Explicit boundary element method for nonlinear solid mechanics using domain integral reduction

Applied to solid mechanics problems with geometric nonlinearity, current finite element and boundary element methods face difficulties if the domain is highly distorted. Furthermore, current boundary element method (BEM) methods for geometrically nonlinear problems are implicit: the source term depe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering analysis with boundary elements Ročník 24; číslo 10; s. 707 - 713
Hlavní autoři: Nicholson, D.W., Kassab, A.J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2000
Témata:
ISSN:0955-7997, 1873-197X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Applied to solid mechanics problems with geometric nonlinearity, current finite element and boundary element methods face difficulties if the domain is highly distorted. Furthermore, current boundary element method (BEM) methods for geometrically nonlinear problems are implicit: the source term depends on the unknowns within the arguments of domain integrals. In the current study, a new BEM method is formulated which is explicit and whose stiffness matrices require no domain function evaluations. It exploits a rigorous incremental equilibrium equation. The method is also based on a Domain Integral Reduction Algorithm (DIRA), exploiting the Helmholtz decomposition to obviate domain function evaluations. The current version of DIRA introduces a major improvement compared to the initial version.
ISSN:0955-7997
1873-197X
DOI:10.1016/S0955-7997(00)00053-9