Use of multiple models and qualitative knowledge for on-line moving horizon disturbance estimation and fault diagnosis
An integrated fault detection, fault isolation, and parameter estimation technique is presented in this paper. Process model parameters are treated as disturbances that dynamically affect the process outputs. A moving horizon estimation technique minimizes the error between process and model measure...
Uloženo v:
| Vydáno v: | Journal of process control Ročník 12; číslo 2; s. 339 - 352 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2002
|
| Témata: | |
| ISSN: | 0959-1524, 1873-2771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An integrated fault detection, fault isolation, and parameter estimation technique is presented in this paper. Process model parameters are treated as disturbances that dynamically affect the process outputs. A moving horizon estimation technique minimizes the error between process and model measurements over a finite horizon by calculating model parameter values across the estimation horizon. To implement qualitative process knowledge, this minimization is constrained such that only a limited number of different faults (parameters) may change during a specific horizon window. Multiple linear models are used to capture nonlinear process characteristics such as asymmetric response, variable dynamics, and changing gains. Problems of solution multiplicity and computational time are addressed. Results from a nonlinear chemical reactor simulation are presented. |
|---|---|
| ISSN: | 0959-1524 1873-2771 |
| DOI: | 10.1016/S0959-1524(01)00037-3 |