Balancing sparse matrices for computing eigenvalues

Applying a permuted diagonal similarity transform DPAP T D −1 to a matrix A before calculating its eigenvalues can improve the speed and accuracy with which the eigenvalues are computed. This is often called balancing. This paper describes several balancing algorithms for sparse matrices and compare...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 309; číslo 1; s. 261 - 287
Hlavní autoři: Chen, Tzu-Yi, Demmel, James W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.04.2000
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Applying a permuted diagonal similarity transform DPAP T D −1 to a matrix A before calculating its eigenvalues can improve the speed and accuracy with which the eigenvalues are computed. This is often called balancing. This paper describes several balancing algorithms for sparse matrices and compares them against each other and the traditional dense algorithm. We first discuss our sparse implementation of the dense algorithm; our code is faster than the dense algorithm when the density of the matrix is no more than approximately .5, and is much faster for large, sparse matrices. We next describe a set of randomized balancing algorithms for matrices that are not given explicitly, i.e. given a vector x, we can compute only Ax and perhaps A T x. We motivate these Krylov-based algorithms using Perron–Frobenius theory. Results are given comparing the Krylov-based algorithms to each other and to the sparse and dense direct balancing algorithms, looking at norm reduction, running times, and the accuracy of eigenvalues computed after a matrix is balanced. We conclude that sparse balancing algorithms are efficient preconditioners for eigensolvers.
AbstractList Applying a permuted diagonal similarity transform DPAP T D −1 to a matrix A before calculating its eigenvalues can improve the speed and accuracy with which the eigenvalues are computed. This is often called balancing. This paper describes several balancing algorithms for sparse matrices and compares them against each other and the traditional dense algorithm. We first discuss our sparse implementation of the dense algorithm; our code is faster than the dense algorithm when the density of the matrix is no more than approximately .5, and is much faster for large, sparse matrices. We next describe a set of randomized balancing algorithms for matrices that are not given explicitly, i.e. given a vector x, we can compute only Ax and perhaps A T x. We motivate these Krylov-based algorithms using Perron–Frobenius theory. Results are given comparing the Krylov-based algorithms to each other and to the sparse and dense direct balancing algorithms, looking at norm reduction, running times, and the accuracy of eigenvalues computed after a matrix is balanced. We conclude that sparse balancing algorithms are efficient preconditioners for eigensolvers.
Author Demmel, James W.
Chen, Tzu-Yi
Author_xml – sequence: 1
  givenname: Tzu-Yi
  surname: Chen
  fullname: Chen, Tzu-Yi
  email: tzuyi@cs.berkeley.edu
  organization: Computer Science Division, University of California, Berkeley, CA 94720, USA
– sequence: 2
  givenname: James W.
  surname: Demmel
  fullname: Demmel, James W.
  email: demmel@cs.berkeley.edu
  organization: Computer Science Division and Mathematics Department, University of California, Berkeley, CA 94720, USA
BookMark eNqFj01LAzEURYNUsK3-BGGWuhh9mUwyGVyIFr-g4EJdh8yblxKZzpQkLfjvbau4cNPVXdx7LpwJG_VDT4ydc7jiwNX1G0BR5qKq5QXAJQDwMtdHbMx1JXKupRqx8d_khE1i_NyOygqKMRP3trM9-n6RxZUNkbKlTcEjxcwNIcNhuVqnXUt-Qf3GdmuKp-zY2S7S2W9O2cfjw_vsOZ-_Pr3M7uY5CqhSrqpWU6vrQkmpVV2LRiKqulGtcLqWtcQWBW90KwUVzmkslXPONsohgRUkpuzm5xfDEGMgZ9Anm_zQp2B9ZziYnb_Z-5udnAEwe3-jt7T8R6-CX9rwdZC7_eFoq7bxFExETz1S6wNhMu3gDzx8A4rwdT4
CitedBy_id crossref_primary_10_1137_070704769
crossref_primary_10_1109_JSTARS_2016_2553520
crossref_primary_10_1002_cpe_6236
crossref_primary_10_1137_16M1078987
crossref_primary_10_1007_s10107_018_1282_4
crossref_primary_10_1145_2988227
crossref_primary_10_1007_s10107_022_01825_4
crossref_primary_10_1007_s11075_014_9947_4
crossref_primary_10_1080_00207160_2010_489639
crossref_primary_10_1109_TAC_2016_2593895
crossref_primary_10_1109_TPDS_2015_2453970
crossref_primary_10_1007_s00211_011_0370_7
crossref_primary_10_1137_24M1650375
crossref_primary_10_1137_100787921
crossref_primary_10_1137_100788860
crossref_primary_10_1016_j_laa_2004_09_023
Cites_doi 10.1007/BFb0121080
10.1287/moor.16.1.208
10.1137/1.9781611971538
10.1287/opre.38.3.439
10.1093/comjnl/14.3.280
10.1145/62038.62043
10.1007/BF02242378
10.1137/0201010
10.1137/S0895479895293247
10.1145/355780.355785
10.1016/B978-044482107-2/50003-0
10.1007/BF02165404
10.1145/321043.321048
10.1090/S0002-9939-1971-0281731-5
ContentType Journal Article
Copyright 2000 Elsevier Science Inc.
Copyright_xml – notice: 2000 Elsevier Science Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0024-3795(00)00014-8
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 287
ExternalDocumentID 10_1016_S0024_3795_00_00014_8
S0024379500000148
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-67d8ed89265586993b5cc69b6d3f89595cdc31b8d53e2ff8c46fffab6fce0a3e3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000086479400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Sat Nov 29 06:00:11 EST 2025
Tue Nov 18 21:57:25 EST 2025
Fri Feb 23 02:18:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Accurate eigenvalues
65F15
Balancing
Norm minimization
65F35
Sparse matrix algorithms
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-67d8ed89265586993b5cc69b6d3f89595cdc31b8d53e2ff8c46fffab6fce0a3e3
OpenAccessLink https://dx.doi.org/10.1016/S0024-3795(00)00014-8
PageCount 27
ParticipantIDs crossref_citationtrail_10_1016_S0024_3795_00_00014_8
crossref_primary_10_1016_S0024_3795_00_00014_8
elsevier_sciencedirect_doi_10_1016_S0024_3795_00_00014_8
PublicationCentury 2000
PublicationDate 2000-04-15
PublicationDateYYYYMMDD 2000-04-15
PublicationDate_xml – month: 04
  year: 2000
  text: 2000-04-15
  day: 15
PublicationDecade 2000
PublicationTitle Linear algebra and its applications
PublicationYear 2000
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References D.C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, in Matlab 5.0 distribution, 1995
Parlett, Reinsch (NEWBIB14) 1969; 13
Osborne (NEWBIB13) 1960; 7
R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962
R.B. Lehoucq, J.A. Scott, An evaluation of software for computing eigenvalues of sparse non-symmetric matrices, Technical Report MCS-P547-1195, Argonne National Laboratory, 1996
Hartfiel (NEWBIB11) 1971; 30
Duff, Reid (NEWBIB8) 1978; 4
R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994
T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990
Eaves, Hoffman, Rothblum, Schneider (NEWBIB9) 1985; 25
Ström (NEWBIB18) 1972; 10
M.H. DeGroot, Probability and Statistics, Addison-Wesley, Reading, MA, 1975
Duff, Grimes, Lewis (NEWBIB7) 1989; 15
Tarjan (NEWBIB19) 1972; 1
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User's Guide, second ed., SIAM, Philadelphia, PA, 1995
A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974
Z. Bai, D. Day, J. Demmel, J. Dongarra, A test matrix collection for non-Hermitian eigenvalue problems, Technical Report CS-97-355, University of Tennessee, 1997
Grad (NEWBIB10) 1971; 14
Hershkowitz, Huang, Schneider, Weinberger (NEWBIB21) 1997; 18
Schneider, Zenios (NEWBIB16) 1990; 38
Schneider, Schneider (NEWBIB15) 1991; 16
Osborne (10.1016/S0024-3795(00)00014-8_NEWBIB13) 1960; 7
Eaves (10.1016/S0024-3795(00)00014-8_NEWBIB9) 1985; 25
Hartfiel (10.1016/S0024-3795(00)00014-8_NEWBIB11) 1971; 30
Schneider (10.1016/S0024-3795(00)00014-8_NEWBIB16) 1990; 38
Ström (10.1016/S0024-3795(00)00014-8_NEWBIB18) 1972; 10
10.1016/S0024-3795(00)00014-8_NEWBIB5
Schneider (10.1016/S0024-3795(00)00014-8_NEWBIB15) 1991; 16
10.1016/S0024-3795(00)00014-8_NEWBIB20
10.1016/S0024-3795(00)00014-8_NEWBIB6
10.1016/S0024-3795(00)00014-8_NEWBIB1
10.1016/S0024-3795(00)00014-8_NEWBIB2
Grad (10.1016/S0024-3795(00)00014-8_NEWBIB10) 1971; 14
10.1016/S0024-3795(00)00014-8_NEWBIB3
10.1016/S0024-3795(00)00014-8_NEWBIB4
10.1016/S0024-3795(00)00014-8_NEWBIB17
Duff (10.1016/S0024-3795(00)00014-8_NEWBIB8) 1978; 4
10.1016/S0024-3795(00)00014-8_NEWBIB12
Hershkowitz (10.1016/S0024-3795(00)00014-8_NEWBIB21) 1997; 18
Tarjan (10.1016/S0024-3795(00)00014-8_NEWBIB19) 1972; 1
Duff (10.1016/S0024-3795(00)00014-8_NEWBIB7) 1989; 15
Parlett (10.1016/S0024-3795(00)00014-8_NEWBIB14) 1969; 13
References_xml – volume: 15
  start-page: 1
  year: 1989
  end-page: 14
  ident: NEWBIB7
  article-title: Sparse matrix test problems
  publication-title: ACM Trans. Math. Softw.
– volume: 30
  start-page: 419
  year: 1971
  end-page: 425
  ident: NEWBIB11
  article-title: Concerning diagonal similarity of irreducible matrices
  publication-title: Proc. AMS
– reference: D.C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, in Matlab 5.0 distribution, 1995
– reference: R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962
– reference: Z. Bai, D. Day, J. Demmel, J. Dongarra, A test matrix collection for non-Hermitian eigenvalue problems, Technical Report CS-97-355, University of Tennessee, 1997
– reference: T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990
– volume: 13
  start-page: 293
  year: 1969
  end-page: 304
  ident: NEWBIB14
  article-title: Balancing a matrix for calculation of eigenvalues and eigenvectors
  publication-title: Numer. Math.
– volume: 1
  start-page: 146
  year: 1972
  end-page: 160
  ident: NEWBIB19
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM J. Comput.
– volume: 10
  start-page: 1
  year: 1972
  end-page: 7
  ident: NEWBIB18
  article-title: Minimization of norms and logarithmic norms by diagonal similarities
  publication-title: Computing
– reference: R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994
– volume: 25
  start-page: 124
  year: 1985
  end-page: 141
  ident: NEWBIB9
  article-title: Line-sum-symmetric scalings of square non-negative matrices
  publication-title: Math. Programm. Study
– volume: 38
  start-page: 439
  year: 1990
  end-page: 455
  ident: NEWBIB16
  article-title: A comparative study of algorithms for matrix balancing
  publication-title: Oper. Res.
– reference: M.H. DeGroot, Probability and Statistics, Addison-Wesley, Reading, MA, 1975
– volume: 7
  start-page: 338
  year: 1960
  end-page: 345
  ident: NEWBIB13
  article-title: On pre-conditioning of matrices
  publication-title: J. Assoc. Comput. Mach.
– reference: A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974
– volume: 16
  start-page: 208
  year: 1991
  end-page: 222
  ident: NEWBIB15
  article-title: Max-balancing weighted directed graphs and matrix scaling
  publication-title: Math. Oper. Res.
– volume: 4
  start-page: 137
  year: 1978
  end-page: 147
  ident: NEWBIB8
  article-title: An implementation of tarjan's algorithm for the block triangularization of a matrix
  publication-title: ACM Trans. Math. Softw.
– volume: 14
  start-page: 280
  year: 1971
  end-page: 284
  ident: NEWBIB10
  article-title: Matrix balancing
  publication-title: Comput. J.
– reference: R.B. Lehoucq, J.A. Scott, An evaluation of software for computing eigenvalues of sparse non-symmetric matrices, Technical Report MCS-P547-1195, Argonne National Laboratory, 1996
– volume: 18
  start-page: 249
  year: 1997
  end-page: 257
  ident: NEWBIB21
  article-title: Approximability of weighted norms of the structured and volumetric singular values of a class of non-negative matrices
  publication-title: SIAM J. Mat. Anal. Appl.
– reference: E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User's Guide, second ed., SIAM, Philadelphia, PA, 1995
– volume: 25
  start-page: 124
  year: 1985
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB9
  article-title: Line-sum-symmetric scalings of square non-negative matrices
  publication-title: Math. Programm. Study
  doi: 10.1007/BFb0121080
– volume: 16
  start-page: 208
  issue: 1
  year: 1991
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB15
  article-title: Max-balancing weighted directed graphs and matrix scaling
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.16.1.208
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB4
  doi: 10.1137/1.9781611971538
– volume: 38
  start-page: 439
  issue: 3
  year: 1990
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB16
  article-title: A comparative study of algorithms for matrix balancing
  publication-title: Oper. Res.
  doi: 10.1287/opre.38.3.439
– volume: 14
  start-page: 280
  year: 1971
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB10
  article-title: Matrix balancing
  publication-title: Comput. J.
  doi: 10.1093/comjnl/14.3.280
– volume: 15
  start-page: 1
  year: 1989
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB7
  article-title: Sparse matrix test problems
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/62038.62043
– volume: 10
  start-page: 1
  year: 1972
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB18
  article-title: Minimization of norms and logarithmic norms by diagonal similarities
  publication-title: Computing
  doi: 10.1007/BF02242378
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB20
– volume: 1
  start-page: 146
  issue: 2
  year: 1972
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB19
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM J. Comput.
  doi: 10.1137/0201010
– volume: 18
  start-page: 249
  year: 1997
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB21
  article-title: Approximability of weighted norms of the structured and volumetric singular values of a class of non-negative matrices
  publication-title: SIAM J. Mat. Anal. Appl.
  doi: 10.1137/S0895479895293247
– volume: 4
  start-page: 137
  issue: 2
  year: 1978
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB8
  article-title: An implementation of tarjan's algorithm for the block triangularization of a matrix
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355780.355785
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB17
  doi: 10.1016/B978-044482107-2/50003-0
– volume: 13
  start-page: 293
  year: 1969
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB14
  article-title: Balancing a matrix for calculation of eigenvalues and eigenvectors
  publication-title: Numer. Math.
  doi: 10.1007/BF02165404
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB12
– volume: 7
  start-page: 338
  year: 1960
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB13
  article-title: On pre-conditioning of matrices
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/321043.321048
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB5
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB6
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB1
– volume: 30
  start-page: 419
  year: 1971
  ident: 10.1016/S0024-3795(00)00014-8_NEWBIB11
  article-title: Concerning diagonal similarity of irreducible matrices
  publication-title: Proc. AMS
  doi: 10.1090/S0002-9939-1971-0281731-5
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB2
– ident: 10.1016/S0024-3795(00)00014-8_NEWBIB3
SSID ssj0004702
Score 1.6965836
Snippet Applying a permuted diagonal similarity transform DPAP T D −1 to a matrix A before calculating its eigenvalues can improve the speed and accuracy with which...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 261
SubjectTerms Accurate eigenvalues
Balancing
Norm minimization
Sparse matrix algorithms
Title Balancing sparse matrices for computing eigenvalues
URI https://dx.doi.org/10.1016/S0024-3795(00)00014-8
Volume 309
WOSCitedRecordID wos000086479400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbNbg_NIfRJ82jxIYeWRVutZVnScVO2tCVdCrul25PxyhIEGmfZRwj59Rk9LG9I6QtyMcYgC2vGo5nRN98gdDywPmkuKWZlZVM3vMTCEIOp0BWjnNO5djyzp3w8FrOZ_BpqT1aunQCva3F1JRf3Kmp4BsK2pbP_IO74UngA9yB0uILY4fpXgj-xYEXl0gQLiFotQNWy8GtHvOAg5BsHddaWh9NyfQcUYVMUDW5nuezZ9h8QSMezhe2D7hYS4G3W9HqDf5xFl1ifn_ujf4fA7X3v38osWJgn9rWVPt3VlLzcQmTaTR2sku-M2dfeagpOMWz8-bZZpUTe0Z9gJD39ethvU7_h3jHlPqswifOBw237VksX1WHR7l8RVTgJ9IrMRT4Q5-2gbsqZFB3UHX4azT63BbOcBBp5_-62tOtdO-EbQt6GyX7ttGw5ItPHaC9EEMnQS_4JeqDrp2j3S6TfXT1DNOpA4nUgaXQgAR1Iog4kWzrwHH37MJq-_4hDdwyswC6vcc4r-J-ETHPGRA5u5pwplct5XlEjJJNMVYoO5gJ-OZ0aI1SWG2NKW9ylSUk1fYE69UWtX6KEqUFmKi1SLUk2UERIUlomSq6pBueF7qOs-fxCBep428HkZ9FiBGHVCrtqBSEO0JAVYh_147CF50750wDRrG0RHEDv2BWgFL8fevD_Qw_Ro1b7j1BnvdzoV-ihulyfrZavg-rcAOFud30
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+sparse+matrices+for+computing+eigenvalues&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Chen%2C+Tzu-Yi&rft.au=Demmel%2C+James+W.&rft.date=2000-04-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=309&rft.issue=1&rft.spage=261&rft.epage=287&rft_id=info:doi/10.1016%2FS0024-3795%2800%2900014-8&rft.externalDocID=S0024379500000148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon