A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications

Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral term over the spatial domain of a function of the desired solution. Hence, in the past few years interest has substantially increased in the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations Jg. 22; H. 1; S. 220 - 257
1. Verfasser: Dehghan, Mehdi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2006
Schlagworte:
ISSN:0749-159X, 1098-2426
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral term over the spatial domain of a function of the desired solution. Hence, in the past few years interest has substantially increased in the solutions of these problems. As a result numerous research papers have also been devoted to the subject. Although considerable amount of work has been done in the past, there is still a lack of a completely satisfactory computational scheme. Also, there are some cases that have not been studied numerically yet. In the current article several approaches for the numerical solution of the one‐dimensional parabolic equation subject to the specification of mass, which have been considered in the literature, are reported. Finite difference methods have been proposed for the numerical solution of the new nonclassic boundary value problem. To investigate the performance of the proposed algorithm, we consider solving a test problem. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006
AbstractList Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral term over the spatial domain of a function of the desired solution. Hence, in the past few years interest has substantially increased in the solutions of these problems. As a result numerous research papers have also been devoted to the subject. Although considerable amount of work has been done in the past, there is still a lack of a completely satisfactory computational scheme. Also, there are some cases that have not been studied numerically yet. In the current article several approaches for the numerical solution of the one‐dimensional parabolic equation subject to the specification of mass, which have been considered in the literature, are reported. Finite difference methods have been proposed for the numerical solution of the new nonclassic boundary value problem. To investigate the performance of the proposed algorithm, we consider solving a test problem. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006
Author Dehghan, Mehdi
Author_xml – sequence: 1
  givenname: Mehdi
  surname: Dehghan
  fullname: Dehghan, Mehdi
  email: mdehghan@aut.ac.ir
  organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
BookMark eNp1kEtPwzAQhC0EEm3hwD_wlUNav_I6lgLlUYqEqEBcLMdxhEsSl9gR9N_jNoUDgtNKO_ONdqcP9mtTKwBOMBpihMiobqshQSjGe6CHUZoEhJFoH_RQzNIAh-nzIehbu0QI4xCnPWDGUJpq1TrhtKlFCa1r8zU0BXSvCvrsINeVqm0nrkQjMlNqCdV7uyWgbbOlkg46A_0pshTWaumtmWnrXDRraFdK6sLvNnZ7BA4KUVp1vJsDsLi8eJxcBbP76fVkPAsk9ccHNI6YZFhmeZJkVEZI4FAKjCNCFRMhSQRDBfNSnDGvZEmYI5FkBMcCeQuhAzDqcmVjrG1UwaXufnSN0CXHiG_64r4vvu3LE6e_iFWjK__Bn95d-ocu1fp_I58v7r6JoCO0derzhxDNG49iGof8aT7l57dn9CFCN_yFfgEfnY4Q
CitedBy_id crossref_primary_10_1016_j_apm_2015_01_029
crossref_primary_10_1016_j_cpc_2010_04_006
crossref_primary_10_1016_j_enganabound_2023_03_027
crossref_primary_10_1007_s11075_008_9234_3
crossref_primary_10_1140_epjp_i2018_12193_8
crossref_primary_10_1016_j_cpc_2010_04_008
crossref_primary_10_1016_j_na_2009_01_134
crossref_primary_10_1007_s40314_017_0553_7
crossref_primary_10_1016_j_apm_2018_01_034
crossref_primary_10_1002_mma_7601
crossref_primary_10_1016_j_mcm_2009_11_015
crossref_primary_10_1016_j_cam_2008_12_011
crossref_primary_10_1016_j_mcm_2007_11_012
crossref_primary_10_1002_num_20521
crossref_primary_10_1016_j_apm_2008_03_006
crossref_primary_10_1016_j_cpc_2013_12_015
crossref_primary_10_1080_00036811_2018_1434149
crossref_primary_10_1016_j_enganabound_2013_01_009
crossref_primary_10_1007_s40819_020_00859_6
crossref_primary_10_1016_j_cpc_2010_08_035
crossref_primary_10_1080_00036811_2017_1359558
crossref_primary_10_1016_j_joems_2014_06_018
crossref_primary_10_1007_s10586_017_1636_3
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119841
crossref_primary_10_1186_s13662_021_03626_z
crossref_primary_10_1016_j_cpc_2010_09_009
crossref_primary_10_1016_j_oceaneng_2014_08_007
crossref_primary_10_1080_00207160802253958
crossref_primary_10_1002_num_20382
crossref_primary_10_1007_s10915_011_9560_9
crossref_primary_10_1016_j_cam_2021_114029
crossref_primary_10_1016_j_amc_2013_05_073
crossref_primary_10_1002_num_20306
crossref_primary_10_1016_j_amc_2015_03_039
crossref_primary_10_1002_mma_6854
crossref_primary_10_1016_j_enganabound_2008_03_011
crossref_primary_10_1155_2021_6880435
crossref_primary_10_1016_j_cma_2007_08_016
crossref_primary_10_1016_j_matcom_2021_12_013
crossref_primary_10_1186_s13660_019_2262_9
crossref_primary_10_1016_j_enganabound_2024_02_015
crossref_primary_10_1155_2014_849682
crossref_primary_10_1007_s00366_018_0656_9
crossref_primary_10_1016_j_mcm_2007_09_016
crossref_primary_10_1016_j_enganabound_2016_07_015
crossref_primary_10_1016_j_apm_2011_07_041
crossref_primary_10_1155_2014_519814
crossref_primary_10_1016_j_cam_2009_01_012
crossref_primary_10_1016_j_chaos_2015_11_036
crossref_primary_10_1002_num_20430
crossref_primary_10_1007_s40314_018_0631_5
crossref_primary_10_1016_j_enganabound_2014_08_014
crossref_primary_10_1016_j_camwa_2009_12_026
crossref_primary_10_1002_num_20313
crossref_primary_10_1016_j_cpc_2009_12_010
crossref_primary_10_1002_num_22973
crossref_primary_10_1016_j_cam_2022_114567
crossref_primary_10_1186_s13662_020_02922_4
crossref_primary_10_1016_j_camwa_2008_03_055
crossref_primary_10_1002_mma_3568
crossref_primary_10_1016_j_camwa_2016_06_041
crossref_primary_10_1080_00207160701405436
crossref_primary_10_1155_2021_6629358
crossref_primary_10_1016_j_amc_2010_09_032
crossref_primary_10_1002_mma_6162
crossref_primary_10_1016_j_amc_2011_11_009
crossref_primary_10_1002_mma_5593
crossref_primary_10_1007_s11253_014_0920_0
crossref_primary_10_1002_num_20204
crossref_primary_10_1002_num_20325
crossref_primary_10_1002_mma_5101
crossref_primary_10_1016_j_amc_2017_03_019
crossref_primary_10_1016_j_enganabound_2013_04_001
crossref_primary_10_1002_num_20569
crossref_primary_10_1002_num_20209
crossref_primary_10_1007_s11868_024_00632_z
crossref_primary_10_1007_s11075_009_9293_0
crossref_primary_10_1016_j_ces_2012_11_033
crossref_primary_10_1016_j_enganabound_2008_08_008
crossref_primary_10_1002_num_20289
crossref_primary_10_1002_num_20442
crossref_primary_10_1016_j_na_2007_07_008
crossref_primary_10_1186_s13662_021_03545_z
crossref_primary_10_1016_j_amc_2014_07_095
crossref_primary_10_1002_num_20608
crossref_primary_10_1016_j_ijrefrig_2018_11_009
crossref_primary_10_1108_09615531211188784
crossref_primary_10_1002_num_20457
crossref_primary_10_1007_s00366_016_0489_3
crossref_primary_10_1007_s10409_012_0083_x
crossref_primary_10_1016_j_camwa_2022_11_020
crossref_primary_10_1016_j_amc_2008_03_008
crossref_primary_10_1016_j_enganabound_2021_04_016
crossref_primary_10_1016_j_apnum_2020_12_017
crossref_primary_10_1002_num_20296
crossref_primary_10_1016_j_cpc_2011_07_018
crossref_primary_10_1002_num_20174
crossref_primary_10_1002_num_20177
crossref_primary_10_1016_j_cam_2011_05_038
crossref_primary_10_1002_nme_4960
crossref_primary_10_1002_num_20297
crossref_primary_10_3390_math9010078
crossref_primary_10_1002_num_20299
crossref_primary_10_1002_cnm_1010
crossref_primary_10_1016_j_camwa_2006_12_076
crossref_primary_10_1016_j_enganabound_2007_11_005
crossref_primary_10_1007_s13398_022_01383_6
crossref_primary_10_1016_j_apm_2011_08_032
crossref_primary_10_1186_s13662_019_2261_7
crossref_primary_10_1016_j_ijrefrig_2017_01_007
crossref_primary_10_1088_1402_4896_abe066
crossref_primary_10_1016_j_apnum_2017_11_008
crossref_primary_10_1002_num_20468
crossref_primary_10_1080_00207160903229881
crossref_primary_10_1080_10236198_2025_2471440
crossref_primary_10_1002_num_20186
crossref_primary_10_1016_j_cam_2010_06_020
crossref_primary_10_1016_j_cam_2011_01_043
crossref_primary_10_1002_num_20341
crossref_primary_10_1002_mma_2847
crossref_primary_10_1007_s11075_012_9595_5
crossref_primary_10_1007_s40314_022_01908_0
crossref_primary_10_1016_j_physa_2016_07_016
crossref_primary_10_1002_num_20590
crossref_primary_10_1016_j_matcom_2008_04_018
crossref_primary_10_1007_s12591_018_0417_7
crossref_primary_10_1007_s40324_017_0123_3
crossref_primary_10_1016_j_amc_2015_03_062
crossref_primary_10_1007_s40571_025_00979_0
crossref_primary_10_1002_mma_6882
crossref_primary_10_1002_num_20230
crossref_primary_10_1016_j_cam_2008_07_008
crossref_primary_10_1007_s00366_016_0449_y
crossref_primary_10_1002_num_20352
crossref_primary_10_1002_num_20357
crossref_primary_10_1002_num_22136
crossref_primary_10_1088_1674_1056_18_10_001
Cites_doi 10.1016/0022-0396(89)90103-4
10.1080/00207160412331284060
10.1016/0377-0427(92)90229-Q
10.1088/0305-4470/35/46/303
10.1016/0020-7225(94)90130-9
10.1090/qam/1178431
10.1016/S0377-0427(99)00065-5
10.1016/0021-9991(74)90011-4
10.1137/0912007
10.32917/hmj/1206126957
10.1090/qam/963580
10.1016/S0377-0427(99)00200-9
10.1016/S0096-3003(02)00479-4
10.1016/0362-546X(92)90148-8
10.1090/qam/693879
10.1002/cnm.1640100910
10.1017/S0027763000020754
10.1007/BF01385851
10.1016/S0362-546X(00)00172-3
10.1007/978-1-4613-9555-3
10.1090/qam/160437
10.1088/0266-5611/5/4/013
10.1080/00207160304670
10.1016/S0378-4754(99)00056-7
10.1090/qam/1178432
10.1002/num.20019
10.1007/BF01931285
10.1016/S0377-0427(96)00097-0
10.1215/S0012-7094-60-02727-7
10.1016/0168-9274(89)90038-X
10.1145/356044.356053
10.1007/BF02127706
10.1007/BF00613273
10.1007/BF00735697
10.1016/0022-247X(86)90012-0
10.1006/jmaa.1995.1113
10.1016/0020-7225(93)90010-R
10.1137/0524004
10.1016/0020-7225(90)90087-Y
10.1016/0020-7225(90)90056-O
10.1137/0716021
10.1007/BF01436565
10.1016/S0017-9310(97)00115-4
10.1016/0377-0427(93)90061-F
10.1016/0022-247X(82)90270-0
10.1512/iumj.1970.20.20037
10.1155/S1024123X03111015
10.1002/zamm.19960760611
10.1029/91WR00162
10.1002/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO;2-3
10.1090/qam/678203
10.1108/03684929810219431
10.1016/S0096-3003(02)00954-2
10.1007/978-3-642-84108-8
10.1155/S1048953396000305
10.1155/S0161171297000215
10.1137/0724036
10.1007/BF01936141
10.1137/S003614109324306X
10.1155/S0161171299225112
10.1090/qam/860893
10.1016/0020-7225(90)90086-X
10.1137/0732025
10.1016/S0168-9274(01)00139-8
10.1007/BF01761503
10.1080/00207160410001712297
10.1090/qam/73292
10.1029/94WR01798
10.1007/s006070050007
10.1029/95WR01396
10.1017/S0334270000010560
10.1016/0041-5553(64)90080-1
ContentType Journal Article
Copyright Copyright © 2005 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/num.20071
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 257
ExternalDocumentID 10_1002_num_20071
NUM20071
ark_67375_WNG_DKB3R60J_Z
Genre article
GrantInformation_xml – fundername: Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran
  funderid: 84650030
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c3071-3764c41cbd88b3c60a15ca11623e4a528a40f48b37b415cb85d0a8b217a023e23
IEDL.DBID DRFUL
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233927000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-159X
IngestDate Tue Nov 18 22:37:04 EST 2025
Sat Nov 29 05:35:06 EST 2025
Thu Sep 25 07:36:11 EDT 2025
Sun Sep 21 06:18:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3071-3764c41cbd88b3c60a15ca11623e4a528a40f48b37b415cb85d0a8b217a023e23
Notes ark:/67375/WNG-DKB3R60J-Z
Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran - No. 84650030
istex:9795E77FDBC1AC179112F6CD427AC569BF0DEE2F
ArticleID:NUM20071
PageCount 38
ParticipantIDs crossref_citationtrail_10_1002_num_20071
crossref_primary_10_1002_num_20071
wiley_primary_10_1002_num_20071_NUM20071
istex_primary_ark_67375_WNG_DKB3R60J_Z
PublicationCentury 2000
PublicationDate 2006-01
January 2006
2006-01-00
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Numerical methods for partial differential equations
PublicationTitleAlternate Numer. Methods Partial Differential Eq
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References J. R. Cannon and A. Fasano, Boundary value multidimensional problems in fast chemical reactions, Arch Rat Mech Anal 53 (1973), 1-13.
S. Wang and Y. Lin, A numerical method for the diffusion equation with nonlocal boundary specifications, Internat J Engng Sci 28(6) (1990), 543-546.
L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electronic J Differential Eq 45 (1999), 1-6.
W. A. Day, Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Quart Appl Math 40 (1982), 319-330.
J. R. Cannon, Y. Lin, and J. van der Hoek, A quasilinear parabolic equation with nonlocal boundary conditions, Rendicoti di Mathematica Roma, Serie VII 9 (1989), 239-264.
Y. Lin, Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations, SIAM J Math Anal 25(6) (1994), 1577-1594.
B. Jumarhon and S. McKee, Product integration methods for solving a system of nonlinear Volterra integral equations, J Comput Appl Math 67(6) (1996), 24-41.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1988.
M. Dehghan, Fully explicit finite difference methods for two-dimensional diffusion with an integral condition, Nonlinear Analysis, Theory Methods and Applications 48(5) (2002), 637-650.
K. Deng, Comparison principle for some nonlocal problems, Quart Appl Math 50 (1992), 517-522.
N. Borovykh, Stability in the numerical solution of the heat equation with non-local boundary conditions, Appl Num Math 42 (2002), 17-27.
L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982.
R. F. Warming and B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J Computational Physics 14(2) (1974), 159-179.
A. M. Nakhushev, On certain approximate method for boundary-value problems for differential equations and its applications in ground waters dynamics, Differentsialnie Uravnenia 18 (1982), 72-81.
B. Cahlon, D. M. Kulkrani, and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM J Numer Anal 32(2) (1995), 571-593.
W. A. Day, A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Quart Appl Math 41 (1983), 468-475.
M. Lees, A priori estimates for the solutions of difference approximations to parabolic partial differential equations, Duke Math J 27 (1960), 297-311.
J. C. Strikwerda, Finite difference schemes and partial differential equations, Chapman and Hall, New York, 1989.
M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Eq 21(1) (2005), 24-40.
J. Douglas, Jr. and T. Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer Math 20 (1973), 213-237.
G. Fairweather and R. D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J Sci Stat Comput 12(1) (1991), 127-144.
W. T. Ang, A method of solution for the one-dimensional heat equation subject to a nonlocal condition, SEA Bull Math 26(2) (2002), 197-203.
B. Jumarhon and M. Pidcock, On a nonlinear Volterra integro-differential equation with a weakly singular kernel, Z Angew Math Mech 76(6) (1996), 357-360.
R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media, Numer Methods Partial Differential Eq 16 (2000), 285-311.
M. Dehghan, The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure, International Journal of Computer Mathematics, 81 (2004), 979-989.
Y. Lin and R. J. Tait, Finite difference approximations for a class of nonlocal parabolic boundary value problems, J Comput Appl Math 47(3) (1993), 335-350.
J. R. Cannon and J. van der Hoek, The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy, Supplemento Bolletino Unione Mathematica Italiana 1 (1981), 253-282.
M. Dehghan, Numerical solution of a parabolic equation subject to specification of energy, Applied Mathematics and Computation, 149 (2004), 31-45.
A. K. Pani, A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc, Ser B 35 (1993), 87-102.
V. A. Vodakhova, A boundary-value problem with non-local condition for certain pseudo-parabolic water-transfer equation, Differentsialnie Uravnenia 18 (1982), 280-285.
A. L. Araujo and F. A. Oliveira, Semi-discretization method for the heat equation with non-local boundary conditions, Comm Numer Methods Engrg 10 (1994), 751-758.
J. H. Cushman, H. Xu, and F. Deng, Nonlocal reactive transport with physical and chemical heterogeneity: Localization error, Water Resource Res 31 (1995), 2219-2237.
J. H. Cushman and T. R. Ginn, Nonlocal dispersion in media with continuously evolving scales of heterogeneity, Transport Porous Media 13 (1993), 123-138.
G. Fairweather and J. C. Lopez-Marcos, Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions, Adv Comput Math 6 (1996), 243-262.
J. R. Cannon and J. van der Hoek, An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numerical Solutions of Partial Differential Equations, North Holland, 527-539, 1982.
J. A. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solutions, BIT 25 (1985), 624-634.
S. H. Crandall, An optimum implicit recurrence formula for the heat conduction equation, Quart Appl Math 13 (1955), 318-320.
P. Shi, Weak solution to an evolution problem with a nonlocal constraint, SIAM J Math Anal 24(1) (1993), 46-58.
S. Wang, The numerical method for the conduction subject to moving boundary energy specification, Numer Heat Transfer 130 (1990), 35-38.
A. Bouziani, On a class of parabolic equations with a nonlocal boundary condition, Acad Roy Belg Bull Cl Sci 10 (1999), 61-77.
M. Hadizadeh and K. Maleknejad, On the decomposition method to the heat equation with non-linear and non-local boundary conditions, Kybernetes 27(4) (1998), 426-434.
M. Dehghan, Numerical solution of a parabolic equation with non-local boundary specifications, Applied Mathematics and Computation, 145 (2003), 185-194.
W. A. Day, Heat conduction within linear thermoelasticity, Springer-Verlag, New York, 1985.
J. Xu and W. Shann, Galerkin-wavelets methods for two-point boundary value problems, Num Math 63 (1992), 123-144.
S. H. Behiry, A wavelet-Galerkin method for inhomogeneous diffusion equations subject to mass specification, J Phys A Math Gen 35 (2002), 9745-9753.
K. L. Deckert and C. G. Maple, Solutions for diffusion equations with integral type boundary conditions, Proc Iowa, Acad Sci 70 (1963), 345-361.
N. I. Ionkin, Solution of a boundary value problem in heat conduction with a non-classical boundary condition, Diff Eq 13 (1977), 204-211.
B. Jumarhon and S. McKee, On a heat equation with nonlinear and nonlocal boundary conditions, J Math Anal Appl 190 (1995), 806-820.
J. R. Cannon and J. van der Hoek, Diffusion subject to specification of mass, J Math Anal Appl 115 (1986), 517-529.
J. R. Cannon, S. Prez-Esteva, and J. van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J Num Anal 24 (1987), 499-515.
C. Lanczos, Applied Analysis, Springer-Verlag, New York, 1987.
W. Allegretto, Y. Lin, and A. Zhou, A box scheme for coupled systems resulting from micro-sensor thermistor problems, Dynam Discr Contin Impuls Sys 5 (1999), 209-223.
B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley, New York, 1960.
Y. Lin, S. Xu, and H. M. Yin, Finite difference approximations for a class of nonlocal parabolic equations, Intern J Math and Math Sci 20(1) (1997), 147-164.
M. Dehghan, Implicit locally one-dimensional methods for two-dimensional diffusion with a non-local boundary condition, Mathematics and Computers in Simulation, 49 (1999), 331-349.
J. R. Cannon and J. van der Hoek, The one phase Stefan problem subject to the specification of energy, J Math Anal Appl 86 (1982), 281-291.
M. Dehghan, Fully implicit finite difference methods for two-dimensional diffusion with a nonlocal boundary condition, Journal of Computational and Applied Mathematics, 106 (1999), 255-269.
A. Bouziani, Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations, Hiroshima Math J 27 (1997), 373-390.
J. R. Cannon, Y. Lin, and S. Wang, An implicit finite difference scheme for the diffusion equation subject to the specification of mass, Intern J Engng Sci 28(7) (1990), 573-578.
A. Friedman, Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions, Quart Appl Math 44 (1986), 401-407.
Y. Lin, A nonlocal parabolic system in linear thermoelasticity, Dynam Discr Contin Impuls Syst 2(3) (1996), 267-283.
J. R. Cannon and J. van der Hoek, The classical solution of the one-dimensional two-phase Stefan problem with energy specification, Annali di Mat Pura ed Appl 130(4) (1982), 385-398.
J. R. Cannon and E. Di Benedetto, On the existence solutions of boundary value problems in fast chemical reactions, Bull Della Unione Math Italiana 15 (1978), 835-843.
J. Chabrowski, On nonlocal problems for parabolic equations, Nagoya Math J 93 (1984), 109-131.
Y. Lin and R. J. Tait, On a class of non-local parabolic boundary value problems, Int J Engng Sci 32(3) (1994), 395-407.
C. Diaz, G. Fairweather, and P. Keast, Fortran package for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM Trans Math Software 9 (1983), 358-375.
N. I. Ionkin, Stability of a problem in heat transfer theory with a non-classical bounda
1995; 31
1993; 24
1974; 14
1982; 18
1973; 53
1991; 12
1999; 49
1984; 23
1964; 4
1995; 32
1992; 18
1999; 45
1994; 25
1983; 9
2005; 21
1999; 40
1998; 41
1985; 21
1996; 76
1992; 50
1985; 25
1993; 35
2002; 48
1989; VII
2000; 16
1984; 93
1978; 23
2002; 42
1986; 44
1993; 31
1963; 70
1987
1985
1988; 46
1999; 10
1970; 20
1982
1989; 79
1996; 2
1990; 130
1955; 13
1996; 9
1982; 130
1996; 6
1996; 67
1994; 32
1989
1988
1998; 27
1979; 16
1993; 47
1989; 5
1993; 107
2004; 149
1963; 21
2004; 81
2003; 80
1986; 115
1981; 1
1997; 20
2003; 2003
2002; 35
1991; 31
2000; 64
1992; 39
1999; 22
1997; 27
1994
1978; 15
1999; 106
1999; 5
1972; 2
1987; 24
1995; 190
1980; 16
1993; 13
1980; 15
2002; 26
1991; 27
1973; 20
1990; 28
1982; 40
1986; 22
1982; 86
1960; 27
1999; 110
1994; 13
1983; 41
1960
1977; 13
2003; 145
1994; 10
1992; 63
Lanczos C. (e_1_2_1_68_2) 1987
e_1_2_1_81_2
Allegretto W. (e_1_2_1_96_2) 1999; 5
e_1_2_1_89_2
Wang S. (e_1_2_1_57_2) 1990; 130
Carlson D. E. (e_1_2_1_97_2) 1972
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_62_2
e_1_2_1_24_2
e_1_2_1_107_2
Lapidus L. (e_1_2_1_88_2) 1982
e_1_2_1_92_2
e_1_2_1_103_2
Cannon J. R. (e_1_2_1_30_2) 1982
e_1_2_1_54_2
e_1_2_1_4_2
e_1_2_1_77_2
e_1_2_1_12_2
e_1_2_1_31_2
e_1_2_1_73_2
e_1_2_1_35_2
e_1_2_1_58_2
Pani A. K. (e_1_2_1_39_2) 1993; 35
Pulkina L. S. (e_1_2_1_90_2) 1999; 45
e_1_2_1_86_2
e_1_2_1_67_2
e_1_2_1_44_2
e_1_2_1_82_2
e_1_2_1_21_2
Cannon J. R. (e_1_2_1_56_2) 1978; 15
Samarskii A. A. (e_1_2_1_101_2) 1980; 16
e_1_2_1_70_2
Lin Y. (e_1_2_1_80_2) 1996; 2
e_1_2_1_102_2
e_1_2_1_106_2
Ionkin N. I. (e_1_2_1_47_2) 1991; 27
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_78_2
Gerald C. F. (e_1_2_1_63_2) 1994
Nakhushev A. M. (e_1_2_1_93_2) 1982; 18
e_1_2_1_3_2
e_1_2_1_74_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_59_2
Boley B. A. (e_1_2_1_6_2) 1960
e_1_2_1_41_2
e_1_2_1_64_2
e_1_2_1_87_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_83_2
e_1_2_1_26_2
Szego G. (e_1_2_1_48_2) 1978
e_1_2_1_49_2
Bouziani A. (e_1_2_1_8_2) 1997; 27
Cannon J. R. (e_1_2_1_32_2) 1984
Ang W. T. (e_1_2_1_66_2) 2002; 26
Bouziani A. (e_1_2_1_50_2) 1999; 10
Deckert K. L. (e_1_2_1_23_2) 1963; 70
e_1_2_1_105_2
Shelukhin V. V. (e_1_2_1_94_2) 1993; 107
e_1_2_1_98_2
e_1_2_1_2_2
e_1_2_1_33_2
e_1_2_1_71_2
e_1_2_1_10_2
e_1_2_1_52_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_79_2
e_1_2_1_18_2
Yurchuk N. I. (e_1_2_1_29_2) 1986; 22
Jumarhon B. (e_1_2_1_75_2) 1996; 67
Vodakhova V. A. (e_1_2_1_40_2) 1982; 18
e_1_2_1_65_2
Ionkin N. I. (e_1_2_1_17_2) 1980; 15
e_1_2_1_61_2
Cannon J. R. (e_1_2_1_53_2) 1989
e_1_2_1_42_2
e_1_2_1_84_2
e_1_2_1_27_2
e_1_2_1_46_2
Ionkin N. I. (e_1_2_1_25_2) 1977; 13
e_1_2_1_69_2
Strikwerda J. C. (e_1_2_1_85_2) 1989
Cannon J. R. (e_1_2_1_51_2) 1981; 1
Renardy M. (e_1_2_1_95_2) 1987
e_1_2_1_91_2
e_1_2_1_100_2
e_1_2_1_104_2
Ionkin N. I. (e_1_2_1_16_2) 1980; 15
e_1_2_1_76_2
e_1_2_1_99_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_72_2
Makarov V. L. (e_1_2_1_28_2) 1985; 21
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_19_2
e_1_2_1_9_2
References_xml – reference: M. Lees, A priori estimates for the solutions of difference approximations to parabolic partial differential equations, Duke Math J 27 (1960), 297-311.
– reference: Y. Lin, A nonlocal parabolic system in linear thermoelasticity, Dynam Discr Contin Impuls Syst 2(3) (1996), 267-283.
– reference: J. R. Cannon and H. M. Yin, On a class of non-classical parabolic problems, Diff Eqs 79 (1989), 266-288.
– reference: M. Dehghan, The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure, International Journal of Computer Mathematics, 81 (2004), 979-989.
– reference: N. I. Ionkin, Solution of a boundary value problem in heat conduction with a non-classical boundary condition, Diff Eq 13 (1977), 204-211.
– reference: S. Mesloub and A. Bouziani, On a class of singular hyperbolic equation with a weighted integral condition, Intern J Math and Math Sci 22 (1999), 511-520.
– reference: G. Fairweather and J. C. Lopez-Marcos, Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions, Adv Comput Math 6 (1996), 243-262.
– reference: J. Douglas, Jr. and T. Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer Math 20 (1973), 213-237.
– reference: Y. Lin, Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations, SIAM J Math Anal 25(6) (1994), 1577-1594.
– reference: A. Bouziani, Mixed problem with boundary integral conditions for a certain parabolic equation, J Appl Math Stochastic Anal 9 (1996), 323-330.
– reference: A. Saadatmandi and M. Razzaghi, A Tau method approximation for the diffusion equation with nonlocal boundary conditions, Int J Comput Math 81(11) (2004), 1427-1432.
– reference: D. Lesnic, L. Elliott, and D. B. Ingham, The solution of an inverse heat conduction problem subject to the specification of energies, Int J Heat Mass Transfer 41(1) (1998), 25-32.
– reference: G. Ekolin, Finite difference methods for a non-local boundary value problem for the heat equation, BIT 31(2) (1991), 245-255.
– reference: C. Lanczos, Applied Analysis, Springer-Verlag, New York, 1987.
– reference: G. Dagan, The significance of heterogeneity of evolving scales to transport in porous formations, Water Resource Res 13 (1994), 3327-3336.
– reference: J. R. Cannon and J. van der Hoek, The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy, Supplemento Bolletino Unione Mathematica Italiana 1 (1981), 253-282.
– reference: Z. Z. Sun, A second-order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions, J Comput Appl Math 76 (1996), 137-146.
– reference: J. R. Cannon and J. van der Hoek, The classical solution of the one-dimensional two-phase Stefan problem with energy specification, Annali di Mat Pura ed Appl 130(4) (1982), 385-398.
– reference: J. R. Cannon and A. Fasano, Boundary value multidimensional problems in fast chemical reactions, Arch Rat Mech Anal 53 (1973), 1-13.
– reference: V. A. Vodakhova, A boundary-value problem with non-local condition for certain pseudo-parabolic water-transfer equation, Differentsialnie Uravnenia 18 (1982), 280-285.
– reference: J. R. Cannon, S. Prez-Esteva, and J. van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J Num Anal 24 (1987), 499-515.
– reference: A. A. Samarskii, Some problems in differential equations theory, Diff Eq 16 (1980), 1221-1228.
– reference: S. Wang, The numerical method for the conduction subject to moving boundary energy specification, Numer Heat Transfer 130 (1990), 35-38.
– reference: W. A. Day, A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Quart Appl Math 41 (1983), 468-475.
– reference: S. Wang and Y. Lin, A numerical method for the diffusion equation with nonlocal boundary specifications, Internat J Engng Sci 28(6) (1990), 543-546.
– reference: K. L. Deckert and C. G. Maple, Solutions for diffusion equations with integral type boundary conditions, Proc Iowa, Acad Sci 70 (1963), 345-361.
– reference: M. Berzins and R. M. Fuzerland, Developing software for time-dependent problems using the method of lines and differential algebraic integrators, Appl Num Math 5(1) (1989), 375-397.
– reference: J. R. Cannon, Y. Lin, and S. Wang, An implicit finite difference scheme for the diffusion equation subject to the specification of mass, Intern J Engng Sci 28(7) (1990), 573-578.
– reference: J. R. Cannon and E. Di Benedetto, On the existence solutions of boundary value problems in fast chemical reactions, Bull Della Unione Math Italiana 15 (1978), 835-843.
– reference: M. Dehghan, Fully implicit finite difference methods for two-dimensional diffusion with a nonlocal boundary condition, Journal of Computational and Applied Mathematics, 106 (1999), 255-269.
– reference: S. H. Behiry, A wavelet-Galerkin method for inhomogeneous diffusion equations subject to mass specification, J Phys A Math Gen 35 (2002), 9745-9753.
– reference: M. Dehghan, Saulyev's techniques for solving a parabolic equation with a non linear boundary specification, Int J Comput Math 80(2) (2003), 257-265.
– reference: J. H. Cushman, H. Xu, and F. Deng, Nonlocal reactive transport with physical and chemical heterogeneity: Localization error, Water Resource Res 31 (1995), 2219-2237.
– reference: A. B. Gumel, On the numerical solution of the diffusion equation subject to the specification of mass, J Austral Math Soc Ser B 40 (1999), 475-483.
– reference: R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media, Numer Methods Partial Differential Eq 16 (2000), 285-311.
– reference: B. Jumarhon and M. Pidcock, On a nonlinear Volterra integro-differential equation with a weakly singular kernel, Z Angew Math Mech 76(6) (1996), 357-360.
– reference: S. Wang and Y. Lin, A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equation, Inverse Problems 5 (1989), 631-640.
– reference: R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing 64 (2000), 157-182.
– reference: Y. Lin, S. Xu, and H. M. Yin, Finite difference approximations for a class of nonlocal parabolic equations, Intern J Math and Math Sci 20(1) (1997), 147-164.
– reference: L. I. Kamynin, A boundary value problem in the theory of heat conduction with a non-classical boundary condition, USSR Comp Math and Math Physics 4 (1964), 33-59.
– reference: N. I. Ionkin and D. G. Furletov, Uniform stability of difference schemes for a nonlocal nonselfadjoint boundary value problem with variable coefficients, Diff Eq 27 (1991), 820-826.
– reference: M. Dehghan, On the numerical solution of the diffusion equation with a non-local boundary condition, Math Problems Engng 2003(2) (2003), 81-92.
– reference: J. Xu and W. Shann, Galerkin-wavelets methods for two-point boundary value problems, Num Math 63 (1992), 123-144.
– reference: N. I. Ionkin, Stability of a problem in heat transfer theory with a non-classical boundary condition, Diff Eq 15 (1980), 911-914.
– reference: V. V. Shelukhin, A non-local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries, Siberian Russian Acad Sci Inst Hydrodynam 107 (1993), 180-193.
– reference: B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley, New York, 1960.
– reference: M. Dehghan, Numerical solution of a parabolic equation subject to specification of energy, Applied Mathematics and Computation, 149 (2004), 31-45.
– reference: C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 5th ed., Addison-Wesley, 1994.
– reference: M. Dehghan, Numerical solution of a parabolic equation with non-local boundary specifications, Applied Mathematics and Computation, 145 (2003), 185-194.
– reference: J. R. Cannon and J. van der Hoek, The one phase Stefan problem subject to the specification of energy, J Math Anal Appl 86 (1982), 281-291.
– reference: W. Allegretto, Y. Lin, and A. Zhou, A box scheme for coupled systems resulting from micro-sensor thermistor problems, Dynam Discr Contin Impuls Sys 5 (1999), 209-223.
– reference: J. R. Cannon and J. van der Hoek, An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numerical Solutions of Partial Differential Equations, North Holland, 527-539, 1982.
– reference: P. Shi, Weak solution to an evolution problem with a nonlocal constraint, SIAM J Math Anal 24(1) (1993), 46-58.
– reference: Y. Lin and R. J. Tait, On a class of non-local parabolic boundary value problems, Int J Engng Sci 32(3) (1994), 395-407.
– reference: M. Dehghan, Fully explicit finite difference methods for two-dimensional diffusion with an integral condition, Nonlinear Analysis, Theory Methods and Applications 48(5) (2002), 637-650.
– reference: A. L. Araujo and F. A. Oliveira, Semi-discretization method for the heat equation with non-local boundary conditions, Comm Numer Methods Engrg 10 (1994), 751-758.
– reference: J. R. Cannon and C. D. Hill, On the movement of a chemical reaction interface, Indiana University J 20 (1970), 429-454.
– reference: B. Jumarhon and S. McKee, On a heat equation with nonlinear and nonlocal boundary conditions, J Math Anal Appl 190 (1995), 806-820.
– reference: K. Deng, Comparison principle for some nonlocal problems, Quart Appl Math 50 (1992), 517-522.
– reference: R. F. Warming and B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J Computational Physics 14(2) (1974), 159-179.
– reference: W. A. Day, Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Quart Appl Math 40 (1982), 319-330.
– reference: W. A. Day, Parabolic equations and thermodynamics, Quart Appl Math 50 (1992), 523-533.
– reference: C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1988.
– reference: W. A. Day, Heat conduction within linear thermoelasticity, Springer-Verlag, New York, 1985.
– reference: G. Fairweather and R. D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J Sci Stat Comput 12(1) (1991), 127-144.
– reference: J. Chabrowski, On nonlocal problems for parabolic equations, Nagoya Math J 93 (1984), 109-131.
– reference: A. K. Pani, A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc, Ser B 35 (1993), 87-102.
– reference: J. R. Cannon and A. L. Matheson, A numerical procedure for diffusion subject to the specification of mass, Intern J Engng Sci 31(3) (1993), 347-355.
– reference: M. Dehghan, Implicit locally one-dimensional methods for two-dimensional diffusion with a non-local boundary condition, Mathematics and Computers in Simulation, 49 (1999), 331-349.
– reference: A. Friedman, Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions, Quart Appl Math 44 (1986), 401-407.
– reference: Y. Lin and R. J. Tait, Finite difference approximations for a class of nonlocal parabolic boundary value problems, J Comput Appl Math 47(3) (1993), 335-350.
– reference: Y. Liu, Numerical solution of the heat equation with nonlocal boundary conditions, J Comput Appl Math 110(1) (1999), 115-127.
– reference: J. R. Cannon and J. van der Hoek, Diffusion subject to specification of mass, J Math Anal Appl 115 (1986), 517-529.
– reference: V. Capasso and K. Kunisch, A reaction-diffusion system arising in modeling man-environment diseases, Quart Appl Math 46 (1988), 431-449.
– reference: N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Diff Eq 22 (1986), 1457-1463.
– reference: J. R. Cannon and Y. Lin, A Galerkin procedure for diffusion equations with boundary integral conditions, Intern J Engng Sci 28(7) (1990), 579-587.
– reference: J. H. Cushman, Diffusion in fractal porous media, Water Resource Res 27(4) (1991), 643-644.
– reference: M. Renardy, W. Hrusa, and J. A. Nohel, Mathematical problems in viscoelasticity, Longman Science and Technology, England, 1987.
– reference: A. Bouziani, On a class of parabolic equations with a nonlocal boundary condition, Acad Roy Belg Bull Cl Sci 10 (1999), 61-77.
– reference: N. I. Ionkin and E. I. Moiseev, Problem for the heat transfer equation with two-point boundary conditions, Diff Eq 15 (1980), 915-923.
– reference: M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Eq 21(1) (2005), 24-40.
– reference: V. L. Makarov and D. T. Kulyev, Solution of a boundary value problem for a quasi-linear parabolic equation with nonclassical boundary conditions, Diff Eq 21 (1985), 296-305.
– reference: J. H. Cushman and T. R. Ginn, Nonlocal dispersion in media with continuously evolving scales of heterogeneity, Transport Porous Media 13 (1993), 123-138.
– reference: J. A. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solutions, BIT 25 (1985), 624-634.
– reference: B. Cahlon, D. M. Kulkrani, and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM J Numer Anal 32(2) (1995), 571-593.
– reference: L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982.
– reference: C. Diaz, G. Fairweather, and P. Keast, Fortran package for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM Trans Math Software 9 (1983), 358-375.
– reference: B. Jumarhon and S. McKee, Product integration methods for solving a system of nonlinear Volterra integral equations, J Comput Appl Math 67(6) (1996), 24-41.
– reference: A. S. V. Murthy and J. G. Verwer, Solving parabolic integro-differential equations by an explicit integration method, J Comput Appl Math 39 (1992), 121-132.
– reference: N. Borovykh, Stability in the numerical solution of the heat equation with non-local boundary conditions, Appl Num Math 42 (2002), 17-27.
– reference: J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart Appl Math 21 (1963), 155-160.
– reference: J. C. Strikwerda, Finite difference schemes and partial differential equations, Chapman and Hall, New York, 1989.
– reference: M. Hadizadeh and K. Maleknejad, On the decomposition method to the heat equation with non-linear and non-local boundary conditions, Kybernetes 27(4) (1998), 426-434.
– reference: A. Bouziani, Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations, Hiroshima Math J 27 (1997), 373-390.
– reference: M. Luskin, A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions, SIAM J Numer Anal 16 (1979), 284-299.
– reference: W. T. Ang, A method of solution for the one-dimensional heat equation subject to a nonlocal condition, SEA Bull Math 26(2) (2002), 197-203.
– reference: L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electronic J Differential Eq 45 (1999), 1-6.
– reference: J. R. Cannon, Y. Lin, and J. van der Hoek, A quasilinear parabolic equation with nonlocal boundary conditions, Rendicoti di Mathematica Roma, Serie VII 9 (1989), 239-264.
– reference: Y. S. Choi and K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Analysis, Theory, Methods, and Applications 18(4) (1992), 317-331.
– reference: S. H. Crandall, An optimum implicit recurrence formula for the heat conduction equation, Quart Appl Math 13 (1955), 318-320.
– reference: A. M. Nakhushev, On certain approximate method for boundary-value problems for differential equations and its applications in ground waters dynamics, Differentsialnie Uravnenia 18 (1982), 72-81.
– volume: 107
  start-page: 180
  year: 1993
  end-page: 193
  article-title: A non‐local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries
  publication-title: Siberian Russian Acad Sci Inst Hydrodynam
– volume: 13
  start-page: 3327
  year: 1994
  end-page: 3336
  article-title: The significance of heterogeneity of evolving scales to transport in porous formations
  publication-title: Water Resource Res
– volume: 46
  start-page: 431
  year: 1988
  end-page: 449
  article-title: A reaction‐diffusion system arising in modeling man‐environment diseases
  publication-title: Quart Appl Math
– volume: 70
  start-page: 345
  year: 1963
  end-page: 361
  article-title: Solutions for diffusion equations with integral type boundary conditions
  publication-title: Proc Iowa, Acad Sci
– volume: 5
  start-page: 209
  year: 1999
  end-page: 223
  article-title: A box scheme for coupled systems resulting from micro‐sensor thermistor problems
  publication-title: Dynam Discr Contin Impuls Sys
– volume: 10
  start-page: 61
  year: 1999
  end-page: 77
  article-title: On a class of parabolic equations with a nonlocal boundary condition
  publication-title: Acad Roy Belg Bull Cl Sci
– volume: 14
  start-page: 159
  issue: 2
  year: 1974
  end-page: 179
  article-title: The modified equation approach to the stability and accuracy analysis of finite‐difference methods
  publication-title: J Computational Physics
– volume: 24
  start-page: 499
  year: 1987
  end-page: 515
  article-title: A Galerkin procedure for the diffusion equation subject to the specification of mass
  publication-title: SIAM J Num Anal
– volume: 67
  start-page: 24
  issue: 6
  year: 1996
  end-page: 41
  article-title: Product integration methods for solving a system of nonlinear Volterra integral equations
  publication-title: J Comput Appl Math
– volume: 76
  start-page: 357
  issue: 6
  year: 1996
  end-page: 360
  article-title: On a nonlinear Volterra integro‐differential equation with a weakly singular kernel
  publication-title: Z Angew Math Mech
– volume: 50
  start-page: 523
  year: 1992
  end-page: 533
  article-title: Parabolic equations and thermodynamics
  publication-title: Quart Appl Math
– volume: 12
  start-page: 127
  issue: 1
  year: 1991
  end-page: 144
  article-title: The reformulation and numerical solution of certain nonclassical initial‐boundary value problems
  publication-title: SIAM J Sci Stat Comput
– year: 1989
– volume: 23
  year: 1978
– volume: 40
  start-page: 475
  year: 1999
  end-page: 483
  article-title: On the numerical solution of the diffusion equation subject to the specification of mass
  publication-title: J Austral Math Soc Ser B
– volume: 25
  start-page: 1577
  issue: 6
  year: 1994
  end-page: 1594
  article-title: Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations
  publication-title: SIAM J Math Anal
– volume: 25
  start-page: 624
  year: 1985
  end-page: 634
  article-title: On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non‐smooth solutions
  publication-title: BIT
– volume: 23
  year: 1984
– volume: 81
  start-page: 979
  year: 2004
  end-page: 989
  article-title: The solution of a nonclassic problem for one‐dimensional hyperbolic equation using the decomposition procedure
  publication-title: International Journal of Computer Mathematics
– volume: 4
  start-page: 33
  year: 1964
  end-page: 59
  article-title: A boundary value problem in the theory of heat conduction with a non‐classical boundary condition
  publication-title: USSR Comp Math and Math Physics
– volume: 21
  start-page: 155
  year: 1963
  end-page: 160
  article-title: The solution of the heat equation subject to the specification of energy
  publication-title: Quart Appl Math
– volume: 190
  start-page: 806
  year: 1995
  end-page: 820
  article-title: On a heat equation with nonlinear and nonlocal boundary conditions
  publication-title: J Math Anal Appl
– volume: 45
  start-page: 1
  year: 1999
  end-page: 6
  article-title: A nonlocal problem with integral conditions for hyperbolic equations
  publication-title: Electronic J Differential Eq
– volume: 86
  start-page: 281
  year: 1982
  end-page: 291
  article-title: The one phase Stefan problem subject to the specification of energy
  publication-title: J Math Anal Appl
– volume: 110
  start-page: 115
  issue: 1
  year: 1999
  end-page: 127
  article-title: Numerical solution of the heat equation with nonlocal boundary conditions
  publication-title: J Comput Appl Math
– volume: 6
  start-page: 243
  year: 1996
  end-page: 262
  article-title: Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions
  publication-title: Adv Comput Math
– volume: 32
  start-page: 571
  issue: 2
  year: 1995
  end-page: 593
  article-title: Stepwise stability for the heat equation with a nonlocal constraint
  publication-title: SIAM J Numer Anal
– volume: 63
  start-page: 123
  year: 1992
  end-page: 144
  article-title: Galerkin‐wavelets methods for two‐point boundary value problems
  publication-title: Num Math
– volume: 42
  start-page: 17
  year: 2002
  end-page: 27
  article-title: Stability in the numerical solution of the heat equation with non‐local boundary conditions
  publication-title: Appl Num Math
– volume: 16
  start-page: 1221
  year: 1980
  end-page: 1228
  article-title: Some problems in differential equations theory
  publication-title: Diff Eq
– volume: 76
  start-page: 137
  year: 1996
  end-page: 146
  article-title: A second‐order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions
  publication-title: J Comput Appl Math
– volume: 32
  start-page: 395
  issue: 3
  year: 1994
  end-page: 407
  article-title: On a class of non‐local parabolic boundary value problems
  publication-title: Int J Engng Sci
– volume: 28
  start-page: 573
  issue: 7
  year: 1990
  end-page: 578
  article-title: An implicit finite difference scheme for the diffusion equation subject to the specification of mass
  publication-title: Intern J Engng Sci
– volume: 20
  start-page: 429
  year: 1970
  end-page: 454
  article-title: On the movement of a chemical reaction interface
  publication-title: Indiana University J
– volume: 10
  start-page: 751
  year: 1994
  end-page: 758
  article-title: Semi‐discretization method for the heat equation with non‐local boundary condition
  publication-title: Comm Numer Methods Engrg
– year: 1987
– volume: 41
  start-page: 468
  year: 1983
  end-page: 475
  article-title: A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories
  publication-title: Quart Appl Math
– volume: 64
  start-page: 157
  year: 2000
  end-page: 182
  article-title: Finite volume element approximations of nonlocal in time one‐dimensional flows in porous media
  publication-title: Computing
– volume: 22
  start-page: 511
  year: 1999
  end-page: 520
  article-title: On a class of singular hyperbolic equation with a weighted integral condition
  publication-title: Intern J Math and Math Sci
– volume: 27
  start-page: 820
  year: 1991
  end-page: 826
  article-title: Uniform stability of difference schemes for a nonlocal nonselfadjoint boundary value problem with variable coefficients
  publication-title: Diff Eq
– volume: 130
  start-page: 35
  year: 1990
  end-page: 38
  article-title: The numerical method for the conduction subject to moving boundary energy specification
  publication-title: Numer Heat Transfer
– volume: 93
  start-page: 109
  year: 1984
  end-page: 131
  article-title: On nonlocal problems for parabolic equations
  publication-title: Nagoya Math J
– volume: 18
  start-page: 280
  year: 1982
  end-page: 285
  article-title: A boundary‐value problem with non‐local condition for certain pseudo‐parabolic water‐transfer equation
  publication-title: Differentsialnie Uravnenia
– volume: 27
  start-page: 373
  year: 1997
  end-page: 390
  article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations
  publication-title: Hiroshima Math J
– volume: 149
  start-page: 31
  year: 2004
  end-page: 45
  article-title: Numerical solution of a parabolic equation subject to specification of energy
  publication-title: Applied Mathematics and Computation
– volume: 2
  start-page: 267
  issue: 3
  year: 1996
  end-page: 283
  article-title: A nonlocal parabolic system in linear thermoelasticity
  publication-title: Dynam Discr Contin Impuls Syst
– volume: 5
  start-page: 375
  issue: 1
  year: 1989
  end-page: 397
  article-title: Developing software for time‐dependent problems using the method of lines and differential algebraic integrators
  publication-title: Appl Num Math
– volume: 13
  start-page: 318
  year: 1955
  end-page: 320
  article-title: An optimum implicit recurrence formula for the heat conduction equation
  publication-title: Quart Appl Math
– volume: 28
  start-page: 543
  issue: 6
  year: 1990
  end-page: 546
  article-title: A numerical method for the diffusion equation with nonlocal boundary specifications
  publication-title: Internat J Engng Sci
– volume: 20
  start-page: 147
  issue: 1
  year: 1997
  end-page: 164
  article-title: Finite difference approximations for a class of nonlocal parabolic equations
  publication-title: Intern J Math and Math Sci
– volume: 31
  start-page: 2219
  year: 1995
  end-page: 2237
  article-title: Nonlocal reactive transport with physical and chemical heterogeneity: Localization error
  publication-title: Water Resource Res
– volume: 13
  start-page: 123
  year: 1993
  end-page: 138
  article-title: Nonlocal dispersion in media with continuously evolving scales of heterogeneity
  publication-title: Transport Porous Media
– volume: 15
  start-page: 915
  year: 1980
  end-page: 923
  article-title: Problem for the heat transfer equation with two‐point boundary conditions
  publication-title: Diff Eq
– year: 1985
– volume: 106
  start-page: 255
  year: 1999
  end-page: 269
  article-title: Fully implicit finite difference methods for two‐dimensional diffusion with a nonlocal boundary condition
  publication-title: Journal of Computational and Applied Mathematics
– volume: 81
  start-page: 1427
  issue: 11
  year: 2004
  end-page: 1432
  article-title: A Tau method approximation for the diffusion equation with nonlocal boundary conditions
  publication-title: Int J Comput Math
– volume: 2003
  start-page: 81
  issue: 2
  year: 2003
  end-page: 92
  article-title: On the numerical solution of the diffusion equation with a non‐local boundary condition
  publication-title: Math Problems Engng
– volume: 31
  start-page: 245
  issue: 2
  year: 1991
  end-page: 255
  article-title: Finite difference methods for a non‐local boundary value problem for the heat equation
  publication-title: BIT
– volume: 47
  start-page: 335
  issue: 3
  year: 1993
  end-page: 350
  article-title: Finite difference approximations for a class of nonlocal parabolic boundary value problems
  publication-title: J Comput Appl Math
– volume: 145
  start-page: 185
  year: 2003
  end-page: 194
  article-title: Numerical solution of a parabolic equation with non‐local boundary specifications
  publication-title: Applied Mathematics and Computation
– volume: 35
  start-page: 9745
  year: 2002
  end-page: 9753
  article-title: A wavelet‐Galerkin method for inhomogeneous diffusion equations subject to mass specification
  publication-title: J Phys A Math Gen
– year: 1994
– volume: 26
  start-page: 197
  issue: 2
  year: 2002
  end-page: 203
  article-title: A method of solution for the one‐dimensional heat equation subject to a nonlocal condition
  publication-title: SEA Bull Math
– volume: 9
  start-page: 358
  year: 1983
  end-page: 375
  article-title: Fortran package for solving certain almost block diagonal linear systems by modified alternate row and column elimination
  publication-title: ACM Trans Math Software
– volume: 21
  start-page: 24
  issue: 1
  year: 2005
  end-page: 40
  article-title: On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numer Methods Partial Differential Eq
– volume: 27
  start-page: 643
  issue: 4
  year: 1991
  end-page: 644
  article-title: Diffusion in fractal porous media
  publication-title: Water Resource Res
– year: 1982
– volume: 16
  start-page: 284
  year: 1979
  end-page: 299
  article-title: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions
  publication-title: SIAM J Numer Anal
– volume: 15
  start-page: 835
  year: 1978
  end-page: 843
  article-title: On the existence solutions of boundary value problems in fast chemical reactions
  publication-title: Bull Della Unione Math Italiana
– volume: 20
  start-page: 213
  year: 1973
  end-page: 237
  article-title: Galerkin methods for parabolic equations with nonlinear boundary conditions
  publication-title: Numer Math
– volume: 27
  start-page: 426
  issue: 4
  year: 1998
  end-page: 434
  article-title: On the decomposition method to the heat equation with non‐linear and non‐local boundary conditions
  publication-title: Kybernetes
– volume: 2
  year: 1972
– volume: 18
  start-page: 317
  issue: 4
  year: 1992
  end-page: 331
  article-title: A parabolic equation with nonlocal boundary conditions arising from electrochemistry
  publication-title: Nonlinear Analysis, Theory, Methods, and Applications
– volume: 44
  start-page: 401
  year: 1986
  end-page: 407
  article-title: Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions
  publication-title: Quart Appl Math
– volume: 79
  start-page: 266
  year: 1989
  end-page: 288
  article-title: On a class of non‐classical parabolic problems
  publication-title: Diff Eqs
– volume: 15
  start-page: 911
  year: 1980
  end-page: 914
  article-title: Stability of a problem in heat transfer theory with a non‐classical boundary condition
  publication-title: Diff Eq
– volume: 9
  start-page: 323
  year: 1996
  end-page: 330
  article-title: Mixed problem with boundary integral conditions for a certain parabolic equation
  publication-title: J Appl Math Stochastic Anal
– article-title: Orthogonal spline collocation for a quasilinear nonlocal parabolic problem
– volume: 21
  start-page: 296
  year: 1985
  end-page: 305
  article-title: Solution of a boundary value problem for a quasi‐linear parabolic equation with nonclassical boundary conditions
  publication-title: Diff Eq
– volume: 53
  start-page: 1
  year: 1973
  end-page: 13
  article-title: Boundary value multidimensional problems in fast chemical reactions
  publication-title: Arch Rat Mech Anal
– start-page: 527
  year: 1982
  end-page: 539
– volume: 80
  start-page: 257
  issue: 2
  year: 2003
  end-page: 265
  article-title: Saulyev's techniques for solving a parabolic equation with a non linear boundary specification
  publication-title: Int J Comput Math
– volume: 41
  start-page: 25
  issue: 1
  year: 1998
  end-page: 32
  article-title: The solution of an inverse heat conduction problem subject to the specification of energies
  publication-title: Int J Heat Mass Transfer
– volume: 35
  start-page: 87
  year: 1993
  end-page: 102
  article-title: A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc
  publication-title: Ser B
– volume: 5
  start-page: 631
  year: 1989
  end-page: 640
  article-title: A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equation
  publication-title: Inverse Problems
– volume: 48
  start-page: 637
  issue: 5
  year: 2002
  end-page: 650
  article-title: Fully explicit finite difference methods for two‐dimensional diffusion with an integral condition
  publication-title: Nonlinear Analysis, Theory Methods and Applications
– volume: 39
  start-page: 121
  year: 1992
  end-page: 132
  article-title: Solving parabolic integro‐differential equations by an explicit integration method
  publication-title: J Comput Appl Math
– year: 1960
– volume: 31
  start-page: 347
  issue: 3
  year: 1993
  end-page: 355
  article-title: A numerical procedure for diffusion subject to the specification of mass
  publication-title: Intern J Engng Sci
– volume: 18
  start-page: 72
  year: 1982
  end-page: 81
  article-title: On certain approximate method for boundary‐value problems for differential equations and its applications in ground waters dynamics
  publication-title: Differentsialnie Uravnenia
– volume: 40
  start-page: 319
  year: 1982
  end-page: 330
  article-title: Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories
  publication-title: Quart Appl Math
– volume: 22
  start-page: 1457
  year: 1986
  end-page: 1463
  article-title: Mixed problem with an integral condition for certain parabolic equations
  publication-title: Diff Eq
– volume: 49
  start-page: 331
  year: 1999
  end-page: 349
  article-title: Implicit locally one‐dimensional methods for two‐dimensional diffusion with a non‐local boundary condition
  publication-title: Mathematics and Computers in Simulation
– volume: 50
  start-page: 517
  year: 1992
  end-page: 522
  article-title: Comparison principle for some nonlocal problems
  publication-title: Quart Appl Math
– volume: 27
  start-page: 297
  year: 1960
  end-page: 311
  article-title: A priori estimates for the solutions of difference approximations to parabolic partial differential equations
  publication-title: Duke Math J
– volume: 130
  start-page: 385
  issue: 4
  year: 1982
  end-page: 398
  article-title: The classical solution of the one‐dimensional two‐phase Stefan problem with energy specification
  publication-title: Annali di Mat Pura ed Appl
– volume: 16
  start-page: 285
  year: 2000
  end-page: 311
  article-title: Finite volume element approximations of nonlocal reactive flows in porous media
  publication-title: Numer Methods Partial Differential Eq
– volume: 24
  start-page: 46
  issue: 1
  year: 1993
  end-page: 58
  article-title: Weak solution to an evolution problem with a nonlocal constraint
  publication-title: SIAM J Math Anal
– volume: 28
  start-page: 579
  issue: 7
  year: 1990
  end-page: 587
  article-title: A Galerkin procedure for diffusion equations with boundary integral conditions
  publication-title: Intern J Engng Sci
– volume: VII
  start-page: 239
  year: 1989
  end-page: 264
– year: 1988
– volume: 13
  start-page: 204
  year: 1977
  end-page: 211
  article-title: Solution of a boundary value problem in heat conduction with a non‐classical boundary condition
  publication-title: Diff Eq
– volume: 115
  start-page: 517
  year: 1986
  end-page: 529
  article-title: Diffusion subject to specification of mass
  publication-title: J Math Anal Appl
– volume: 1
  start-page: 253
  year: 1981
  end-page: 282
  article-title: The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy
  publication-title: Supplemento Bolletino Unione Mathematica Italiana
– ident: e_1_2_1_13_2
  doi: 10.1016/0022-0396(89)90103-4
– ident: e_1_2_1_67_2
  doi: 10.1080/00207160412331284060
– ident: e_1_2_1_5_2
  doi: 10.1016/0377-0427(92)90229-Q
– ident: e_1_2_1_21_2
  doi: 10.1088/0305-4470/35/46/303
– ident: e_1_2_1_82_2
  doi: 10.1016/0020-7225(94)90130-9
– volume: 15
  start-page: 911
  year: 1980
  ident: e_1_2_1_16_2
  article-title: Stability of a problem in heat transfer theory with a non‐classical boundary condition
  publication-title: Diff Eq
– ident: e_1_2_1_15_2
  doi: 10.1090/qam/1178431
– ident: e_1_2_1_106_2
  doi: 10.1016/S0377-0427(99)00065-5
– volume-title: Numerical solution of partial differential equations in science and engineering
  year: 1982
  ident: e_1_2_1_88_2
– ident: e_1_2_1_87_2
  doi: 10.1016/0021-9991(74)90011-4
– volume-title: Applied Numerical Analysis
  year: 1994
  ident: e_1_2_1_63_2
– ident: e_1_2_1_24_2
  doi: 10.1137/0912007
– volume: 27
  start-page: 373
  year: 1997
  ident: e_1_2_1_8_2
  article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations
  publication-title: Hiroshima Math J
  doi: 10.32917/hmj/1206126957
– ident: e_1_2_1_9_2
  doi: 10.1090/qam/963580
– ident: e_1_2_1_62_2
  doi: 10.1016/S0377-0427(99)00200-9
– ident: e_1_2_1_105_2
  doi: 10.1016/S0096-3003(02)00479-4
– ident: e_1_2_1_2_2
  doi: 10.1016/0362-546X(92)90148-8
– volume: 5
  start-page: 209
  year: 1999
  ident: e_1_2_1_96_2
  article-title: A box scheme for coupled systems resulting from micro‐sensor thermistor problems
  publication-title: Dynam Discr Contin Impuls Sys
– volume-title: Theory of thermal stresses
  year: 1960
  ident: e_1_2_1_6_2
– ident: e_1_2_1_61_2
  doi: 10.1090/qam/693879
– ident: e_1_2_1_64_2
  doi: 10.1002/cnm.1640100910
– ident: e_1_2_1_14_2
  doi: 10.1017/S0027763000020754
– ident: e_1_2_1_20_2
  doi: 10.1007/BF01385851
– ident: e_1_2_1_77_2
  doi: 10.1016/S0362-546X(00)00172-3
– volume: 130
  start-page: 35
  year: 1990
  ident: e_1_2_1_57_2
  article-title: The numerical method for the conduction subject to moving boundary energy specification
  publication-title: Numer Heat Transfer
– volume: 13
  start-page: 204
  year: 1977
  ident: e_1_2_1_25_2
  article-title: Solution of a boundary value problem in heat conduction with a non‐classical boundary condition
  publication-title: Diff Eq
– ident: e_1_2_1_4_2
  doi: 10.1007/978-1-4613-9555-3
– ident: e_1_2_1_37_2
  doi: 10.1090/qam/160437
– ident: e_1_2_1_10_2
  doi: 10.1088/0266-5611/5/4/013
– ident: e_1_2_1_78_2
  doi: 10.1080/00207160304670
– ident: e_1_2_1_107_2
  doi: 10.1016/S0378-4754(99)00056-7
– volume: 107
  start-page: 180
  year: 1993
  ident: e_1_2_1_94_2
  article-title: A non‐local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries
  publication-title: Siberian Russian Acad Sci Inst Hydrodynam
– volume: 22
  start-page: 1457
  year: 1986
  ident: e_1_2_1_29_2
  article-title: Mixed problem with an integral condition for certain parabolic equations
  publication-title: Diff Eq
– ident: e_1_2_1_84_2
  doi: 10.1090/qam/1178432
– ident: e_1_2_1_89_2
  doi: 10.1002/num.20019
– ident: e_1_2_1_60_2
  doi: 10.1007/BF01931285
– year: 1978
  ident: e_1_2_1_48_2
– ident: e_1_2_1_102_2
  doi: 10.1016/S0377-0427(96)00097-0
– ident: e_1_2_1_31_2
  doi: 10.1215/S0012-7094-60-02727-7
– ident: e_1_2_1_42_2
  doi: 10.1016/0168-9274(89)90038-X
– ident: e_1_2_1_43_2
  doi: 10.1145/356044.356053
– ident: e_1_2_1_71_2
  doi: 10.1007/BF02127706
– volume: 1
  start-page: 253
  year: 1981
  ident: e_1_2_1_51_2
  article-title: The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy
  publication-title: Supplemento Bolletino Unione Mathematica Italiana
– volume: 21
  start-page: 296
  year: 1985
  ident: e_1_2_1_28_2
  article-title: Solution of a boundary value problem for a quasi‐linear parabolic equation with nonclassical boundary conditions
  publication-title: Diff Eq
– ident: e_1_2_1_11_2
  doi: 10.1007/BF00613273
– volume: 70
  start-page: 345
  year: 1963
  ident: e_1_2_1_23_2
  article-title: Solutions for diffusion equations with integral type boundary conditions
  publication-title: Proc Iowa, Acad Sci
– ident: e_1_2_1_55_2
  doi: 10.1007/BF00735697
– ident: e_1_2_1_44_2
  doi: 10.1016/0022-247X(86)90012-0
– ident: e_1_2_1_72_2
  doi: 10.1006/jmaa.1995.1113
– volume: 35
  start-page: 87
  year: 1993
  ident: e_1_2_1_39_2
  article-title: A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc
  publication-title: Ser B
– ident: e_1_2_1_49_2
  doi: 10.1016/0020-7225(93)90010-R
– ident: e_1_2_1_41_2
  doi: 10.1137/0524004
– volume: 10
  start-page: 61
  year: 1999
  ident: e_1_2_1_50_2
  article-title: On a class of parabolic equations with a nonlocal boundary condition
  publication-title: Acad Roy Belg Bull Cl Sci
– volume: 2
  start-page: 267
  issue: 3
  year: 1996
  ident: e_1_2_1_80_2
  article-title: A nonlocal parabolic system in linear thermoelasticity
  publication-title: Dynam Discr Contin Impuls Syst
– year: 1972
  ident: e_1_2_1_97_2
– year: 1984
  ident: e_1_2_1_32_2
– volume: 45
  start-page: 1
  year: 1999
  ident: e_1_2_1_90_2
  article-title: A nonlocal problem with integral conditions for hyperbolic equations
  publication-title: Electronic J Differential Eq
– volume: 27
  start-page: 820
  year: 1991
  ident: e_1_2_1_47_2
  article-title: Uniform stability of difference schemes for a nonlocal nonselfadjoint boundary value problem with variable coefficients
  publication-title: Diff Eq
– ident: e_1_2_1_26_2
  doi: 10.1016/0020-7225(90)90087-Y
– ident: e_1_2_1_36_2
  doi: 10.1016/0020-7225(90)90056-O
– volume: 67
  start-page: 24
  issue: 6
  year: 1996
  ident: e_1_2_1_75_2
  article-title: Product integration methods for solving a system of nonlinear Volterra integral equations
  publication-title: J Comput Appl Math
– ident: e_1_2_1_22_2
  doi: 10.1137/0716021
– volume-title: Mathematical problems in viscoelasticity
  year: 1987
  ident: e_1_2_1_95_2
– ident: e_1_2_1_45_2
  doi: 10.1007/BF01436565
– ident: e_1_2_1_35_2
  doi: 10.1016/S0017-9310(97)00115-4
– ident: e_1_2_1_81_2
  doi: 10.1016/0377-0427(93)90061-F
– start-page: 527
  volume-title: An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numerical Solutions of Partial Differential Equations
  year: 1982
  ident: e_1_2_1_30_2
– ident: e_1_2_1_52_2
  doi: 10.1016/0022-247X(82)90270-0
– ident: e_1_2_1_54_2
  doi: 10.1512/iumj.1970.20.20037
– ident: e_1_2_1_58_2
  doi: 10.1155/S1024123X03111015
– ident: e_1_2_1_73_2
  doi: 10.1002/zamm.19960760611
– ident: e_1_2_1_92_2
  doi: 10.1029/91WR00162
– ident: e_1_2_1_100_2
  doi: 10.1002/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO;2-3
– ident: e_1_2_1_27_2
  doi: 10.1090/qam/678203
– ident: e_1_2_1_76_2
  doi: 10.1108/03684929810219431
– ident: e_1_2_1_18_2
– start-page: 239
  volume-title: A quasilinear parabolic equation with nonlocal boundary conditions
  year: 1989
  ident: e_1_2_1_53_2
– ident: e_1_2_1_103_2
  doi: 10.1016/S0096-3003(02)00954-2
– ident: e_1_2_1_69_2
  doi: 10.1007/978-3-642-84108-8
– volume-title: Finite difference schemes and partial differential equations
  year: 1989
  ident: e_1_2_1_85_2
– ident: e_1_2_1_7_2
  doi: 10.1155/S1048953396000305
– ident: e_1_2_1_83_2
  doi: 10.1155/S0161171297000215
– ident: e_1_2_1_33_2
  doi: 10.1137/0724036
– volume: 16
  start-page: 1221
  year: 1980
  ident: e_1_2_1_101_2
  article-title: Some problems in differential equations theory
  publication-title: Diff Eq
– ident: e_1_2_1_74_2
  doi: 10.1007/BF01936141
– ident: e_1_2_1_79_2
  doi: 10.1137/S003614109324306X
– ident: e_1_2_1_19_2
  doi: 10.1155/S0161171299225112
– ident: e_1_2_1_98_2
  doi: 10.1090/qam/860893
– ident: e_1_2_1_34_2
  doi: 10.1016/0020-7225(90)90086-X
– volume: 15
  start-page: 835
  year: 1978
  ident: e_1_2_1_56_2
  article-title: On the existence solutions of boundary value problems in fast chemical reactions
  publication-title: Bull Della Unione Math Italiana
– volume: 18
  start-page: 280
  year: 1982
  ident: e_1_2_1_40_2
  article-title: A boundary‐value problem with non‐local condition for certain pseudo‐parabolic water‐transfer equation
  publication-title: Differentsialnie Uravnenia
– ident: e_1_2_1_46_2
  doi: 10.1137/0732025
– volume: 18
  start-page: 72
  year: 1982
  ident: e_1_2_1_93_2
  article-title: On certain approximate method for boundary‐value problems for differential equations and its applications in ground waters dynamics
  publication-title: Differentsialnie Uravnenia
– ident: e_1_2_1_65_2
  doi: 10.1016/S0168-9274(01)00139-8
– volume-title: Applied Analysis
  year: 1987
  ident: e_1_2_1_68_2
– ident: e_1_2_1_12_2
  doi: 10.1007/BF01761503
– ident: e_1_2_1_104_2
  doi: 10.1080/00207160410001712297
– volume: 26
  start-page: 197
  issue: 2
  year: 2002
  ident: e_1_2_1_66_2
  article-title: A method of solution for the one‐dimensional heat equation subject to a nonlocal condition
  publication-title: SEA Bull Math
– ident: e_1_2_1_86_2
  doi: 10.1090/qam/73292
– ident: e_1_2_1_3_2
  doi: 10.1029/94WR01798
– ident: e_1_2_1_99_2
  doi: 10.1007/s006070050007
– volume: 15
  start-page: 915
  year: 1980
  ident: e_1_2_1_17_2
  article-title: Problem for the heat transfer equation with two‐point boundary conditions
  publication-title: Diff Eq
– ident: e_1_2_1_91_2
  doi: 10.1029/95WR01396
– ident: e_1_2_1_59_2
  doi: 10.1017/S0334270000010560
– ident: e_1_2_1_70_2
– ident: e_1_2_1_38_2
  doi: 10.1016/0041-5553(64)90080-1
SSID ssj0011519
Score 2.135165
Snippet Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 220
SubjectTerms boundary element method
decomposition method
double shifted Legendre series
existence
explicit schemes
finite difference schemes
Galerkin procedure
implicit techniques
Keller-box scheme
Legendre Tau method
nonstandard boundary value problems
numerical integration
orthogonal spline collocation
pade approximant
parallel algorithms
product integration method
representation of solutions
Runge-Kutta-Chebyshev formula
second-order parabolic equation
semidiscretization techniques
separation of variables
stability
uniqueness
wavelet-Galerkin technique
Title A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
URI https://api.istex.fr/ark:/67375/WNG-DKB3R60J-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.20071
Volume 22
WOSCitedRecordID wos000233927000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEICDtB704FusL4KIeFncTbPdLJ7qo4qPImK1eFmSaRZEae1L9OZP8Df6S5wk21VBQfC2sJNkySSZyWzyDSGbXDMfIhXj6qe5xyGIPYlutxelgWxVZATKcguuz6J6XTSb8cUY2R3dhXF8iDzgZmaGXa_NBJeqv_MFGjp0F8lx61NkOG7DAikeXNYaZ_lPBDRmsaNwxh5a7eYILOSznbzwN3NUND37_N1NtXamNv2vL5whU5l7SatuPMySMd2eI5PnOZu1P0-6VQo2lUMWBqSWMEs7KUUh2mnr99e3lmH-O14HNXBwZejBVHcdF5z2h8qEb-igQ9udNhgH3OiaKpujqfdCzf1NcwbJhQMXSKN2eLV_7GWJFzzAKR-YRYcDD0C1hFBlqPgyCAFViK6S5jJkQnI_5fgqUmj_QYmw5UuhcHcj0QXQrLxICti8XiJUAEBQkcBUGnEshv4YMKbLkcAKUwElsj3q_wQyKrlJjvGQOJ4yM5lREtuLJbKRiz46FMdPQltWibmE7N2bs2tRmNzUj5KD073yZcU_SW6xYau736tK6o1z-7D8d9EVMvEZo1klhUFvqNfIODwN7vq99WyAfgBr1uwS
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7FCurBt1ifQUS8LO5u024WvKi1vtpFxGrxsiTTLIjSah-iN3-Cv9Ff4iTZrgoKgreFnSRLZibzZTb5hpBNpnwXAhni6qeYw8ALHYGw2wkST7TKIgBpeAuuakEU8WYzPM-R3eFdGMsPkSXctGeY9Vo7uE5I73xhDR3Ym-S498kzNCO073zlotqoZX8RMJqFloYzdDBsN4fMQq6_kzX-Fo_yemqfv-NUE2iqU__7xGkymQJMumctYobkVHuWTNQzdtbeHHnco2CKOaSJQGo4ZmknoShEO231_vrW0qz_lrGDanpwqfmDqXq0zOC0N5A6gUP7HdrutEFDcK1tKk2Vpu4L1Tc49SkkmxCcJ43q4eXBsZOWXnAAnd7Tyw4D5oFscS6LUHaFVwJUIoIlxUTJ54K5CcNXgUQEAJKXWq7gEvc3AkGA8osLZASHV4uEcgDwygJ8mQQMmyEiA99XxYBjhwmHAtkeKiCGlJdcl8e4jy2jsq9ro8RmFgtkIxN9sGQcPwltGS1mEqJ7p0-vBaX4OjqKK2f7xYuyexrf4MBGeb93FUeNunlY-rvoOhk7vqzX4tpJdLZMxj8zNitkpN8dqFUyCk_92153LbXWD4gb8AI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dSxwxEMAHuStiH2z9KNXaGkTEl8XdvdxtFnzRXq9-nIuIp4cvSzKbhaLc6X0UffNP8G_sX-Ik2dsqKAi-LewkWTJJZjKb_AZgnevQx0jFtPpp7nEMYk-S2-1FeSCzhoxQWW7BWTtKEtHtxsdTsD25C-P4EGXAzcwMu16bCa6vs3zrCTV07G6S096nyk0SmQpUmyetTrv8i0DWLHYYztgjs92dkIX8cKss_MweVU3X3j73U62haX163yd-htnCwWQ7bkTMwZTuzcPHo5LOOlyAmx2GNplDEQhkljHL-jkjIdbv6X_3D5mh_jtiBzN4cGX4wUzfODI4G46VCeCwUZ_1-j00LrjRNlM2S9PgjpkbnOYUkgsILkKn9ev0555XpF7wkCZ9YJYdjjxAlQmhatjwZVBHUiI5S5rLeigk93NOryJFHgAqUc98KRTtbyQ5ATqsfYEKNa-_AhOIGDQkhiqPOBUjjwzDUNciQRXmApdgc6KAFAsuuUmPcZU6onJocqOktheXYK0UvXYwjpeENqwWSwk5uDSn16J6ep78TpuHu7WThn-QXlDDVnmvV5UmnSP7sPx20VWYPm620vZ-cvgNZv4HbFagMhqM9Xf4gH9Hf4aDH8VgfQQrxu99
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+study+of+the+one-dimensional+parabolic+equation+subject+to+nonclassical+boundary+specifications&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Dehghan%2C+Mehdi&rft.date=2006-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=22&rft.issue=1&rft.spage=220&rft.epage=257&rft_id=info:doi/10.1002%2Fnum.20071&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DKB3R60J_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon