On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic

We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is definable in monadic second-order logic (MSOL). We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 108; číslo 1; s. 23 - 52
Hlavní autoři: Courcelle, B., Makowsky, J.A., Rotics, U.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.02.2001
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is definable in monadic second-order logic (MSOL). We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases, where the decomposition, which establishes the bound on the clique-width, can be computed in polynomial time and for problems expressible by monadic second-order formulas without edge set quantification. Such quantifications are allowed in the case of graphs with bounded tree-width. As applications we discuss in detail how this affects the parametrized complexity of the permanent and the hamiltonian of a matrix, and more generally, various generating functions of MSOL definable graph properties. Finally, our results are also applicable to SAT and ♯ SAT.
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(00)00221-3