Neumann-Neumann methods for a DG discretization on geometrically nonconforming substructures

A discontinuous Galerkin discretization for second order elliptic equations with discontinuous coefficients in 2D is considered. The domain of interest Ω is assumed to be a union of polygonal substructures Ωi of size O(Hi). We allow this substructure decomposition to be geometrically nonconforming....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical methods for partial differential equations Ročník 28; číslo 4; s. 1194 - 1226
Hlavní autoři: Dryja, Maksymilian, Galvis, Juan, Sarkis, Marcus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2012
Témata:
ISSN:0749-159X, 1098-2426
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A discontinuous Galerkin discretization for second order elliptic equations with discontinuous coefficients in 2D is considered. The domain of interest Ω is assumed to be a union of polygonal substructures Ωi of size O(Hi). We allow this substructure decomposition to be geometrically nonconforming. Inside each substructure Ωi, a conforming finite element space associated to a triangulation \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} {\mathcal{T}}_{h_i}(\Omega_i)\end{align*}\end{document} is introduced. To handle the nonmatching meshes across ∂Ωi, a discontinuous Galerkin discretization is considered. In this article, additive and hybrid Neumann‐Neumann Schwarz methods are designed and analyzed. Under natural assumptions on the coefficients and on the mesh sizes across ∂Ωi, a condition number estimate \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} C(1 + \max_i\log \frac{H_i}{h_i})^2\end{align*}\end{document} is established with C independent of hi, Hi, hi/hj, and the jumps of the coefficients. The method is well suited for parallel computations and can be straightforwardly extended to three dimensional problems. Numerical results are included. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012
AbstractList A discontinuous Galerkin discretization for second order elliptic equations with discontinuous coefficients in 2D is considered. The domain of interest Ω is assumed to be a union of polygonal substructures Ωi of size O(Hi). We allow this substructure decomposition to be geometrically nonconforming. Inside each substructure Ωi, a conforming finite element space associated to a triangulation \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} {\mathcal{T}}_{h_i}(\Omega_i)\end{align*}\end{document} is introduced. To handle the nonmatching meshes across ∂Ωi, a discontinuous Galerkin discretization is considered. In this article, additive and hybrid Neumann‐Neumann Schwarz methods are designed and analyzed. Under natural assumptions on the coefficients and on the mesh sizes across ∂Ωi, a condition number estimate \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} C(1 + \max_i\log \frac{H_i}{h_i})^2\end{align*}\end{document} is established with C independent of hi, Hi, hi/hj, and the jumps of the coefficients. The method is well suited for parallel computations and can be straightforwardly extended to three dimensional problems. Numerical results are included. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012
A discontinuous Galerkin discretization for second order elliptic equations with discontinuous coefficients in 2D is considered. The domain of interest Ω is assumed to be a union of polygonal substructures Ω i of size O ( H i ). We allow this substructure decomposition to be geometrically nonconforming. Inside each substructure Ω i , a conforming finite element space associated to a triangulation \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} {\mathcal{T}}_{h_i}(\Omega_i)\end{align*}\end{document} is introduced. To handle the nonmatching meshes across ∂ Ω i , a discontinuous Galerkin discretization is considered. In this article, additive and hybrid Neumann‐Neumann Schwarz methods are designed and analyzed. Under natural assumptions on the coefficients and on the mesh sizes across ∂ Ω i , a condition number estimate \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} C(1 + \max_i\log \frac{H_i}{h_i})^2\end{align*}\end{document} is established with C independent of h i , H i , h i / h j , and the jumps of the coefficients. The method is well suited for parallel computations and can be straightforwardly extended to three dimensional problems. Numerical results are included. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012
Author Sarkis, Marcus
Galvis, Juan
Dryja, Maksymilian
Author_xml – sequence: 1
  givenname: Maksymilian
  surname: Dryja
  fullname: Dryja, Maksymilian
  organization: Department of Mathematics, Warsaw University, Warsaw 02-097, Poland
– sequence: 2
  givenname: Juan
  surname: Galvis
  fullname: Galvis, Juan
  organization: Department of Mathematics, Texas A&M University, College Station, Texas 3368
– sequence: 3
  givenname: Marcus
  surname: Sarkis
  fullname: Sarkis, Marcus
  email: msarkis@wpi.edu
  organization: Instituto Nacional de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina, Rio de Janeiro, Brazil
BookMark eNp9kMtOwzAQRS0EEm1hwR9kyyKtH3EcL1EL4VHKohRYIFmO4xRDHsh2BOXrCW1hgQTSSLM552rm9sFu3dQagCMEhwhCPKrbaohhzJId0EOQJyGOcLwLepBFPESUP-yDvnPPECJEEe-Bx5luK1nX4XYHlfZPTe6CorGBDCZpkBunrPbmQ3rT1EE3S910lDVKluUq6A5QTd3hlamXgWsz522rfGu1OwB7hSydPtzuAVicnd6Oz8PpTXoxPpmGikCWhAlWBco4o0nBecxhlkMK86jQqKC4oIypOI5URjJFciyRgjnFkkPKcsKIxJoMwPEmV9nGOasL8WpNJe1KICi-ahFdLWJdS8eOfrHK-PVr3kpT_me8mVKv_o4Ws8X1txFuDOO8fv8xpH0RMSOMivtZKq7ml4jcTVIxJ59dAofE
CitedBy_id crossref_primary_10_1090_S0025_5718_2013_02760_3
crossref_primary_10_1137_100796571
crossref_primary_10_1007_s00211_015_0705_x
crossref_primary_10_1007_s10092_014_0117_9
Cites_doi 10.1142/S0218202508002619
10.1137/0731086
10.1007/s10915-009-9293-1
10.1137/070697859
10.1002/num.20359
10.1090/S0025-5718-03-01484-4
10.2478/cmam-2003-0007
10.1137/S1064827502410657
10.1002/cpa.3160480203
10.2478/cmam-2001-0024
10.1002/cnm.1640090307
10.1002/nla.544
10.1090/S0025-5718-96-00757-0
10.1137/S0036142900378480
10.1007/s002110200392
10.1016/j.jco.2006.10.003
10.1051/m2an:2007006
10.1137/060667372
10.1016/j.jco.2007.02.003
10.1137/050634736
10.1137/S1064827596305593
10.1002/num.20293
10.1007/s002110050292
10.1007/s00211-005-0641-2
10.1007/b137868
10.1007/s002110050172
10.1137/S0036142901384162
10.1090/conm/180/01963
10.1002/nla.504
10.1137/0719052
10.1051/m2an:2008012
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/num.20678
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 1226
ExternalDocumentID 10_1002_num_20678
NUM20678
ark_67375_WNG_KSJ13VDG_S
Genre article
GrantInformation_xml – fundername: Polish Sciences Foundation
  funderid: NN201006933
– fundername: CNPq/Brazil
  funderid: 300964/2006‐4
– fundername: PEC‐PG‐CAPES/Brazil
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c3078-82cf1b9758f99690bd050d4fe1f52f577c664cb3bc3d2a1c0d52a9057d373a2e3
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303052000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-159X
IngestDate Sat Nov 29 05:35:11 EST 2025
Tue Nov 18 22:37:41 EST 2025
Wed Jan 22 16:57:54 EST 2025
Sun Sep 21 06:23:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3078-82cf1b9758f99690bd050d4fe1f52f577c664cb3bc3d2a1c0d52a9057d373a2e3
Notes ark:/67375/WNG-KSJ13VDG-S
ArticleID:NUM20678
istex:2A9695517EBE0016CABE667A37EEF642DB860B68
Polish Sciences Foundation - No. NN201006933
PEC-PG-CAPES/Brazil
CNPq/Brazil - No. 300964/2006-4
PageCount 33
ParticipantIDs crossref_primary_10_1002_num_20678
crossref_citationtrail_10_1002_num_20678
wiley_primary_10_1002_num_20678_NUM20678
istex_primary_ark_67375_WNG_KSJ13VDG_S
PublicationCentury 2000
PublicationDate 2012-07
July 2012
2012-07-00
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Numerical methods for partial differential equations
PublicationTitleAlternate Numer. Methods Partial Differential Eq
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References M. Dryja and O. B. Widlund, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Commun Pure Appl Math 48 ( 1995), 121-155.
I. Herrera, New formulation of iterative substructuring methods without Lagrange multipliers: Neumann-Neumann and FETI, Numer Methods Partial Differential Equations 24 ( 2008), 845-878.
D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal 39 ( 2001/02), 1749-1779. (electronic).
A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory, Vol. 34, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2005.
J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients, Math Comp 65 ( 1996), 1387-1401.
J. Mandel, Balancing domain decomposition, Commun Numer Methods Eng 9 ( 1993), 233-241.
S. C. Brenner and K. Wang, Two-level additive Schwarz preconditioners for C0 interior penalty methods, Numer Math 102 ( 2005), 231-255.
M. Dryja, B. F. Smith, and O. B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, SIAM J Numer Anal 31 ( 1994), 1662-1694.
V. A. Dobrev, R. D. Lazarov, P. S. Vassilevski, and L. T. Zikatanov, Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations, Numer Linear Algebra Appl 13 ( 2006), 753-770.
M. Sarkis, Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements, Numer Math 77 ( 1997), 383-406.
G. Kanschat, Preconditioning methods for local discontinuous Galerkin discretizations, SIAM J Sci Comput 25 ( 2003), 815-831. (electronic).
J. Xu and Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients, Math Models Methods Appl Sci 18 ( 2008), 77-105.
I. G. Graham and M. J. Hagger, Unstructured additive Schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients, SIAM J Sci Comput 20 ( 1999), 2041-2066. (electronic).
J. K. Kraus and S. K. Tomar, Multilevel preconditioning of two-dimensional elliptic problems discretized by a class of discontinuous Galerkin methods, SIAM J Sci Comput 30 ( 2008), 684-706.
B. A. de Dios and L. Zikatanov, Uniformly convergent iterative methods for discontinuous Galerkin discretizations, J Sci Comput 40 ( 2009), 4-36.
R. D. Lazarov, S. Z. Tomov, and P. S. Vassilevski, Interior penalty discontinuous approximations of elliptic problems, Comput Methods Appl Math 1 ( 2001), 367-382.
J. K. Kraus and S. K. Tomar, A multilevel method for discontinuous Galerkin approximation of three-dimensional anisotropic elliptic problems, Numer Linear Algebra Appl 15 ( 2008), 417-438.
C. Lasser and A. Toselli, An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems, Math Comput 72 ( 2003), 1215-1238. (electronic).
P. F. Antonietti and B. Ayuso, Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems, M2AN Math Model Numer Anal 42 ( 2008), 443-469.
P. F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case, M2AN Math Model Numer Anal 41 ( 2007), 21-54.
M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer Math 72 ( 1996), 313-348.
M. Dryja, J. Galvis, and M. Sarkis, BDDC methods for discontinuous Galerkin discretization of elliptic problems, J Complex 23 ( 2007), 715-739.
X. Feng and O. A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J Numer Anal 39 ( 2001), 1343-1365. (electronic).
J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method, Numer Math 95 ( 2003), 527-550.
R. D. Lazarov and S. D. Margenov, CBS constants for multilevel splitting of graph-Laplacian and application to preconditioning of discontinuous Galerkin systems, J Complex 23 ( 2007), 498-515.
H. H. Kim, M. Dryja, and O. B. Widlund, A BDCC method for mortar discretizations using a transformation of basis, SIAM J Numer Anal 47 ( 2008), 136-157.
I. Herrera and R. A. Yates, Unified multipliers-free theory of dual-primal domain decomposition methods, Numer Methods Partial Differential Equations 25 ( 2009), 552-581.
E. Burman and P. Zunino, A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems, SIAM J Numer Anal 44 ( 2006), 1612-1638. (electronic).
D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J Numer Anal 19 ( 1982), 742-760.
M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients, Comput Methods Appl Math 3 ( 2003), 76-85. (electronic); dedicated to Raytcho Lazarov.
1993; 9
2009; 25
2009; 40
1982; 19
2006; 13
2008; 18
1996; 72
2008
2008; 15
1999; 20
1994
2008; 30
2002
2003; 72
2001/02; 39
2003; 95
1997; 77
1995; 48
2006; 44
2005; 102
2008; 47
2003; 3
2003; 25
2008; 24
2001; 39
2001; 1
2007; 41
2008; 42
2007; 23
1996; 65
2005; 34
1994; 31
e_1_2_12_3_2
e_1_2_12_5_2
e_1_2_12_19_2
e_1_2_12_18_2
e_1_2_12_17_2
e_1_2_12_15_2
Dryja M. (e_1_2_12_2_2) 2003; 3
Rivière B. (e_1_2_12_4_2) 2008
e_1_2_12_20_2
e_1_2_12_21_2
e_1_2_12_22_2
e_1_2_12_23_2
e_1_2_12_24_2
e_1_2_12_25_2
e_1_2_12_26_2
e_1_2_12_27_2
e_1_2_12_28_2
e_1_2_12_29_2
Dryja M. (e_1_2_12_34_2) 2008
e_1_2_12_30_2
e_1_2_12_31_2
e_1_2_12_32_2
Feng X. (e_1_2_12_16_2) 2002
e_1_2_12_33_2
e_1_2_12_35_2
e_1_2_12_14_2
e_1_2_12_13_2
e_1_2_12_12_2
e_1_2_12_11_2
e_1_2_12_7_2
e_1_2_12_10_2
e_1_2_12_6_2
e_1_2_12_9_2
e_1_2_12_8_2
References_xml – reference: J. Xu and Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients, Math Models Methods Appl Sci 18 ( 2008), 77-105.
– reference: E. Burman and P. Zunino, A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems, SIAM J Numer Anal 44 ( 2006), 1612-1638. (electronic).
– reference: J. Mandel, Balancing domain decomposition, Commun Numer Methods Eng 9 ( 1993), 233-241.
– reference: H. H. Kim, M. Dryja, and O. B. Widlund, A BDCC method for mortar discretizations using a transformation of basis, SIAM J Numer Anal 47 ( 2008), 136-157.
– reference: I. Herrera, New formulation of iterative substructuring methods without Lagrange multipliers: Neumann-Neumann and FETI, Numer Methods Partial Differential Equations 24 ( 2008), 845-878.
– reference: M. Dryja, B. F. Smith, and O. B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, SIAM J Numer Anal 31 ( 1994), 1662-1694.
– reference: S. C. Brenner and K. Wang, Two-level additive Schwarz preconditioners for C0 interior penalty methods, Numer Math 102 ( 2005), 231-255.
– reference: D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J Numer Anal 19 ( 1982), 742-760.
– reference: I. G. Graham and M. J. Hagger, Unstructured additive Schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients, SIAM J Sci Comput 20 ( 1999), 2041-2066. (electronic).
– reference: V. A. Dobrev, R. D. Lazarov, P. S. Vassilevski, and L. T. Zikatanov, Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations, Numer Linear Algebra Appl 13 ( 2006), 753-770.
– reference: J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method, Numer Math 95 ( 2003), 527-550.
– reference: M. Dryja, J. Galvis, and M. Sarkis, BDDC methods for discontinuous Galerkin discretization of elliptic problems, J Complex 23 ( 2007), 715-739.
– reference: A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory, Vol. 34, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2005.
– reference: M. Dryja and O. B. Widlund, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Commun Pure Appl Math 48 ( 1995), 121-155.
– reference: C. Lasser and A. Toselli, An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems, Math Comput 72 ( 2003), 1215-1238. (electronic).
– reference: J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients, Math Comp 65 ( 1996), 1387-1401.
– reference: P. F. Antonietti and B. Ayuso, Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems, M2AN Math Model Numer Anal 42 ( 2008), 443-469.
– reference: J. K. Kraus and S. K. Tomar, Multilevel preconditioning of two-dimensional elliptic problems discretized by a class of discontinuous Galerkin methods, SIAM J Sci Comput 30 ( 2008), 684-706.
– reference: X. Feng and O. A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J Numer Anal 39 ( 2001), 1343-1365. (electronic).
– reference: M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer Math 72 ( 1996), 313-348.
– reference: I. Herrera and R. A. Yates, Unified multipliers-free theory of dual-primal domain decomposition methods, Numer Methods Partial Differential Equations 25 ( 2009), 552-581.
– reference: G. Kanschat, Preconditioning methods for local discontinuous Galerkin discretizations, SIAM J Sci Comput 25 ( 2003), 815-831. (electronic).
– reference: D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal 39 ( 2001/02), 1749-1779. (electronic).
– reference: M. Sarkis, Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements, Numer Math 77 ( 1997), 383-406.
– reference: P. F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case, M2AN Math Model Numer Anal 41 ( 2007), 21-54.
– reference: J. K. Kraus and S. K. Tomar, A multilevel method for discontinuous Galerkin approximation of three-dimensional anisotropic elliptic problems, Numer Linear Algebra Appl 15 ( 2008), 417-438.
– reference: M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients, Comput Methods Appl Math 3 ( 2003), 76-85. (electronic); dedicated to Raytcho Lazarov.
– reference: R. D. Lazarov and S. D. Margenov, CBS constants for multilevel splitting of graph-Laplacian and application to preconditioning of discontinuous Galerkin systems, J Complex 23 ( 2007), 498-515.
– reference: R. D. Lazarov, S. Z. Tomov, and P. S. Vassilevski, Interior penalty discontinuous approximations of elliptic problems, Comput Methods Appl Math 1 ( 2001), 367-382.
– reference: B. A. de Dios and L. Zikatanov, Uniformly convergent iterative methods for discontinuous Galerkin discretizations, J Sci Comput 40 ( 2009), 4-36.
– volume: 23
  start-page: 498
  year: 2007
  end-page: 515
  article-title: CBS constants for multilevel splitting of graph‐Laplacian and application to preconditioning of discontinuous Galerkin systems
  publication-title: J Complex
– start-page: 237
  year: 2002
  end-page: 245
– volume: 95
  start-page: 527
  year: 2003
  end-page: 550
  article-title: A multilevel discontinuous Galerkin method
  publication-title: Numer Math
– volume: 25
  start-page: 815
  year: 2003
  end-page: 831
  article-title: Preconditioning methods for local discontinuous Galerkin discretizations
  publication-title: SIAM J Sci Comput
– volume: 3
  start-page: 76
  year: 2003
  end-page: 85
  article-title: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients
  publication-title: Comput Methods Appl Math
– volume: 42
  start-page: 443
  year: 2008
  end-page: 469
  article-title: Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems
  publication-title: M2AN Math Model Numer Anal
– volume: 39
  start-page: 1343
  year: 2001
  end-page: 1365
  article-title: Two‐level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems
  publication-title: SIAM J Numer Anal
– volume: 72
  start-page: 1215
  year: 2003
  end-page: 1238
  article-title: An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection‐diffusion problems
  publication-title: Math Comput
– volume: 65
  start-page: 1387
  year: 1996
  end-page: 1401
  article-title: Balancing domain decomposition for problems with large jumps in coefficients
  publication-title: Math Comp
– volume: 18
  start-page: 77
  year: 2008
  end-page: 105
  article-title: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients
  publication-title: Math Models Methods Appl Sci
– volume: 72
  start-page: 313
  year: 1996
  end-page: 348
  article-title: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions
  publication-title: Numer Math
– volume: 44
  start-page: 1612
  year: 2006
  end-page: 1638
  article-title: A domain decomposition method based on weighted interior penalties for advection‐diffusion‐reaction problems
  publication-title: SIAM J Numer Anal
– start-page: 119
  year: 1994
  end-page: 124
– start-page: 409
  year: 2008
  end-page: 416
– volume: 13
  start-page: 753
  year: 2006
  end-page: 770
  article-title: Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations
  publication-title: Numer Linear Algebra Appl
– volume: 48
  start-page: 121
  year: 1995
  end-page: 155
  article-title: Schwarz methods of Neumann‐Neumann type for three‐dimensional elliptic finite element problems
  publication-title: Commun Pure Appl Math
– volume: 23
  start-page: 715
  year: 2007
  end-page: 739
  article-title: BDDC methods for discontinuous Galerkin discretization of elliptic problems
  publication-title: J Complex
– volume: 47
  start-page: 136
  year: 2008
  end-page: 157
  article-title: A BDCC method for mortar discretizations using a transformation of basis
  publication-title: SIAM J Numer Anal
– volume: 102
  start-page: 231
  year: 2005
  end-page: 255
  article-title: Two‐level additive Schwarz preconditioners for interior penalty methods
  publication-title: Numer Math
– volume: 30
  start-page: 684
  year: 2008
  end-page: 706
  article-title: Multilevel preconditioning of two‐dimensional elliptic problems discretized by a class of discontinuous Galerkin methods
  publication-title: SIAM J Sci Comput
– volume: 19
  start-page: 742
  year: 1982
  end-page: 760
  article-title: An interior penalty finite element method with discontinuous elements
  publication-title: SIAM J Numer Anal
– volume: 34
  year: 2005
– volume: 20
  start-page: 2041
  year: 1999
  end-page: 2066
  article-title: Unstructured additive Schwarz‐conjugate gradient method for elliptic problems with highly discontinuous coefficients
  publication-title: SIAM J Sci Comput
– volume: 25
  start-page: 552
  year: 2009
  end-page: 581
  article-title: Unified multipliers‐free theory of dual‐primal domain decomposition methods
  publication-title: Numer Methods Partial Differential Equations
– volume: 39
  start-page: 1749
  year: 2001/02
  end-page: 1779
  article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems
  publication-title: SIAM J Numer Anal
– year: 2008
– volume: 41
  start-page: 21
  year: 2007
  end-page: 54
  article-title: Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non‐overlapping case
  publication-title: M2AN Math Model Numer Anal
– volume: 31
  start-page: 1662
  year: 1994
  end-page: 1694
  article-title: Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions
  publication-title: SIAM J Numer Anal
– volume: 40
  start-page: 4
  year: 2009
  end-page: 36
  article-title: Uniformly convergent iterative methods for discontinuous Galerkin discretizations
  publication-title: J Sci Comput
– volume: 24
  start-page: 845
  year: 2008
  end-page: 878
  article-title: New formulation of iterative substructuring methods without Lagrange multipliers: Neumann‐Neumann and FETI
  publication-title: Numer Methods Partial Differential Equations
– volume: 9
  start-page: 233
  year: 1993
  end-page: 241
  article-title: Balancing domain decomposition
  publication-title: Commun Numer Methods Eng
– volume: 1
  start-page: 367
  year: 2001
  end-page: 382
  article-title: Interior penalty discontinuous approximations of elliptic problems
  publication-title: Comput Methods Appl Math
– volume: 77
  start-page: 383
  year: 1997
  end-page: 406
  article-title: Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non‐conforming elements
  publication-title: Numer Math
– volume: 15
  start-page: 417
  year: 2008
  end-page: 438
  article-title: A multilevel method for discontinuous Galerkin approximation of three‐dimensional anisotropic elliptic problems
  publication-title: Numer Linear Algebra Appl
– ident: e_1_2_12_30_2
  doi: 10.1142/S0218202508002619
– ident: e_1_2_12_32_2
  doi: 10.1137/0731086
– volume-title: Frontiers in Applied Mathematics
  year: 2008
  ident: e_1_2_12_4_2
– ident: e_1_2_12_28_2
  doi: 10.1007/s10915-009-9293-1
– ident: e_1_2_12_12_2
  doi: 10.1137/070697859
– ident: e_1_2_12_13_2
  doi: 10.1002/num.20359
– ident: e_1_2_12_17_2
  doi: 10.1090/S0025-5718-03-01484-4
– volume: 3
  start-page: 76
  year: 2003
  ident: e_1_2_12_2_2
  article-title: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients
  publication-title: Comput Methods Appl Math
  doi: 10.2478/cmam-2003-0007
– ident: e_1_2_12_24_2
  doi: 10.1137/S1064827502410657
– ident: e_1_2_12_7_2
  doi: 10.1002/cpa.3160480203
– ident: e_1_2_12_22_2
  doi: 10.2478/cmam-2001-0024
– ident: e_1_2_12_8_2
  doi: 10.1002/cnm.1640090307
– ident: e_1_2_12_27_2
  doi: 10.1002/nla.544
– ident: e_1_2_12_9_2
  doi: 10.1090/S0025-5718-96-00757-0
– ident: e_1_2_12_15_2
  doi: 10.1137/S0036142900378480
– ident: e_1_2_12_23_2
  doi: 10.1007/s002110200392
– ident: e_1_2_12_25_2
  doi: 10.1016/j.jco.2006.10.003
– start-page: 237
  volume-title: Domain decomposition methods in science and engineering (Lyon, 2000), Theory Engineering Applications and Computational Methods
  year: 2002
  ident: e_1_2_12_16_2
– ident: e_1_2_12_19_2
  doi: 10.1051/m2an:2007006
– ident: e_1_2_12_26_2
  doi: 10.1137/060667372
– ident: e_1_2_12_5_2
  doi: 10.1016/j.jco.2007.02.003
– ident: e_1_2_12_6_2
  doi: 10.1137/050634736
– ident: e_1_2_12_31_2
  doi: 10.1137/S1064827596305593
– ident: e_1_2_12_14_2
  doi: 10.1002/num.20293
– ident: e_1_2_12_11_2
  doi: 10.1007/s002110050292
– ident: e_1_2_12_18_2
  doi: 10.1007/s00211-005-0641-2
– ident: e_1_2_12_10_2
  doi: 10.1007/b137868
– ident: e_1_2_12_29_2
  doi: 10.1007/s002110050172
– start-page: 409
  volume-title: Domain decomposition methods in science and engineering XVII
  year: 2008
  ident: e_1_2_12_34_2
– ident: e_1_2_12_3_2
  doi: 10.1137/S0036142901384162
– ident: e_1_2_12_33_2
  doi: 10.1090/conm/180/01963
– ident: e_1_2_12_21_2
  doi: 10.1002/nla.504
– ident: e_1_2_12_35_2
  doi: 10.1137/0719052
– ident: e_1_2_12_20_2
  doi: 10.1051/m2an:2008012
SSID ssj0011519
Score 1.9669472
Snippet A discontinuous Galerkin discretization for second order elliptic equations with discontinuous coefficients in 2D is considered. The domain of interest Ω is...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 1194
SubjectTerms discontinuous Galerkin method
elliptic problems with discontinuous coefficients
finite element method
interior penalty discretization
Neumann-Neumann algorithms
nonconforming decomposition
preconditioners
Schwarz methods
Title Neumann-Neumann methods for a DG discretization on geometrically nonconforming substructures
URI https://api.istex.fr/ark:/67375/WNG-KSJ13VDG-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.20678
Volume 28
WOSCitedRecordID wos000303052000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9sYiIl9C8NtvgSaytqA1irfZk2EciYo1iVPTmT_A3-kucTdJgQUEQctjD5MHMzs43m51vALbQripmnmlQKbjhupQbwhHU8D0rZhzjWcRU1myCBUGj3_dPx2B3WAuT80OUG27aM7L1Wjs4F2n9G2nosy4kx7V2HKo2zltagWrzrNU7KX8iYDDzcxZO38Co3R8SC5l2vbx5JBxVtWZfR2FqFmdaM__6wlmYLuAl2cvnwxyMRck8THVKbtZ0Aa6CSG_cJ5_vH8WI5G2kU4IAlnDSbBNdq6vLG_MaTYLXdXR_p5tvoUkHbyS5TzCP1ngXIx9JcfHJaGifMXdfhF7r4Hz_0Ci6LBgS_bthNGwZW8LHvCHG3Mc3hTKpqdw4smJqx5Qx6XmuRANKR9nckqaiNvcR5imHOdyOnCWo4FujZSCCaUYx4bomd13pOQKTF4XoHR2RM8UbNdgZKjuUBQW57oQxCHPyZFu3QQkzldVgsxR9yHk3fhLazixWSvDHW31QjdHwMmiHx90jy7lotsMuvjgz1O-PCoNeJxus_F10FSYRPhWHd9eggpqO1mFCvjzdpI8bxWz8AuAm5QE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7UFdSDb3F9BhHxUraPtGnBi7ju-tgtoq7uyZImrYhrV6yK3vwJ_kZ_iZO2WxQUBKGHHKZNmUdmJsl8A7CJcpUxc3TNFiHXKLW5FlqhrXmOETOO_ixiMms2wXzf7Xa9kyHYGdTC5PgQ5YabsoxsvVYGrjaka19QQ59UJTkutsNQoahGqN-V-mmj0ypPEdCbeTkMp6eh2-4OkIV0s1a-_M0fVRRrX77HqZmjaUz97xenYbIIMMlurhEzMBQlszDRLtFZ0zm48iO1dZ98vL0XI5I3kk4JhrCEk3qTqGpdVeCYV2kSfK6j_p1qv4VC7b2SpJ9gJq0iXvR9JMXlJwOifcLsfR46jf3zvQOt6LOgCbRwV3NNERuhh5lDjNmPp4dSt3VJ48iIbTO2GROOQwWKUFjS5IbQpW1yDwM9aTGLm5G1ACM4a7QIJGQKUyykVOeUCscKMX2RGL-jKXImuVuF7QG3A1GAkKteGL0gh082VSOUIGNZFTZK0vsceeMnoq1MZCUFf7hVV9WYHVz6zeD47MiwLurN4AwnziT1-6cCv9POBkt_J12HsYPzditoHfrHyzCOwVRxlXcFRpDr0SqMiufHm_RhrVDNT5Qv6PE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdGDb7E-FxHxEprHJtuAF7G2PkOxVnsybHY3ItYqrRW9-RP8jf4SZ5M0KCgIQg57mDyY2dn5ZrPzDcAW2lXGzDMNV0TcoNTlRuREruF7Vsw4xjPFZNJsggVBpd32GyOwO6yFSfkh8g037RnJeq0dXD3KuPyFNXSgK8lxsR2FItVNZApQrJ7XWqf5XwSMZn5Kw-kbGLbbQ2Yh0y7nN3-LR0Wt2pfvODUJNLXp_33iDExlAJPspTNiFkZUdw4mz3J21v48XAdKb913P97esxFJG0n3CUJYwkm1TnS1ri5wTKs0CV436uFet99Co3ZeSfehi5m0RrwY-0gfl5-EiHaA2fsCtGoHF_uHRtZnwRDo4RWjYovYinzMHGLMfnwzkqZrShorK3bt2GVMeB4VaELhSJtbwpSuzX0EetJhDreVswgFfKtaAhIxzSkWUWpySoXnRJi-SMTv6IqcSV4pwc5Q26HISMh1L4xOmNIn27oRSpiorASbuehjyrzxk9B2YrJcgvfu9FE15oZXQT08aR5bzmW1HjbxxYmlfn9UGLTOksHy30U3YLxRrYWnR8HJCkwglspO8q5CAZWu1mBMPD_d9nvr2cz8BEH56Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neumann%E2%80%90Neumann+methods+for+a+DG+discretization+on+geometrically+nonconforming+substructures&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Dryja%2C+Maksymilian&rft.au=Galvis%2C+Juan&rft.au=Sarkis%2C+Marcus&rft.date=2012-07-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=28&rft.issue=4&rft.spage=1194&rft.epage=1226&rft_id=info:doi/10.1002%2Fnum.20678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_num_20678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon