Highest weights, projective geometry, and the classical limit: I. Geometrical aspects and the classical limit

This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Cliffo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geometry and physics Vol. 34; no. 1; pp. 1 - 28
Main Author: Hannabuss, K.C.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2000
Subjects:
ISSN:0393-0440, 1879-1662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Clifford algebras and quantum groups are explored, as well as the relationship between geometry, second quantisation, and the classical limit.
AbstractList This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Clifford algebras and quantum groups are explored, as well as the relationship between geometry, second quantisation, and the classical limit.
Author Hannabuss, K.C.
Author_xml – sequence: 1
  givenname: K.C.
  surname: Hannabuss
  fullname: Hannabuss, K.C.
  email: kch@ermine.ox.ac.uk
  organization: Balliol College, Oxford OX1 3BJ, UK
BookMark eNqFkMFKAzEQhoMo2FYfQchRoVuT3Wx2oweRom2h4EE9h3QybVO2uyUJlb6921Y8CNK5zDD838B8XXJeNzUScsPZgDMu799ZprKECcFulbpjbaWJOiMdXhYq4VKm56TzG7kk3RBWbUYKxTtkPXaLJYZIv7AdYujTjW9WCNFtkS6wWWP0uz41taVxiRQqE4IDU9HKrV18oJMBHR1Th60Jm5YN_-WvyMXcVAGvf3qPfL6-fAzHyfRtNBk-TxPIWBGT1EIxtygVQ8jTUuUFqBmTZiZBCI5pAWgkt1Kkmc1KZkWOBeRgWVngLBMy65H8eBd8E4LHud54tzZ-pznTe2f64EzvhWil9MGZVi33-IcDF010TR29cdVJ-ulIY_va1qHXARzWgNb51oq2jTtx4RsxE4lA
CitedBy_id crossref_primary_10_1016_S0393_0440_99_00003_0
Cites_doi 10.1007/BF02698935
10.1016/0022-1236(79)90030-2
10.1007/978-1-4612-6398-2
10.1017/CBO9780511564048
10.24033/asens.1254
10.2140/pjm.1977.73.307
10.1017/CBO9781107325821.007
10.1006/aima.1998.1739
10.1016/0393-0440(93)90032-A
10.1007/978-3-0348-9348-0
10.1007/BF00574162
10.1070/RM1973v028n03ABEH001557
10.1016/0021-8693(79)90149-2
10.1093/qmath/33.1.91
10.1007/BF00416512
10.1088/0305-4470/10/12/004
10.1007/BF01646493
10.1016/0393-0440(90)90019-Y
10.1007/s002080050046
10.2307/2154310
10.1007/BF01197294
10.1007/BF01398933
10.1016/S0393-0440(96)00030-7
10.1112/blms/14.1.1
10.1515/9781400874842-011
10.1512/iumj.1982.31.31048
10.1007/BF00751065
10.1007/BF00739094
10.1090/S0002-9939-1982-0643758-8
10.1007/BF00423452
10.1016/0022-4049(92)90007-3
10.1007/BF01388838
10.1007/BF01388837
10.1016/0021-8693(86)90034-7
10.1016/0001-8708(77)90017-2
10.1016/S0393-0440(99)00003-0
10.2307/1969351
ContentType Journal Article
Copyright 2000 Elsevier Science B.V.
Copyright_xml – notice: 2000 Elsevier Science B.V.
DBID AAYXX
CITATION
DOI 10.1016/S0393-0440(99)00002-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1879-1662
EndPage 28
ExternalDocumentID 10_1016_S0393_0440_99_00002_9
S0393044099000029
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HMJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LZ3
M25
M38
M41
MHUIS
MO0
N9A
NCXOZ
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SHN
SME
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-2dc7fde690ec528957c9b06ab6c441e27cea61d6423d380d45e7c5cd087eb3463
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000086394700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0393-0440
IngestDate Sat Nov 29 02:17:01 EST 2025
Tue Nov 18 20:47:43 EST 2025
Fri Feb 23 02:27:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 51A50
Lie groups and Lie algebras
58F06
Classical limit
Highest weight
Flag manifold
Pure spinor
81S10
15A66
81R50
Moment map
Quantum field theory
Projective geometry
22E46
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-2dc7fde690ec528957c9b06ab6c441e27cea61d6423d380d45e7c5cd087eb3463
PageCount 28
ParticipantIDs crossref_primary_10_1016_S0393_0440_99_00002_9
crossref_citationtrail_10_1016_S0393_0440_99_00002_9
elsevier_sciencedirect_doi_10_1016_S0393_0440_99_00002_9
PublicationCentury 2000
PublicationDate 2000-05-01
PublicationDateYYYYMMDD 2000-05-01
PublicationDate_xml – month: 05
  year: 2000
  text: 2000-05-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of geometry and physics
PublicationYear 2000
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cahen, Gutt, Rawnsley (BIB9) 1993; 337
Chow (BIB13) 1949; 50
Spera (BIB49) 1993; 12
Hannabuss (BIB22) 1982; 33
G. James, A. Kerber, The representation theory of the symmetric group, in: Encyclopaedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, MA, 1981.
J. Dixmier
I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand, Schubert cells and cohomology of the spaces
kähleriens. Equation de Yang–Baxter et produits star sur
Moreno (BIB42) 1987; 13
E. Cartan, The Theory of Spinors, Hermann, Paris, 1966.
Ramanathan (BIB45) 1987; 65
N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
F.E. Burstall, J.H. Rawnsley, Twistor Theory and Riemannian Symmetric Spaces, Lecture Notes in Mathematics, vol. 1424, Springer, Berlin, 1992.
Krop (BIB33) 1986; 99
Moreno (BIB41) 1986; 12
Guillemin, Sternberg (BIB19) 1982; 67
Cahen, Gutt, Rawnsley (BIB10) 1994; 30
Dunne, Zierau (BIB17) 1997; 307
Howe (BIB26) 1977; 73
I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand, Differential operators on the base affine space and a study of
W. Fulton, J. Harris, Representation Theory, Springer, Berlin, 1991.
/
Lecture Notes in Mathematics, vol. 1416, Springer, Berlin, 1992, pp. 210–234.
modules, in: I.M. Gel’fand (Ed.), Lie Groups and their Representations, Adam Hilger, Bristol, 1975.
F.R. Harvey, Spinors and Calibrations, Academic Press, New York, 1990.
R. Lazarsfeld, A. van de Ven, DMV Seminar 4. Topics in the Geometry of Projective Space: Recent Work of F.L. Zak, Birkhäuser, Basel, 1984.
Russian Math. Surveys 28 (3) (1973) 1-26.
R. Delbourgo, J.R. Fox, Maximum weight vectors possess minimum uncertainty, J. Phys. A 10 (1977) L233–235.
R. Bott, The index theorem for homogeneous differential operators, in: S.S. Cairns (Ed.), Differential and Combinatorial Geometry, Princeton University Press, Princeton, NJ, 1965.
Bowes, Hannabuss (BIB7) 1997; 22
algebras, North-Holland, Amsterdam, 1977.
R. Penrose, W. Rindler, Space–Time Spinors, Cambridge University Press, Cambridge, 1984.
Hannabuss (BIB23) 2000; 34
Moreno (BIB40) 1986; 11
Moreno, Ortega-Navarro (BIB39) 1983; 38
Lancaster, Towber (BIB34) 1984; 59
Doty, Walker (BIB16) 1992; 82
Guillemin, Sternberg (BIB20) 1984; 77
Hannabuss (BIB21) 1979; 34
Sjamaar (BIB48) 1998; 138
R.J. Baston, M.G. Eastwood, The Penrose Transform, Oxford, University Press, Oxford, 1990.
Kostant (BIB32) 1973; 6
C. Moreno, Produits star sur certains
Rawnsley, Cahen, Gutt (BIB46) 1990; 7
J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer, Berlin, 1972.
Lieb (BIB38) 1973; 31
G. Higman, Representations of general linear groups and varieties of
F. Klein, The icosahedron, Dover, New York, 1956.
Lichtenstein (BIB36) 1982; 84
Kirwan (BIB30) 1984; 77
groups, in: L. Kovacs, B.H. Neumann (Eds.), Proceedings of the International Conference on Theory of Groups ANU, Canberra, 1965, Gordon and Breach, London, 1967.
Lichtenstein (BIB37) 1982; 31
Simon (BIB47) 1980; 71
Atiyah (BIB1) 1982; 14
Cahen, Gutt, Rawnsley (BIB11) 1995; 34
Kac (BIB29) 1977; 26
Rawnsley (10.1016/S0393-0440(99)00002-9_BIB46) 1990; 7
10.1016/S0393-0440(99)00002-9_BIB44
Hannabuss (10.1016/S0393-0440(99)00002-9_BIB23) 2000; 34
Kac (10.1016/S0393-0440(99)00002-9_BIB29) 1977; 26
Doty (10.1016/S0393-0440(99)00002-9_BIB16) 1992; 82
Moreno (10.1016/S0393-0440(99)00002-9_BIB42) 1987; 13
Hannabuss (10.1016/S0393-0440(99)00002-9_BIB21) 1979; 34
Hannabuss (10.1016/S0393-0440(99)00002-9_BIB22) 1982; 33
Ramanathan (10.1016/S0393-0440(99)00002-9_BIB45) 1987; 65
Atiyah (10.1016/S0393-0440(99)00002-9_BIB1) 1982; 14
Cahen (10.1016/S0393-0440(99)00002-9_BIB11) 1995; 34
Dunne (10.1016/S0393-0440(99)00002-9_BIB17) 1997; 307
Guillemin (10.1016/S0393-0440(99)00002-9_BIB20) 1984; 77
Kirwan (10.1016/S0393-0440(99)00002-9_BIB30) 1984; 77
Kostant (10.1016/S0393-0440(99)00002-9_BIB32) 1973; 6
10.1016/S0393-0440(99)00002-9_BIB12
10.1016/S0393-0440(99)00002-9_BIB14
Howe (10.1016/S0393-0440(99)00002-9_BIB26) 1977; 73
10.1016/S0393-0440(99)00002-9_BIB15
Sjamaar (10.1016/S0393-0440(99)00002-9_BIB48) 1998; 138
Spera (10.1016/S0393-0440(99)00002-9_BIB49) 1993; 12
10.1016/S0393-0440(99)00002-9_BIB18
Guillemin (10.1016/S0393-0440(99)00002-9_BIB19) 1982; 67
Chow (10.1016/S0393-0440(99)00002-9_BIB13) 1949; 50
Simon (10.1016/S0393-0440(99)00002-9_BIB47) 1980; 71
10.1016/S0393-0440(99)00002-9_BIB24
10.1016/S0393-0440(99)00002-9_BIB25
10.1016/S0393-0440(99)00002-9_BIB27
Lancaster (10.1016/S0393-0440(99)00002-9_BIB34) 1984; 59
Moreno (10.1016/S0393-0440(99)00002-9_BIB39) 1983; 38
10.1016/S0393-0440(99)00002-9_BIB28
Lieb (10.1016/S0393-0440(99)00002-9_BIB38) 1973; 31
Moreno (10.1016/S0393-0440(99)00002-9_BIB41) 1986; 12
10.1016/S0393-0440(99)00002-9_BIB31
Cahen (10.1016/S0393-0440(99)00002-9_BIB9) 1993; 337
10.1016/S0393-0440(99)00002-9_BIB8
10.1016/S0393-0440(99)00002-9_BIB3
Bowes (10.1016/S0393-0440(99)00002-9_BIB7) 1997; 22
10.1016/S0393-0440(99)00002-9_BIB2
10.1016/S0393-0440(99)00002-9_BIB35
Lichtenstein (10.1016/S0393-0440(99)00002-9_BIB36) 1982; 84
10.1016/S0393-0440(99)00002-9_BIB6
10.1016/S0393-0440(99)00002-9_BIB5
10.1016/S0393-0440(99)00002-9_BIB4
Krop (10.1016/S0393-0440(99)00002-9_BIB33) 1986; 99
Cahen (10.1016/S0393-0440(99)00002-9_BIB10) 1994; 30
Moreno (10.1016/S0393-0440(99)00002-9_BIB40) 1986; 11
10.1016/S0393-0440(99)00002-9_BIB43
Lichtenstein (10.1016/S0393-0440(99)00002-9_BIB37) 1982; 31
References_xml – volume: 84
  start-page: 605
  year: 1982
  end-page: 608
  ident: BIB36
  article-title: On a system of quadrics describing the orbit of a highest weight vector
  publication-title: Proc. Amer. Math. Soc.
– reference: G. James, A. Kerber, The representation theory of the symmetric group, in: Encyclopaedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, MA, 1981.
– volume: 11
  start-page: 361
  year: 1986
  end-page: 372
  ident: BIB40
  article-title: Star products on some Kähler manifolds
  publication-title: Lett. Math. Phys.
– volume: 7
  start-page: 45
  year: 1990
  end-page: 62
  ident: BIB46
  article-title: Quantization of Kähler manifolds I
  publication-title: J. Geom. Phys.
– reference: J. Dixmier,
– reference: J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer, Berlin, 1972.
– reference: N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
– reference: F.E. Burstall, J.H. Rawnsley, Twistor Theory and Riemannian Symmetric Spaces, Lecture Notes in Mathematics, vol. 1424, Springer, Berlin, 1992.
– reference: W. Fulton, J. Harris, Representation Theory, Springer, Berlin, 1991.
– reference: G. Higman, Representations of general linear groups and varieties of
– volume: 77
  start-page: 547
  year: 1984
  end-page: 552
  ident: BIB30
  article-title: Convexity properties of the moment mapping III
  publication-title: Invent. Math.
– volume: 6
  start-page: 413
  year: 1973
  end-page: 455
  ident: BIB32
  article-title: On convexity, the Weyl group and the Iwasawa decomposition
  publication-title: Ann. Sci. Ec. Norm. Sup.
– reference: I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand, Schubert cells and cohomology of the spaces
– volume: 34
  start-page: 146
  year: 1979
  end-page: 165
  ident: BIB21
  article-title: Representations of nilpotent locally compact groups
  publication-title: J. Funct. Anal.
– volume: 30
  start-page: 291
  year: 1994
  end-page: 305
  ident: BIB10
  article-title: Quantization of Kähler manifolds III
  publication-title: Lett. Math. Phys.
– volume: 73
  start-page: 307
  year: 1977
  end-page: 327
  ident: BIB26
  article-title: The Fourier transform for nilpotent locally compact groups
  publication-title: Pacific J. Math.
– volume: 34
  start-page: 159
  year: 1995
  end-page: 168
  ident: BIB11
  article-title: Quantization of Kähler manifolds IV
  publication-title: Lett. Math. Phys.
– volume: 138
  start-page: 46
  year: 1998
  end-page: 91
  ident: BIB48
  article-title: Convexity properties of the moment map re-examined
  publication-title: Adv. Math.
– volume: 82
  start-page: 1
  year: 1992
  end-page: 26
  ident: BIB16
  article-title: Modular symmetric functions and irreducible modular representations of general linear groups
  publication-title: J. Pure Appl. Algebra
– reference: R. Lazarsfeld, A. van de Ven, DMV Seminar 4. Topics in the Geometry of Projective Space: Recent Work of F.L. Zak, Birkhäuser, Basel, 1984.
– volume: 14
  start-page: 1
  year: 1982
  end-page: 15
  ident: BIB1
  article-title: Convexity and commuting Hamiltonians
  publication-title: Bull. London Math. Soc.
– volume: 34
  start-page: 29
  year: 2000
  end-page: 40
  ident: BIB23
  article-title: Highest weight vectors, projective geometry and the classical limit: II Coherent states and integrable systems
  publication-title: J. Geom. Phys.
– volume: 13
  start-page: 245
  year: 1987
  end-page: 258
  ident: BIB42
  article-title: Geodesic symmetries and invariant star products on kähler symmetric spaces
  publication-title: Lett. Math. Phys.
– reference: E. Cartan, The Theory of Spinors, Hermann, Paris, 1966.
– volume: 71
  start-page: 247
  year: 1980
  end-page: 276
  ident: BIB47
  article-title: The classical limit of quantum partition functions
  publication-title: Commun. Math. Phys.
– volume: 77
  start-page: 533
  year: 1984
  end-page: 546
  ident: BIB20
  article-title: Convexity properties of the moment mapping II
  publication-title: Invent. Math.
– volume: 12
  start-page: 165
  year: 1993
  end-page: 182
  ident: BIB49
  article-title: On a generalized uncertainty principle, coherent states and the moment map
  publication-title: J. Geom. Phys.
– volume: 50
  start-page: 32
  year: 1949
  end-page: 67
  ident: BIB13
  article-title: On the geometry of algebraic homogeneous spaces
  publication-title: Ann. Math.
– reference: Lecture Notes in Mathematics, vol. 1416, Springer, Berlin, 1992, pp. 210–234.
– reference: , Russian Math. Surveys 28 (3) (1973) 1-26.
– volume: 65
  start-page: 61
  year: 1987
  end-page: 90
  ident: BIB45
  article-title: Equations defining Schubert varieties and Frobenius splitting of diagonals
  publication-title: Publ. IHES
– reference: R. Bott, The index theorem for homogeneous differential operators, in: S.S. Cairns (Ed.), Differential and Combinatorial Geometry, Princeton University Press, Princeton, NJ, 1965.
– reference: F. Klein, The icosahedron, Dover, New York, 1956.
– volume: 12
  start-page: 217
  year: 1986
  end-page: 229
  ident: BIB41
  article-title: Invariant star products and representations of compact semi-simple Lie groups
  publication-title: Lett. Math. Phys.
– reference: R. Delbourgo, J.R. Fox, Maximum weight vectors possess minimum uncertainty, J. Phys. A 10 (1977) L233–235.
– reference: F.R. Harvey, Spinors and Calibrations, Academic Press, New York, 1990.
– reference: kähleriens. Equation de Yang–Baxter et produits star sur
– volume: 38
  start-page: 215
  year: 1983
  end-page: 241
  ident: BIB39
  article-title: Deformations of the algebra of functions on hermitean symmetric spaces resulting from quantization
  publication-title: Ann. Inst. H. Poincaré
– volume: 31
  start-page: 665
  year: 1982
  end-page: 688
  ident: BIB37
  article-title: Quadrature, scattering and representations
  publication-title: J. Indiana Math. Soc.
– volume: 337
  start-page: 73
  year: 1993
  end-page: 98
  ident: BIB9
  article-title: Quantization of Kähler manifolds II
  publication-title: Trans. Amer. Math. Soc.
– reference: /
– volume: 26
  start-page: 8
  year: 1977
  end-page: 96
  ident: BIB29
  article-title: Lie superalgebras
  publication-title: Adv. Math.
– volume: 59
  start-page: 16
  year: 1984
  end-page: 38
  ident: BIB34
  article-title: Representation functors and flag algebras for the classical groups
  publication-title: J. Algebra
– reference: R.J. Baston, M.G. Eastwood, The Penrose Transform, Oxford, University Press, Oxford, 1990.
– reference: -algebras, North-Holland, Amsterdam, 1977.
– volume: 67
  start-page: 491
  year: 1982
  end-page: 513
  ident: BIB19
  article-title: Convexity properties of the moment mapping I
  publication-title: Invent. Math.
– reference: R. Penrose, W. Rindler, Space–Time Spinors, Cambridge University Press, Cambridge, 1984.
– volume: 33
  start-page: 91
  year: 1982
  end-page: 96
  ident: BIB22
  article-title: On a property of highest weight vectors
  publication-title: Quart. J. Math. Oxford
– volume: 31
  start-page: 327
  year: 1973
  end-page: 340
  ident: BIB38
  article-title: The classical limit of quantum spin systems
  publication-title: Commun. Math. Phys.
– volume: 307
  start-page: 489
  year: 1997
  end-page: 503
  ident: BIB17
  article-title: The automorphism group of complex homogeneous spaces
  publication-title: Math. Ann.
– reference: -modules, in: I.M. Gel’fand (Ed.), Lie Groups and their Representations, Adam Hilger, Bristol, 1975.
– reference: -groups, in: L. Kovacs, B.H. Neumann (Eds.), Proceedings of the International Conference on Theory of Groups ANU, Canberra, 1965, Gordon and Breach, London, 1967.
– volume: 99
  start-page: 370
  year: 1986
  end-page: 421
  ident: BIB33
  article-title: On the representations of the full matrix semigroup on homogeneous polynomials
  publication-title: J. Algebra
– reference: C. Moreno, Produits star sur certains
– reference: I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand, Differential operators on the base affine space and a study of
– volume: 22
  start-page: 316
  year: 1997
  end-page: 348
  ident: BIB7
  article-title: Weyl quantization and star products
  publication-title: J. Geom. Phys.
– volume: 65
  start-page: 61
  year: 1987
  ident: 10.1016/S0393-0440(99)00002-9_BIB45
  article-title: Equations defining Schubert varieties and Frobenius splitting of diagonals
  publication-title: Publ. IHES
  doi: 10.1007/BF02698935
– volume: 34
  start-page: 146
  year: 1979
  ident: 10.1016/S0393-0440(99)00002-9_BIB21
  article-title: Representations of nilpotent locally compact groups
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(79)90030-2
– ident: 10.1016/S0393-0440(99)00002-9_BIB18
– ident: 10.1016/S0393-0440(99)00002-9_BIB43
– ident: 10.1016/S0393-0440(99)00002-9_BIB27
  doi: 10.1007/978-1-4612-6398-2
– ident: 10.1016/S0393-0440(99)00002-9_BIB44
  doi: 10.1017/CBO9780511564048
– volume: 6
  start-page: 413
  year: 1973
  ident: 10.1016/S0393-0440(99)00002-9_BIB32
  article-title: On convexity, the Weyl group and the Iwasawa decomposition
  publication-title: Ann. Sci. Ec. Norm. Sup.
  doi: 10.24033/asens.1254
– ident: 10.1016/S0393-0440(99)00002-9_BIB24
– volume: 73
  start-page: 307
  year: 1977
  ident: 10.1016/S0393-0440(99)00002-9_BIB26
  article-title: The Fourier transform for nilpotent locally compact groups
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1977.73.307
– ident: 10.1016/S0393-0440(99)00002-9_BIB8
– ident: 10.1016/S0393-0440(99)00002-9_BIB28
– ident: 10.1016/S0393-0440(99)00002-9_BIB2
  doi: 10.1017/CBO9781107325821.007
– volume: 138
  start-page: 46
  year: 1998
  ident: 10.1016/S0393-0440(99)00002-9_BIB48
  article-title: Convexity properties of the moment map re-examined
  publication-title: Adv. Math.
  doi: 10.1006/aima.1998.1739
– volume: 12
  start-page: 165
  year: 1993
  ident: 10.1016/S0393-0440(99)00002-9_BIB49
  article-title: On a generalized uncertainty principle, coherent states and the moment map
  publication-title: J. Geom. Phys.
  doi: 10.1016/0393-0440(93)90032-A
– ident: 10.1016/S0393-0440(99)00002-9_BIB35
  doi: 10.1007/978-3-0348-9348-0
– volume: 11
  start-page: 361
  year: 1986
  ident: 10.1016/S0393-0440(99)00002-9_BIB40
  article-title: Star products on some Kähler manifolds
  publication-title: Lett. Math. Phys.
  doi: 10.1007/BF00574162
– ident: 10.1016/S0393-0440(99)00002-9_BIB3
  doi: 10.1070/RM1973v028n03ABEH001557
– volume: 59
  start-page: 16
  year: 1984
  ident: 10.1016/S0393-0440(99)00002-9_BIB34
  article-title: Representation functors and flag algebras for the classical groups
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(79)90149-2
– volume: 33
  start-page: 91
  issue: 2
  year: 1982
  ident: 10.1016/S0393-0440(99)00002-9_BIB22
  article-title: On a property of highest weight vectors
  publication-title: Quart. J. Math. Oxford
  doi: 10.1093/qmath/33.1.91
– ident: 10.1016/S0393-0440(99)00002-9_BIB4
– volume: 12
  start-page: 217
  year: 1986
  ident: 10.1016/S0393-0440(99)00002-9_BIB41
  article-title: Invariant star products and representations of compact semi-simple Lie groups
  publication-title: Lett. Math. Phys.
  doi: 10.1007/BF00416512
– ident: 10.1016/S0393-0440(99)00002-9_BIB25
– ident: 10.1016/S0393-0440(99)00002-9_BIB14
  doi: 10.1088/0305-4470/10/12/004
– volume: 31
  start-page: 327
  year: 1973
  ident: 10.1016/S0393-0440(99)00002-9_BIB38
  article-title: The classical limit of quantum spin systems
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01646493
– volume: 7
  start-page: 45
  year: 1990
  ident: 10.1016/S0393-0440(99)00002-9_BIB46
  article-title: Quantization of Kähler manifolds I
  publication-title: J. Geom. Phys.
  doi: 10.1016/0393-0440(90)90019-Y
– volume: 307
  start-page: 489
  year: 1997
  ident: 10.1016/S0393-0440(99)00002-9_BIB17
  article-title: The automorphism group of complex homogeneous spaces
  publication-title: Math. Ann.
  doi: 10.1007/s002080050046
– volume: 337
  start-page: 73
  year: 1993
  ident: 10.1016/S0393-0440(99)00002-9_BIB9
  article-title: Quantization of Kähler manifolds II
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.2307/2154310
– volume: 71
  start-page: 247
  year: 1980
  ident: 10.1016/S0393-0440(99)00002-9_BIB47
  article-title: The classical limit of quantum partition functions
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01197294
– ident: 10.1016/S0393-0440(99)00002-9_BIB15
– volume: 67
  start-page: 491
  year: 1982
  ident: 10.1016/S0393-0440(99)00002-9_BIB19
  article-title: Convexity properties of the moment mapping I
  publication-title: Invent. Math.
  doi: 10.1007/BF01398933
– volume: 22
  start-page: 316
  year: 1997
  ident: 10.1016/S0393-0440(99)00002-9_BIB7
  article-title: Weyl quantization and star products
  publication-title: J. Geom. Phys.
  doi: 10.1016/S0393-0440(96)00030-7
– volume: 14
  start-page: 1
  year: 1982
  ident: 10.1016/S0393-0440(99)00002-9_BIB1
  article-title: Convexity and commuting Hamiltonians
  publication-title: Bull. London Math. Soc.
  doi: 10.1112/blms/14.1.1
– ident: 10.1016/S0393-0440(99)00002-9_BIB5
  doi: 10.1515/9781400874842-011
– volume: 31
  start-page: 665
  year: 1982
  ident: 10.1016/S0393-0440(99)00002-9_BIB37
  article-title: Quadrature, scattering and representations
  publication-title: J. Indiana Math. Soc.
  doi: 10.1512/iumj.1982.31.31048
– volume: 30
  start-page: 291
  year: 1994
  ident: 10.1016/S0393-0440(99)00002-9_BIB10
  article-title: Quantization of Kähler manifolds III
  publication-title: Lett. Math. Phys.
  doi: 10.1007/BF00751065
– ident: 10.1016/S0393-0440(99)00002-9_BIB31
– volume: 34
  start-page: 159
  year: 1995
  ident: 10.1016/S0393-0440(99)00002-9_BIB11
  article-title: Quantization of Kähler manifolds IV
  publication-title: Lett. Math. Phys.
  doi: 10.1007/BF00739094
– volume: 84
  start-page: 605
  year: 1982
  ident: 10.1016/S0393-0440(99)00002-9_BIB36
  article-title: On a system of quadrics describing the orbit of a highest weight vector
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1982-0643758-8
– volume: 13
  start-page: 245
  year: 1987
  ident: 10.1016/S0393-0440(99)00002-9_BIB42
  article-title: Geodesic symmetries and invariant star products on kähler symmetric spaces
  publication-title: Lett. Math. Phys.
  doi: 10.1007/BF00423452
– ident: 10.1016/S0393-0440(99)00002-9_BIB6
– ident: 10.1016/S0393-0440(99)00002-9_BIB12
– volume: 82
  start-page: 1
  year: 1992
  ident: 10.1016/S0393-0440(99)00002-9_BIB16
  article-title: Modular symmetric functions and irreducible modular representations of general linear groups
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(92)90007-3
– volume: 77
  start-page: 547
  year: 1984
  ident: 10.1016/S0393-0440(99)00002-9_BIB30
  article-title: Convexity properties of the moment mapping III
  publication-title: Invent. Math.
  doi: 10.1007/BF01388838
– volume: 77
  start-page: 533
  year: 1984
  ident: 10.1016/S0393-0440(99)00002-9_BIB20
  article-title: Convexity properties of the moment mapping II
  publication-title: Invent. Math.
  doi: 10.1007/BF01388837
– volume: 99
  start-page: 370
  year: 1986
  ident: 10.1016/S0393-0440(99)00002-9_BIB33
  article-title: On the representations of the full matrix semigroup on homogeneous polynomials
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(86)90034-7
– volume: 38
  start-page: 215
  year: 1983
  ident: 10.1016/S0393-0440(99)00002-9_BIB39
  article-title: Deformations of the algebra of functions on hermitean symmetric spaces resulting from quantization
  publication-title: Ann. Inst. H. Poincaré
– volume: 26
  start-page: 8
  year: 1977
  ident: 10.1016/S0393-0440(99)00002-9_BIB29
  article-title: Lie superalgebras
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(77)90017-2
– volume: 34
  start-page: 29
  year: 2000
  ident: 10.1016/S0393-0440(99)00002-9_BIB23
  article-title: Highest weight vectors, projective geometry and the classical limit: II Coherent states and integrable systems
  publication-title: J. Geom. Phys.
  doi: 10.1016/S0393-0440(99)00003-0
– volume: 50
  start-page: 32
  year: 1949
  ident: 10.1016/S0393-0440(99)00002-9_BIB13
  article-title: On the geometry of algebraic homogeneous spaces
  publication-title: Ann. Math.
  doi: 10.2307/1969351
SSID ssj0006491
Score 1.5115792
Snippet This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical limit
Flag manifold
Highest weight
Moment map
Projective geometry
Pure spinor
Title Highest weights, projective geometry, and the classical limit: I. Geometrical aspects and the classical limit
URI https://dx.doi.org/10.1016/S0393-0440(99)00002-9
Volume 34
WOSCitedRecordID wos000086394700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1662
  dateEnd: 20061130
  omitProxy: false
  ssIdentifier: ssj0006491
  issn: 0393-0440
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEBbbTQvNQ480pemFHhpoaez6lDR9CyGl2yMEmsK-GVvSlsLGCbGzyc_v6LC9Id1e0Bez9mos8Pd5NBrPQcgLKWZS53kezNAWDjINUVCmEAcmkDFhJUSlK5L0iR8ciOkUDkejRZcLs5jzuhaXl3D6X6HGawi2SZ39C7j7m-IF_I2g4xFhx-MfAW8jN5r29YV1elqYvLvFBAl90yfHunXfzrvgSWksaAvW3KQ7GSfBJDTecjPSVROwCZnNKokVFm43lytGYAnRDBqvrsvq3LVs_xjuhVfcD9EQ7Od8YtfyYlwulokKzFwhplA71So4BDG7qnu9I3OZY06Rxksrsssev6brndvhSz_Xttk7biemCypqeRgWuD7s0I41Q8ENghtkLeE5iDFZ253sTz_0azjLXK_F7t5D7tebYcKXAK_8ZD-3apYslaN75I4HgO46atwnI11vkLt-u0G9Mm82yPrnvmQvnt06dAA9IMeeQdQzaIcO_KEdpjsUQaUoT3suUMuFt3QS0iXuUM-dVeM3ydd3-0d77wPflSOQuB60QaIknynNINIyx0eecwlVxMqKSTStdcKlLlmscF-bqlREKss1l7lUkeC6SjOWPiTj-qTWjwjVaO8zIXOhNK4digsFMItLqNBKNn9skax7qoX0JetN55R5McQmIhiFAaMAKCwYBWyRsBc7dTVbficgOsgKb3g6g7JArv1a9PG_iz4ht4cX6ikZt2fn-hm5KRft9-bsuWfkD8SPoQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highest+weights%2C+projective+geometry%2C+and+the+classical+limit%3A+I.+Geometrical+aspects+and+the+classical+limit&rft.jtitle=Journal+of+geometry+and+physics&rft.au=Hannabuss%2C+K.C.&rft.date=2000-05-01&rft.pub=Elsevier+B.V&rft.issn=0393-0440&rft.eissn=1879-1662&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1016%2FS0393-0440%2899%2900002-9&rft.externalDocID=S0393044099000029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0393-0440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0393-0440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0393-0440&client=summon