Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems
The global optimization of mixed integer non-linear problems (MINLP), constitutes a major area of research in many engineering applications. In this work, a comparison is made between an algorithm based on Simulated Annealing (M-SIMPSA) and two Evolutionary Algorithms: Genetic Algorithms (GAs) and E...
Uloženo v:
| Vydáno v: | Computers & chemical engineering Ročník 25; číslo 2; s. 257 - 266 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.03.2001
|
| Témata: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The global optimization of mixed integer non-linear problems (MINLP), constitutes a major area of research in many engineering applications. In this work, a comparison is made between an algorithm based on Simulated Annealing (M-SIMPSA) and two Evolutionary Algorithms: Genetic Algorithms (GAs) and Evolution Strategies (ESs). Results concerning the handling of constraints, through penalty functions, with and without penalty parameter setting, are also reported. Evolutionary Algorithms seem a valid approach to the optimization of non-linear problems. Evolution Strategies emerge as the best algorithm in most of the problems studied. |
|---|---|
| ISSN: | 0098-1354 1873-4375 |
| DOI: | 10.1016/S0098-1354(00)00653-0 |