Highest weights, projective geometry, and the classical limit: I. Geometrical aspects and the classical limit

This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Cliffo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics Jg. 34; H. 1; S. 1 - 28
1. Verfasser: Hannabuss, K.C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2000
Schlagworte:
ISSN:0393-0440, 1879-1662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Clifford algebras and quantum groups are explored, as well as the relationship between geometry, second quantisation, and the classical limit.
ISSN:0393-0440
1879-1662
DOI:10.1016/S0393-0440(99)00002-9