Highest weights, projective geometry, and the classical limit: I. Geometrical aspects and the classical limit
This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Cliffo...
Uložené v:
| Vydané v: | Journal of geometry and physics Ročník 34; číslo 1; s. 1 - 28 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2000
|
| Predmet: | |
| ISSN: | 0393-0440, 1879-1662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Clifford algebras and quantum groups are explored, as well as the relationship between geometry, second quantisation, and the classical limit. |
|---|---|
| ISSN: | 0393-0440 1879-1662 |
| DOI: | 10.1016/S0393-0440(99)00002-9 |