Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs

For many years the methods of choice for the numerical solution of stiff initial value problems and certain classes of differential algebraic equations have been the well-known backward differentiation formulae (BDF). More recently, however, new classes of formulae which can offer some important adv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 125; číslo 1; s. 117 - 130
Hlavní autor: Cash, J.R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.12.2000
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For many years the methods of choice for the numerical solution of stiff initial value problems and certain classes of differential algebraic equations have been the well-known backward differentiation formulae (BDF). More recently, however, new classes of formulae which can offer some important advantages over BDF have emerged. In particular, some recent large-scale independent comparisons have indicated that modified extended backward differentiation formulae (MEBDF) are particularly efficient for general stiff initial value problems and for linearly implicit DAEs with index ⩽3. In the present paper we survey some of the more important theory associated with these formulae, discuss some of the practical applications where they are particularly effective, e.g., in the solution of damped highly oscillatory problems, and describe some significant recent extensions to the applicability of MEBDF codes.
AbstractList For many years the methods of choice for the numerical solution of stiff initial value problems and certain classes of differential algebraic equations have been the well-known backward differentiation formulae (BDF). More recently, however, new classes of formulae which can offer some important advantages over BDF have emerged. In particular, some recent large-scale independent comparisons have indicated that modified extended backward differentiation formulae (MEBDF) are particularly efficient for general stiff initial value problems and for linearly implicit DAEs with index ⩽3. In the present paper we survey some of the more important theory associated with these formulae, discuss some of the practical applications where they are particularly effective, e.g., in the solution of damped highly oscillatory problems, and describe some significant recent extensions to the applicability of MEBDF codes.
Author Cash, J.R.
Author_xml – sequence: 1
  givenname: J.R.
  surname: Cash
  fullname: Cash, J.R.
  email: j.cash@ic.ac.uk
  organization: Department of Mathematics, Imperial College of Science, South Kensington, London SW7 2BZ, UK
BookMark eNqFkE1LAzEQhoMoWKs_QchRD6uTzW6zxYNIWz9A8WDvIZtMMLpNJEmrnvzrblvx4MXTvMzMMzDPAdn1wSMhxwzOGLDR-RNwIQqoSnECcApQjXhR75ABa8S4YEI0u2Twu7JPDlJ6AYDRmFUD8vUQjLMODcWPjN70oVX69V1FQ_uBxYg-O5Vd8NSGuFh2CteB5mekfrnA6LTqaArdcrMTLE2556jzruc6ulLdEulbDG2Hi9S36eN0lqjyhk6vZumQ7FnVJTz6qUMyv57NJ7fF_ePN3eTqvtAcRC4qy1quBG_a2va5VsxAzUs-FrrkltsGGq4YA664ZQ3UZsRKMI1om6rUNeNDUm_P6hhSimjlW3QLFT8lA7mWKDcS5dqQBJAbibLuuYs_nHZ5YyNH5bp_6cstjf1nK4dRJu3QazQuos7SBPfPhW_1JY6m
CitedBy_id crossref_primary_10_1186_s13662_019_2019_2
crossref_primary_10_1016_j_triboint_2024_109910
crossref_primary_10_1016_j_triboint_2017_09_005
crossref_primary_10_1016_j_triboint_2023_108981
crossref_primary_10_1007_s10910_022_01402_2
crossref_primary_10_1016_j_ijmecsci_2017_09_043
crossref_primary_10_1016_j_triboint_2025_111158
crossref_primary_10_1016_j_ijmecsci_2021_106958
crossref_primary_10_1016_j_triboint_2011_12_013
crossref_primary_10_1177_1468087418810094
crossref_primary_10_1016_j_triboint_2023_108548
crossref_primary_10_1016_j_wear_2025_206272
crossref_primary_10_1007_s40544_020_0433_9
crossref_primary_10_1016_j_triboint_2025_110911
crossref_primary_10_1016_j_triboint_2017_02_026
crossref_primary_10_3390_ma14195836
crossref_primary_10_1007_s10409_011_0417_0
crossref_primary_10_1016_j_ijmecsci_2025_110171
crossref_primary_10_1016_j_cam_2005_03_021
crossref_primary_10_1177_13506501241292501
crossref_primary_10_1002_fld_4679
crossref_primary_10_1016_j_triboint_2024_110059
crossref_primary_10_1016_j_jsv_2022_116909
crossref_primary_10_3390_fluids8110304
crossref_primary_10_1007_s11071_023_08408_8
crossref_primary_10_1111_j_1365_246X_2009_04387_x
crossref_primary_10_1016_j_ijrefrig_2025_07_007
crossref_primary_10_1016_j_ccst_2021_100027
crossref_primary_10_1016_j_jcp_2014_07_028
crossref_primary_10_1007_s11044_024_10050_0
crossref_primary_10_1016_j_engfailanal_2024_109152
crossref_primary_10_1016_j_est_2020_101430
crossref_primary_10_1016_j_ymssp_2018_06_015
crossref_primary_10_1080_10402004_2023_2205461
crossref_primary_10_1109_ACCESS_2021_3058417
crossref_primary_10_1155_2013_567451
crossref_primary_10_1177_1468087419844398
crossref_primary_10_1007_s11227_018_2549_5
crossref_primary_10_1016_j_triboint_2022_108125
crossref_primary_10_1016_j_ijmecsci_2025_110002
crossref_primary_10_1016_j_jcp_2013_05_042
crossref_primary_10_1016_j_triboint_2015_10_034
crossref_primary_10_1177_1468087420951416
crossref_primary_10_1007_s42452_020_2253_y
crossref_primary_10_1016_j_mechmachtheory_2021_104497
crossref_primary_10_1007_s11075_014_9897_x
crossref_primary_10_1016_j_jcp_2019_108989
crossref_primary_10_1016_j_compchemeng_2015_07_002
crossref_primary_10_1016_j_ijepes_2012_08_065
crossref_primary_10_1007_s00466_009_0387_2
crossref_primary_10_1016_j_cam_2004_12_031
crossref_primary_10_1016_j_engfailanal_2025_110160
crossref_primary_10_1016_j_ijmecsci_2021_106899
crossref_primary_10_1007_s10092_011_0038_9
crossref_primary_10_1016_S0898_1221_01_00137_7
crossref_primary_10_1016_j_ymssp_2024_111159
crossref_primary_10_1016_j_matcom_2020_10_012
crossref_primary_10_1016_j_triboint_2018_10_045
crossref_primary_10_1016_j_triboint_2021_106943
crossref_primary_10_1016_j_actaastro_2022_09_003
crossref_primary_10_1016_j_triboint_2021_107124
crossref_primary_10_1007_s11075_023_01709_4
crossref_primary_10_1088_1742_6596_1943_1_012137
crossref_primary_10_1016_j_jocs_2025_102653
crossref_primary_10_1016_j_camwa_2011_04_026
crossref_primary_10_1177_1350650117721433
crossref_primary_10_1063_5_0285419
crossref_primary_10_1007_s40435_014_0076_7
crossref_primary_10_1007_s00466_010_0524_y
crossref_primary_10_1061__ASCE_EM_1943_7889_0001298
crossref_primary_10_1007_s10092_014_0121_0
crossref_primary_10_1080_19942060_2022_2146754
crossref_primary_10_1007_s11075_015_0027_1
crossref_primary_10_3390_math11102360
Cites_doi 10.1145/146847.146922
10.1007/BF01932994
10.1016/0898-1221(83)90122-0
10.1145/1218052.1218054
10.1145/235815.235818
10.6028/jres.071B.018
10.1073/pnas.38.3.235
10.1016/0898-1221(94)00092-1
10.1016/S0898-1221(98)00108-4
10.1007/BF01932291
10.1007/BF01963532
10.1016/0377-0427(85)90008-1
10.1145/356068.356073
10.1007/BF02510263
ContentType Journal Article
Copyright 2000 Elsevier Science B.V.
Copyright_xml – notice: 2000 Elsevier Science B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0377-0427(00)00463-5
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 130
ExternalDocumentID 10_1016_S0377_0427_00_00463_5
S0377042700004635
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-4f1b3a738b5f4f15a1d0532397c23f3f8083a1103a3f1805d6120d87b842c513
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000165930900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Tue Nov 18 21:32:39 EST 2025
Sat Nov 29 06:06:48 EST 2025
Fri Feb 23 02:18:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stiff differential equations
MEBDF
Differential algebraic equations
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-4f1b3a738b5f4f15a1d0532397c23f3f8083a1103a3f1805d6120d87b842c513
OpenAccessLink https://dx.doi.org/10.1016/S0377-0427(00)00463-5
PageCount 14
ParticipantIDs crossref_primary_10_1016_S0377_0427_00_00463_5
crossref_citationtrail_10_1016_S0377_0427_00_00463_5
elsevier_sciencedirect_doi_10_1016_S0377_0427_00_00463_5
PublicationCentury 2000
PublicationDate 2000-12-15
PublicationDateYYYYMMDD 2000-12-15
PublicationDate_xml – month: 12
  year: 2000
  text: 2000-12-15
  day: 15
PublicationDecade 2000
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2000
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dahlquist (BIB13) 1963; 3
P. Vander Houwen, private communication, 1999.
A.C. Hindmarsh, LSODE and LSODI, two initial value ordinary differential equation solvers ACM SIGNUM Newslett. 15 (1980).
G. Psihoyios, Advanced step-point methods for the solution of initial value problems, Ph.D. Thesis, University of London, Imperial College, 1995.
http://www.ma.ic.ac.uk/ jcash/IVP_ Software/readme.html.
W.M. Lioen, J.J.B. de Swart, Test set for initial value problem solvers, Report MAS-R9832, CWI, Amsterdam, 1998 and http://www.cwi.nl/cwi/projects/IVPtestset.
Psihoyios, Cash (BIB26) 1998; 38
Brenan, Campbell, Petzold (BIB1) 1989
Enright, Hull, Lindberg (BIB15) 1975; 15
Hairer, Lubich, Roche (BIB19) 1989
Cash (BIB9) 1979
Cash (BIB8) 1978; 32
Butcher, Cash, Diamantakis (BIB4) 1996; 22
Gaffney (BIB16) 1984; 10
Cash (BIB5) 1983; 9
Lambert (BIB21) 1973
Norsett, Wolfbrandt (BIB25) 1977; 17
Butcher (BIB3) 1987
Cash (BIB11) 1998; 36
Brugnano, Trigiante (BIB2) 1997
J.C.P. Miller, Bessel Functions, Part II, Math. Tables, Vol. X, British Association for the Advancement of Sciences, CUP, 1952.
Hairer, Wanner (BIB18) 1996
Cash, Considine (BIB6) 1992; 18
Gear, Gupta, Leimkuhler (BIB17) 1985; 12
Olver (BIB22) 1967; 71B
Cash (BIB10) 1994; 28
Curtiss, Hirschfelder (BIB12) 1952; 38
Lambert (10.1016/S0377-0427(00)00463-5_BIB21) 1973
Butcher (10.1016/S0377-0427(00)00463-5_BIB4) 1996; 22
Cash (10.1016/S0377-0427(00)00463-5_BIB9) 1979
Curtiss (10.1016/S0377-0427(00)00463-5_BIB12) 1952; 38
10.1016/S0377-0427(00)00463-5_BIB14
Butcher (10.1016/S0377-0427(00)00463-5_BIB3) 1987
Cash (10.1016/S0377-0427(00)00463-5_BIB6) 1992; 18
Cash (10.1016/S0377-0427(00)00463-5_BIB10) 1994; 28
Cash (10.1016/S0377-0427(00)00463-5_BIB11) 1998; 36
Cash (10.1016/S0377-0427(00)00463-5_BIB5) 1983; 9
Psihoyios (10.1016/S0377-0427(00)00463-5_BIB26) 1998; 38
Cash (10.1016/S0377-0427(00)00463-5_BIB8) 1978; 32
Hairer (10.1016/S0377-0427(00)00463-5_BIB18) 1996
Norsett (10.1016/S0377-0427(00)00463-5_BIB25) 1977; 17
Gear (10.1016/S0377-0427(00)00463-5_BIB17) 1985; 12
Hairer (10.1016/S0377-0427(00)00463-5_BIB19) 1989
Gaffney (10.1016/S0377-0427(00)00463-5_BIB16) 1984; 10
Brugnano (10.1016/S0377-0427(00)00463-5_BIB2) 1997
Olver (10.1016/S0377-0427(00)00463-5_BIB22) 1967; 71B
10.1016/S0377-0427(00)00463-5_BIB7
10.1016/S0377-0427(00)00463-5_BIB20
Brenan (10.1016/S0377-0427(00)00463-5_BIB1) 1989
10.1016/S0377-0427(00)00463-5_BIB24
10.1016/S0377-0427(00)00463-5_BIB23
10.1016/S0377-0427(00)00463-5_BIB27
Enright (10.1016/S0377-0427(00)00463-5_BIB15) 1975; 15
Dahlquist (10.1016/S0377-0427(00)00463-5_BIB13) 1963; 3
References_xml – reference: A.C. Hindmarsh, LSODE and LSODI, two initial value ordinary differential equation solvers ACM SIGNUM Newslett. 15 (1980).
– volume: 10
  start-page: 58
  year: 1984
  end-page: 72
  ident: BIB16
  article-title: A performance evaluation of some FORTRAN subroutines for the solution of stiff oscillatory ordinary differential equations
  publication-title: ACM Trans. Math. Software
– year: 1989
  ident: BIB19
  publication-title: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods
– volume: 18
  start-page: 142
  year: 1992
  end-page: 160
  ident: BIB6
  article-title: An MEBDF code for stiff initial value problems
  publication-title: ACM Trans. Math. Software
– volume: 38
  start-page: 235
  year: 1952
  end-page: 243
  ident: BIB12
  article-title: Integration of stiff equations
  publication-title: Proc. Nat. Acad. Sci.
– reference: G. Psihoyios, Advanced step-point methods for the solution of initial value problems, Ph.D. Thesis, University of London, Imperial College, 1995.
– year: 1996
  ident: BIB18
  publication-title: Solving Ordinary Differential Equations II Stiff and Differential Algebraic Problems
– year: 1979
  ident: BIB9
  publication-title: Stable Recursions with Applications to Stiff Differential Equations
– volume: 22
  start-page: 401
  year: 1996
  end-page: 422
  ident: BIB4
  article-title: DESI methods for stiff initial value problems
  publication-title: ACM Trans. Math. Software
– volume: 28
  start-page: 45
  year: 1994
  end-page: 53
  ident: BIB10
  article-title: Stability concepts in the numerical solution of difference and differential equations
  publication-title: Comput. Math. Appl.
– volume: 17
  start-page: 200
  year: 1977
  end-page: 208
  ident: BIB25
  article-title: Attainable orders of rational approximations to the exponential function with only real poles
  publication-title: BIT
– reference: W.M. Lioen, J.J.B. de Swart, Test set for initial value problem solvers, Report MAS-R9832, CWI, Amsterdam, 1998 and http://www.cwi.nl/cwi/projects/IVPtestset.
– volume: 32
  start-page: 497
  year: 1978
  end-page: 510
  ident: BIB8
  article-title: An extension of Olver's method for the numerical solution of linear recurrence relations
  publication-title: Math. Comp.
– volume: 36
  start-page: 51
  year: 1998
  end-page: 57
  ident: BIB11
  article-title: A comparison of some codes for the stiff oscillatory problem
  publication-title: Comp. Math. Appl.
– year: 1987
  ident: BIB3
  publication-title: The Numerical Analysis of Ordinary Differential Equations
– reference: http://www.ma.ic.ac.uk/ jcash/IVP_ Software/readme.html.
– volume: 12
  start-page: 77
  year: 1985
  end-page: 90
  ident: BIB17
  article-title: Automatic integration of Euler–Lagrange equations with constraints
  publication-title: J. Comput. Appl. Math.
– volume: 71B
  start-page: 111
  year: 1967
  end-page: 129
  ident: BIB22
  article-title: Numerical solution of second order linear difference equations
  publication-title: J. Res. Nat. Bur. Standards Math. Math. Phys.
– volume: 38
  start-page: 612
  year: 1998
  end-page: 617
  ident: BIB26
  article-title: A stability result for general linear methods with characteristic function having real poles only
  publication-title: BIT
– volume: 3
  start-page: 27
  year: 1963
  end-page: 43
  ident: BIB13
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT
– volume: 9
  start-page: 645
  year: 1983
  end-page: 660
  ident: BIB5
  article-title: The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae
  publication-title: Comput. Math. Appl.
– reference: P. Vander Houwen, private communication, 1999.
– volume: 15
  start-page: 10
  year: 1975
  end-page: 48
  ident: BIB15
  article-title: Comparing numerical methods for stiff systems of ODEs
  publication-title: BIT
– year: 1973
  ident: BIB21
  publication-title: Computational Ordinary Differential Equations
– year: 1997
  ident: BIB2
  publication-title: Solving Differential Problems by Multistep Initial and Boundary Value Methods
– reference: J.C.P. Miller, Bessel Functions, Part II, Math. Tables, Vol. X, British Association for the Advancement of Sciences, CUP, 1952.
– year: 1989
  ident: BIB1
  publication-title: Numerical Solution of Initial Value Problems in Differential-Algebraic Equations
– ident: 10.1016/S0377-0427(00)00463-5_BIB27
– volume: 18
  start-page: 142
  year: 1992
  ident: 10.1016/S0377-0427(00)00463-5_BIB6
  article-title: An MEBDF code for stiff initial value problems
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/146847.146922
– year: 1979
  ident: 10.1016/S0377-0427(00)00463-5_BIB9
– year: 1997
  ident: 10.1016/S0377-0427(00)00463-5_BIB2
– ident: 10.1016/S0377-0427(00)00463-5_BIB23
– volume: 15
  start-page: 10
  year: 1975
  ident: 10.1016/S0377-0427(00)00463-5_BIB15
  article-title: Comparing numerical methods for stiff systems of ODEs
  publication-title: BIT
  doi: 10.1007/BF01932994
– year: 1989
  ident: 10.1016/S0377-0427(00)00463-5_BIB1
– ident: 10.1016/S0377-0427(00)00463-5_BIB7
– volume: 9
  start-page: 645
  year: 1983
  ident: 10.1016/S0377-0427(00)00463-5_BIB5
  article-title: The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(83)90122-0
– ident: 10.1016/S0377-0427(00)00463-5_BIB20
  doi: 10.1145/1218052.1218054
– year: 1996
  ident: 10.1016/S0377-0427(00)00463-5_BIB18
– year: 1973
  ident: 10.1016/S0377-0427(00)00463-5_BIB21
– volume: 22
  start-page: 401
  year: 1996
  ident: 10.1016/S0377-0427(00)00463-5_BIB4
  article-title: DESI methods for stiff initial value problems
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/235815.235818
– volume: 71B
  start-page: 111
  year: 1967
  ident: 10.1016/S0377-0427(00)00463-5_BIB22
  article-title: Numerical solution of second order linear difference equations
  publication-title: J. Res. Nat. Bur. Standards Math. Math. Phys.
  doi: 10.6028/jres.071B.018
– year: 1989
  ident: 10.1016/S0377-0427(00)00463-5_BIB19
– year: 1987
  ident: 10.1016/S0377-0427(00)00463-5_BIB3
– volume: 32
  start-page: 497
  year: 1978
  ident: 10.1016/S0377-0427(00)00463-5_BIB8
  article-title: An extension of Olver's method for the numerical solution of linear recurrence relations
  publication-title: Math. Comp.
– volume: 38
  start-page: 235
  year: 1952
  ident: 10.1016/S0377-0427(00)00463-5_BIB12
  article-title: Integration of stiff equations
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.38.3.235
– ident: 10.1016/S0377-0427(00)00463-5_BIB24
– ident: 10.1016/S0377-0427(00)00463-5_BIB14
– volume: 28
  start-page: 45
  year: 1994
  ident: 10.1016/S0377-0427(00)00463-5_BIB10
  article-title: Stability concepts in the numerical solution of difference and differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(94)00092-1
– volume: 36
  start-page: 51
  year: 1998
  ident: 10.1016/S0377-0427(00)00463-5_BIB11
  article-title: A comparison of some codes for the stiff oscillatory problem
  publication-title: Comp. Math. Appl.
  doi: 10.1016/S0898-1221(98)00108-4
– volume: 17
  start-page: 200
  year: 1977
  ident: 10.1016/S0377-0427(00)00463-5_BIB25
  article-title: Attainable orders of rational approximations to the exponential function with only real poles
  publication-title: BIT
  doi: 10.1007/BF01932291
– volume: 3
  start-page: 27
  year: 1963
  ident: 10.1016/S0377-0427(00)00463-5_BIB13
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT
  doi: 10.1007/BF01963532
– volume: 12
  start-page: 77
  year: 1985
  ident: 10.1016/S0377-0427(00)00463-5_BIB17
  article-title: Automatic integration of Euler–Lagrange equations with constraints
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(85)90008-1
– volume: 10
  start-page: 58
  year: 1984
  ident: 10.1016/S0377-0427(00)00463-5_BIB16
  article-title: A performance evaluation of some FORTRAN subroutines for the solution of stiff oscillatory ordinary differential equations
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/356068.356073
– volume: 38
  start-page: 612
  year: 1998
  ident: 10.1016/S0377-0427(00)00463-5_BIB26
  article-title: A stability result for general linear methods with characteristic function having real poles only
  publication-title: BIT
  doi: 10.1007/BF02510263
SSID ssj0006914
Score 1.9398612
Snippet For many years the methods of choice for the numerical solution of stiff initial value problems and certain classes of differential algebraic equations have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms Differential algebraic equations
MEBDF
Stiff differential equations
Title Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs
URI https://dx.doi.org/10.1016/S0377-0427(00)00463-5
Volume 125
WOSCitedRecordID wos000165930900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4VDzVUqh84ACqsiRxHDvHVbsVVLQgWKG9RYkTSytts1U3W_XGP-A3MxM_0hYo9MAlsizZsTxfPF_G8yDkdQUkRKV1FcRZHQaJjmQglSzRbpUmtU6TtIt6__ZRnJzI2Sz7PBj8cLEwFwvRNPLyMjv7r6KGPhA2hs7eQdx-UuiANggdniB2eP6T4I-X1VwjsXT27b0SbXRoLnDVUNq5dzE8XS-K2vsaNmtzgbPYc2tEMgmngMbEEvMWzeuYHhyjq7pCNJ037aeDicn0fDCerP7AdlVXPcJZHrsMsZb_nvrEsZ7e7xerztpzNPoyumaW6Fw8TGCmC8cSIsBCHteO2phfxZQNfDRHZ2RiOK0WjsxtzS8HvLE1fPWzAw3HatYZ_uezgPdazd3k31B23gWx925jmO0cpspDzJQK0-T8HtmIBc_kkGyMP0xmR163p5nJFu9e38eEvevX9CYM39r1_J7tXGEw00dk0wqDjg1kHpNB3TwhD4_77X9KvjvwUAce6sBDb4CHOvBgg8Ic1IOHOvDQpaYdeKgFD-3AQx14oJsieCjggSJ4npHp4WS6_z6wJToCBcqhxY-7ZIVgsuQa2ryIKiw1AiRXxUwzLYHhF8AwWcHgGAh5BYQ6rKQoZRIrHrHnZNgsm3qL0CwpqypVRQ0qNOEly7RmVVEqoblQKRPbJHE7mSubvh6rqCzyWyW5TUZ-2JnJ3_K3AdKJKbck1JDLHCB4-9AXd33XDnnQfzovybA9X9evyH110c5X57sWez8BdWSkEg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+extended+backward+differentiation+formulae+for+the+numerical+solution+of+stiff+initial+value+problems+in+ODEs+and+DAEs&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Cash%2C+J.R.&rft.date=2000-12-15&rft.issn=0377-0427&rft.volume=125&rft.issue=1-2&rft.spage=117&rft.epage=130&rft_id=info:doi/10.1016%2FS0377-0427%2800%2900463-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0377_0427_00_00463_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon