018 crossref_primary_10_1137_17M1113436 crossref_primary_10_1002_qre_2066 crossref_primary_10_1080_10618600_2015_1054033 crossref_primary_10_1080_01621459_2017_1319838 crossref_primary_10_1080_10618600_2015_1073155 crossref_primary_10_1109_TAC_2019_2890888 crossref_primary_10_1137_23M1556915 crossref_primary_10_1007_s10589_024_00556_w crossref_primary_10_1214_22_STS856 crossref_primary_10_1137_17M1136390 crossref_primary_10_1080_10691898_2020_1845109 crossref_primary_10_3390_e23121623 crossref_primary_10_1093_biomet_asab045 crossref_primary_10_1007_s00034_025_03175_w crossref_primary_10_1080_10618600_2023_2170089 crossref_primary_10_1080_10618600_2022_2090367 crossref_primary_10_1088_1361_6560_ac4442 crossref_primary_10_1093_bioadv_vbaf013 crossref_primary_10_1007_s10957_021_01957_1 crossref_primary_10_1109_LSP_2017_2647948 crossref_primary_10_1287_ijoc_2021_0313 crossref_primary_10_1017_S096249291600009X |
| Cites_doi | 10.1109/5.18626 10.1137/070690274 10.1109/TSP.2004.840786 10.1093/biostatistics/kxm013 10.1145/366573.366611 10.1016/j.csda.2008.08.005 10.1214/07-AOAS131 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis 2013 |
| Copyright_xml | – notice: Copyright Taylor & Francis 2013 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/10618600.2012.681238 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 260 |
| ExternalDocumentID | 10_1080_10618600_2012_681238 681238 |
| Genre | Research Article |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACDIW ACGFO ACGFS ACHJO ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADULT ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFRVT AFVYC AGDLA AGLNM AGMYJ AHDZW AIAGR AIHAF AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ 07G 29K AAIKQ AAKBW AAYXX ACAGQ ACGEE ACTCW AEUMN AGCQS AGLEN AGROQ AHMOU ALCKM AMATQ AMEWO AMXXU BCCOT BPLKW C06 CITATION CRFIH D-I DMQIW DWIFK FEDTE GIFXF HGD HVGLF IVXBP LJTGL NUSFT QCRFL RNS TAQ TFMCV TOXWX UB9 |
| ID | FETCH-LOGICAL-c307t-6eeee956af6ed0b8cc9dcd22fd9ad8f5a0242ecf84e4b1d08c01feeefdeb24e83 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319954000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Sat Nov 29 08:21:32 EST 2025 Tue Nov 18 22:22:19 EST 2025 Mon Oct 20 23:42:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c307t-6eeee956af6ed0b8cc9dcd22fd9ad8f5a0242ecf84e4b1d08c01feeefdeb24e83 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1080_10618600_2012_681238 crossref_primary_10_1080_10618600_2012_681238 informaworld_taylorfrancis_310_1080_10618600_2012_681238 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-00-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013-00-00 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2013 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_2_9_1 e_1_3_2_8_1 Durbin R. (e_1_3_2_3_1) 1999 e_1_3_2_7_1 e_1_3_2_2_1 e_1_3_2_10_1 Hofling H. (e_1_3_2_5_1) 2009 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_4_1 |
| References_xml | – volume-title: flsa: Path Algorithm for the General Fused Lasso Signal Approximator year: 2009 ident: e_1_3_2_5_1 – volume-title: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids year: 1999 ident: e_1_3_2_3_1 – ident: e_1_3_2_9_1 doi: 10.1109/5.18626 – ident: e_1_3_2_7_1 doi: 10.1137/070690274 – ident: e_1_3_2_8_1 doi: 10.1109/TSP.2004.840786 – ident: e_1_3_2_11_1 doi: 10.1093/biostatistics/kxm013 – ident: e_1_3_2_2_1 doi: 10.1145/366573.366611 – ident: e_1_3_2_6_1 – ident: e_1_3_2_10_1 doi: 10.1016/j.csda.2008.08.005 – ident: e_1_3_2_4_1 doi: 10.1214/07-AOAS131 |
| SSID | ssj0001697 |
| Score | 2.2939625 |
| Snippet | We propose a dynamic programming algorithm for the one-dimensional Fused Lasso Signal Approximator (FLSA). The proposed algorithm has a linear running time in... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 246 |
| SubjectTerms | Optimization Signal processing Total variation denoising Viterbi |
| Title | A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2012.681238 |
| Volume | 22 |
| WOSCitedRecordID | wos000319954000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8M8YAHP1AjfqUHr9V2K9AdibpwQEIiRm5L1w80gWFg-Pf7um4EDmqiOy77Lc17bX99zXu_h9AN70TKaC2ITdOUwAyxJGWaEsFcHluLAsUVkvn9zmAgxuNouFHF79IqXQxtvVBEsVe7xS3TZZURd-eiGAFE7RKzglsnoBW6al9gfrcyR_HreitmZXcVABCHqGrnvvnJFjdtKZducE588P_RHqL98ryJu36CHKEdkzXQ3tNarHXZQHV34PR6zceo18UPvkk9HvrUrRmQG-5OJ_PFe_42wzBaDGAcr5ZG4z6cvecYxob7mJJnM5mVtUzZCXqJH0f3PVJ2WyAK1nlO2gYeiJakbRtNU6FUpJUOAqsjqYVtScfmRlnBDXfuFIoyCxCrITjnRoSnqJbNM3OGMDWMG2uk5FzyQIWR1ZSmDF5LwWSn00RhZedElVLkriPGNGGlYmlltMQZLfFGayKyRn14KY5fvhebLkzy4grE-n4lSfgT9Pzv0AtUD4qOGe6W5hLV8sXKXKFd9QmOXFwX0_MLHiXgRw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4omogH30Z87sHrarctdHskKsFYCIkYuTXtPtAEioHi73e2DwIHNTH22PRrJrOPb2Yz-w3Atev5QknJqY7jmOIM0TRm0qKcmTq2uoUUl0nmB163ywcDv1dUE86KskqTQ-tcKCLbq83iNofRZUncrUljODK1qcyyb4yClsPXYaOOVGvk8_ut18VmzIr-KoigBlLenvvmLyvstKJdusQ6rd1_sHcPdoqQkzTzObIPayo5gO3OQq91dgBVE3Pmks2H0G6S-7xPPenl1Vtj5DfSHA0n0_f0bUzQXIJg0prPlCQBht8TgsaRgFj0WQ3HxXWm5AheWg_9uzYtGi5QgUs9pQ2FDyZMkW4oacVcCF8Kadta-pHkuh4ZQldCc1e5ZkS5sJhGiJaYn7uKO8dQSSaJOgFiKeYqraLIdSPXFo6vpWXFDF9HnEWeVwOndHQoCjVy0xRjFLJCtLR0WmicFuZOqwFdoD5yNY5fvufLYxim2SmIzluWhM5P0NO_Q69gq93vBGHw2H06g6qdNdAwhzbnUEmnc3UBm-ITB3V6mc3VL2Yx5HE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oGoMHH6gRn3vwutoXdHskYoOxEhIxcmvafaAJFALF3-9sHwQOaqI9Nv2azczszsxm5huAG8f1uBSCURXHMUULUTQ2hUGZqevYGga6uIwyP3C7XTYYeL2VLn5dVqlzaJUTRWRntd7cU6HKirg7ncUwdNS6MMu61QRaNtuELYycm9rG-_7b8iw2i_EqiKAaUjbPffOXNee0Rl264nT8_f8v9wD2ioCTtHILOYQNmdRg93nJ1jqvQVVHnDlh8xF0WqSdT6knvbx2a4zejbRGw8nsI30fE1wtQTDxF3MpSIDB94Tg2khADPoih-OimSk5hlf_oX_focW4Bcpxo6e0KfHBdClSTSmMmHHuCS4sSwkvEkw1Iu3OJVfMkY7WJ-OGqRCiBGbnjmT2CVSSSSJPgRjSdKSSUeQ4kWNx21PCMGITX0fMjFy3DnYp55AXXOR6JMYoNAvK0lJooRZamAutDnSJmuZcHL98z1ZVGKbZHYjKB5aE9k_Qs79Dr2Gn1_bD4LH7dA5VK5ueoW9sLqCSzhbyErb5J-p0dpVZ6hfDyOMj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Programming+Algorithm+for+the+Fused+Lasso+and+L+0-Segmentation&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Johnson%2C+Nicholas+A.&rft.date=2013&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=22&rft.issue=2&rft.spage=246&rft.epage=260&rft_id=info:doi/10.1080%2F10618600.2012.681238&rft.externalDocID=681238 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |