On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic
We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is definable in monadic second-order logic (MSOL). We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 108; číslo 1; s. 23 - 52 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.02.2001
|
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is definable in monadic second-order logic (MSOL). We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases, where the decomposition, which establishes the bound on the clique-width, can be computed in polynomial time and for problems expressible by monadic second-order formulas without edge set quantification. Such quantifications are allowed in the case of graphs with bounded tree-width. As applications we discuss in detail how this affects the parametrized complexity of the permanent and the hamiltonian of a matrix, and more generally, various generating functions of MSOL definable graph properties. Finally, our results are also applicable to
SAT and ♯
SAT. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/S0166-218X(00)00221-3 |