Quantum computation in algebraic number theory: Hallgren’s efficient quantum algorithm for solving Pell’s equation

Pell’s equation is x 2− dy 2=1, where d is a square-free integer and we seek positive integer solutions x, y>0. Let ( x 0, y 0) be the smallest solution (i.e., having smallest A=x 0+y 0 d ). Lagrange showed that every solution can easily be constructed from A so given d it suffices to compute A....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics Jg. 306; H. 2; S. 241 - 279
1. Verfasser: Jozsa, Richard
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.08.2003
Schlagworte:
ISSN:0003-4916, 1096-035X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pell’s equation is x 2− dy 2=1, where d is a square-free integer and we seek positive integer solutions x, y>0. Let ( x 0, y 0) be the smallest solution (i.e., having smallest A=x 0+y 0 d ). Lagrange showed that every solution can easily be constructed from A so given d it suffices to compute A. It is known that A can be exponentially large in d so just to write down A we need exponential time in the input size log d . Hence we introduce the regulator R=ln A and ask for the value of R to n decimal places. The best known classical algorithm has sub-exponential running time O( exp log d , poly(n)) . Hallgren’s quantum algorithm gives the result in polynomial time O( poly( log d), poly(n)) with probability 1/ poly( log d) . The idea of the algorithm falls into two parts: using the formalism of algebraic number theory we convert the problem of solving Pell’s equation into the problem of determining R as the period of a function on the real numbers. Then we generalise the quantum Fourier transform period finding algorithm to work in this situation of an irrational period on the (not finitely generated) abelian group of real numbers. This paper is intended to be accessible to a reader having no prior acquaintance with algebraic number theory; we give a self-contained account of all the necessary concepts and we give elementary proofs of all the results needed. Then we go on to describe Hallgren’s generalisation of the quantum period finding algorithm, which provides the efficient computational solution of Pell’s equation in the above sense.
AbstractList Pell’s equation is x 2− dy 2=1, where d is a square-free integer and we seek positive integer solutions x, y>0. Let ( x 0, y 0) be the smallest solution (i.e., having smallest A=x 0+y 0 d ). Lagrange showed that every solution can easily be constructed from A so given d it suffices to compute A. It is known that A can be exponentially large in d so just to write down A we need exponential time in the input size log d . Hence we introduce the regulator R=ln A and ask for the value of R to n decimal places. The best known classical algorithm has sub-exponential running time O( exp log d , poly(n)) . Hallgren’s quantum algorithm gives the result in polynomial time O( poly( log d), poly(n)) with probability 1/ poly( log d) . The idea of the algorithm falls into two parts: using the formalism of algebraic number theory we convert the problem of solving Pell’s equation into the problem of determining R as the period of a function on the real numbers. Then we generalise the quantum Fourier transform period finding algorithm to work in this situation of an irrational period on the (not finitely generated) abelian group of real numbers. This paper is intended to be accessible to a reader having no prior acquaintance with algebraic number theory; we give a self-contained account of all the necessary concepts and we give elementary proofs of all the results needed. Then we go on to describe Hallgren’s generalisation of the quantum period finding algorithm, which provides the efficient computational solution of Pell’s equation in the above sense.
Author Jozsa, Richard
Author_xml – sequence: 1
  givenname: Richard
  surname: Jozsa
  fullname: Jozsa, Richard
  email: richard@cs.bris.ac.uk
  organization: Department of Computer Science, University of Bristol, Merchant Venturers Building, Bristol BS8 1UB, UK
BookMark eNqFkMFKAzEQhoNUsFYfQchRD6tJs5vd6kGkqBUKKip4C2ky20Z2k5rNFnrzNXw9n8TdbvHgpadhYL5_-L9D1LPOAkInlJxTQvnFCyGERfGI8lPCzpqFp1G2h_qUjHhEWPLeQ_2_kwN0WFUfhFAaJ1kfrZ5raUNdYuXKZR1kMM5iY7Es5jDz0ihs63IGHocFOL--xBNZFHMP9ufru8KQ50YZsAF_bmMaznkTFiXOnceVK1bGzvETFEUHNHftiyO0n8uiguPtHKC3u9vX8SSaPt4_jG-mkWIkDRGlOiWJjocjreJYs1zTFHKiiWSJ4pDFKXCqhjzTI85YPIPhLJcZTTlNYp1IxgboqstV3lWVh1wo05UMTblCUCJahWKjULR-RDM3CkXW0Mk_eulNKf16J3fdcdBUWxnwomotKdDGgwpCO7Mj4RdDNo-W
CitedBy_id crossref_primary_10_1080_00107510500293261
Cites_doi 10.1145/509907.510001
10.1109/5992.909000
ContentType Journal Article
Copyright 2003 Elsevier Science (USA)
Copyright_xml – notice: 2003 Elsevier Science (USA)
DBID AAYXX
CITATION
DOI 10.1016/S0003-4916(03)00067-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1096-035X
EndPage 279
ExternalDocumentID 10_1016_S0003_4916_03_00067_8
S0003491603000678
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LZ4
M37
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
TWZ
UNMZH
UPT
UQL
VH1
VQA
WH7
WUQ
XOL
XPP
XSW
YYP
ZCG
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-11d705d429dc44d3fd17ef0d0a35c6e847e61c268d96334be2bfa8176154d5a33
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184359900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-4916
IngestDate Sat Nov 29 02:08:05 EST 2025
Tue Nov 18 21:28:31 EST 2025
Fri Feb 23 02:18:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quantum Fourier transform
Quantum algorithms
Pell’s equation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-11d705d429dc44d3fd17ef0d0a35c6e847e61c268d96334be2bfa8176154d5a33
PageCount 39
ParticipantIDs crossref_citationtrail_10_1016_S0003_4916_03_00067_8
crossref_primary_10_1016_S0003_4916_03_00067_8
elsevier_sciencedirect_doi_10_1016_S0003_4916_03_00067_8
PublicationCentury 2000
PublicationDate 2003-08-01
PublicationDateYYYYMMDD 2003-08-01
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-08-01
  day: 01
PublicationDecade 2000
PublicationTitle Annals of physics
PublicationYear 2003
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ireland, Rosen (BIB9) 1990; vol. 84
Jozsa (BIB8) 2001; March/April
P. Shor, Polynomial time algorithms for prime factorisation and discrete logarithms on a quantum computer, in: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society, Los Alamitos, p. 124 (Extended Abstract). Full version of this paper appears in SIAM J. Comput. 26 (1997) 1484–1510
Buchmann, Thiel, Williams (BIB3) 1995; vol. 325
Lenstra (BIB4) 1982; vol. 56
Lenstra (BIB5) 2002; 49
Buchmann, Williams (BIB13) 1989; vol. 435
Cohen (BIB2) 1993; vol. 138
Hardy, Wright (BIB12) 1965
S. Hallgren, Polynomial time quantum algorithms or Pell’s equation and the principal ideal problem, in: Symposium on the theory of computation STOC, May 2002
Williams (BIB7) 2002
D. Shanks, The infrastructure of real quadratic fields and its applications, in: Proc. 1972 Number Theory Conference, Boulder, Colorado, 1972, pp. 217–224
BIB10
10.1016/S0003-4916(03)00067-8_BIB6
Jozsa (10.1016/S0003-4916(03)00067-8_BIB8) 2001; March/April
Lenstra (10.1016/S0003-4916(03)00067-8_BIB5) 2002; 49
10.1016/S0003-4916(03)00067-8_BIB11
Hardy (10.1016/S0003-4916(03)00067-8_BIB12) 1965
Lenstra (10.1016/S0003-4916(03)00067-8_BIB4) 1982; vol. 56
Williams (10.1016/S0003-4916(03)00067-8_BIB7) 2002
Buchmann (10.1016/S0003-4916(03)00067-8_BIB13) 1989; vol. 435
10.1016/S0003-4916(03)00067-8_BIB1
Cohen (10.1016/S0003-4916(03)00067-8_BIB2) 1993; vol. 138
Buchmann (10.1016/S0003-4916(03)00067-8_BIB3) 1995; vol. 325
Ireland (10.1016/S0003-4916(03)00067-8_BIB9) 1990; vol. 84
References_xml – volume: vol. 325
  start-page: 159
  year: 1995
  end-page: 185
  ident: BIB3
  article-title: Short representation of quadratic integers
  publication-title: Computational Algebra and Number Theory
– reference: D. Shanks, The infrastructure of real quadratic fields and its applications, in: Proc. 1972 Number Theory Conference, Boulder, Colorado, 1972, pp. 217–224
– year: 1965
  ident: BIB12
  article-title: An Introduction to the Theory of Numbers
– year: 2002
  ident: BIB7
  article-title: Solving the Pell equation
  publication-title: Proceedings of the Millennial Conference on Number Theory
– reference: P. Shor, Polynomial time algorithms for prime factorisation and discrete logarithms on a quantum computer, in: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society, Los Alamitos, p. 124 (Extended Abstract). Full version of this paper appears in SIAM J. Comput. 26 (1997) 1484–1510
– volume: vol. 138
  year: 1993
  ident: BIB2
  publication-title: A course in computational algebraic number theory
– volume: vol. 84
  year: 1990
  ident: BIB9
  article-title: A classical introduction to modern number theory
  publication-title: Graduate Texts in Mathematics
– ident: BIB10
– volume: vol. 56
  start-page: 123
  year: 1982
  end-page: 150
  ident: BIB4
  article-title: On the computation of regulators and class numbers in quadratic number fields
  publication-title: London Mathematical Society Lecture Note Series
– reference: S. Hallgren, Polynomial time quantum algorithms or Pell’s equation and the principal ideal problem, in: Symposium on the theory of computation STOC, May 2002
– volume: 49
  start-page: 182
  year: 2002
  end-page: 192
  ident: BIB5
  article-title: Solving Pell’s equation
  publication-title: Notices Am. Math. Soc.
– volume: March/April
  start-page: 34
  year: 2001
  end-page: 43
  ident: BIB8
  article-title: Quantum factoring, discrete logarithms and the hidden subgroup problem
  publication-title: Comp. Sci. Eng.
– volume: vol. 435
  start-page: 335
  year: 1989
  end-page: 343
  ident: BIB13
  article-title: A key exchange system based on real quadratic fields
  publication-title: Advances in Cryptology—CRYPTO’89
– ident: 10.1016/S0003-4916(03)00067-8_BIB11
– volume: vol. 84
  year: 1990
  ident: 10.1016/S0003-4916(03)00067-8_BIB9
  article-title: A classical introduction to modern number theory
– volume: vol. 138
  year: 1993
  ident: 10.1016/S0003-4916(03)00067-8_BIB2
– volume: 49
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/S0003-4916(03)00067-8_BIB5
  article-title: Solving Pell’s equation
  publication-title: Notices Am. Math. Soc.
– ident: 10.1016/S0003-4916(03)00067-8_BIB1
  doi: 10.1145/509907.510001
– volume: vol. 435
  start-page: 335
  year: 1989
  ident: 10.1016/S0003-4916(03)00067-8_BIB13
  article-title: A key exchange system based on real quadratic fields
– year: 1965
  ident: 10.1016/S0003-4916(03)00067-8_BIB12
– volume: vol. 56
  start-page: 123
  year: 1982
  ident: 10.1016/S0003-4916(03)00067-8_BIB4
  article-title: On the computation of regulators and class numbers in quadratic number fields
– ident: 10.1016/S0003-4916(03)00067-8_BIB6
– volume: vol. 325
  start-page: 159
  year: 1995
  ident: 10.1016/S0003-4916(03)00067-8_BIB3
  article-title: Short representation of quadratic integers
– year: 2002
  ident: 10.1016/S0003-4916(03)00067-8_BIB7
  article-title: Solving the Pell equation
– volume: March/April
  start-page: 34
  year: 2001
  ident: 10.1016/S0003-4916(03)00067-8_BIB8
  article-title: Quantum factoring, discrete logarithms and the hidden subgroup problem
  publication-title: Comp. Sci. Eng.
  doi: 10.1109/5992.909000
SSID ssj0011458
Score 1.6997377
Snippet Pell’s equation is x 2− dy 2=1, where d is a square-free integer and we seek positive integer solutions x, y>0. Let ( x 0, y 0) be the smallest solution (i.e.,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 241
SubjectTerms Pell’s equation
Quantum algorithms
Quantum Fourier transform
Title Quantum computation in algebraic number theory: Hallgren’s efficient quantum algorithm for solving Pell’s equation
URI https://dx.doi.org/10.1016/S0003-4916(03)00067-8
Volume 306
WOSCitedRecordID wos000184359900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-035X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011458
  issn: 0003-4916
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ti9QwEA7rnoJf5HzDU0_ywQPlqDZJX9L7dsjJKXKs3An7raRJqoW97rm7XQ7xg3_Dv-cvuUmTptUT30AWukthGjbzZDKZPjOD0GNQKs2KSAYZC3kQlVoGYAMTWHicapooEqu2a8mb9OiIT6fZZDT63OXCrGdpXfPz8-zsv6oa7oGyTersX6jbPxRuwG9QOlxB7XD9I8W_bWCymtOWLN44LmFV75p-HnAyruSubQJiUxjbek-HYjZ7b5qrOOJDtjQ0j6pNlTRZl-3jQH6-qFYfTltiIvyFNhIxMa8tBmIfm17Tl0o02yhKz1mcf1qKH5L7fQCCefqbi4p1mTHfETfNWSuIMuLKXFvjGhrCM4unQ-vLwmQAMzq0pbYiltuWqe05c8ni2-DDsR9vx7Tb2qFZuw8HvN_mPPnw2BblMf217WZ9BW3QNM74GG3svzqYvvZvoUgU867johHoM8Ce9wM-CdlTN9jPfZuBv3KyiW64gwbetwC5iUa6voWuTawKbqO1gwkewARXNfYwwRYm2MJkD3cg-fbl6xJ7eGAHD-zhgQEe2MEDG3hYAQeMO-jdy4OTF4eB68ERSLD-q4AQlYaxAq9FyShSrFQk1WWoQsFimWhY1zohkiZcgSVnUaFpUQpOUnCUIxULxu6icT2v9T2E4aQg4UOyFPxCoUqhC05JkcQ6EYLodAtF3ezl0hWoN31SZnnPRIRJz82k5_DdTnrOt9AzL3ZmK7T8ToB3qsmdm2ndxxww9WvR-_8u-gBd7xfPQzReLRq9ja7K9apaLh455F0A_MKeKQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+computation+in+algebraic+number+theory%3A+Hallgren%E2%80%99s+efficient+quantum+algorithm+for+solving+Pell%E2%80%99s+equation&rft.jtitle=Annals+of+physics&rft.au=Jozsa%2C+Richard&rft.date=2003-08-01&rft.pub=Elsevier+Inc&rft.issn=0003-4916&rft.eissn=1096-035X&rft.volume=306&rft.issue=2&rft.spage=241&rft.epage=279&rft_id=info:doi/10.1016%2FS0003-4916%2803%2900067-8&rft.externalDocID=S0003491603000678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4916&client=summon