A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral term over the spatial domain of a function of the desired solution. Hence, in the past few years interest has substantially increased in the s...
Gespeichert in:
| Veröffentlicht in: | Numerical methods for partial differential equations Jg. 22; H. 1; S. 220 - 257 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2006
|
| Schlagworte: | |
| ISSN: | 0749-159X, 1098-2426 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral term over the spatial domain of a function of the desired solution. Hence, in the past few years interest has substantially increased in the solutions of these problems. As a result numerous research papers have also been devoted to the subject. Although considerable amount of work has been done in the past, there is still a lack of a completely satisfactory computational scheme. Also, there are some cases that have not been studied numerically yet. In the current article several approaches for the numerical solution of the one‐dimensional parabolic equation subject to the specification of mass, which have been considered in the literature, are reported. Finite difference methods have been proposed for the numerical solution of the new nonclassic boundary value problem. To investigate the performance of the proposed algorithm, we consider solving a test problem. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 |
|---|---|
| AbstractList | Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral term over the spatial domain of a function of the desired solution. Hence, in the past few years interest has substantially increased in the solutions of these problems. As a result numerous research papers have also been devoted to the subject. Although considerable amount of work has been done in the past, there is still a lack of a completely satisfactory computational scheme. Also, there are some cases that have not been studied numerically yet. In the current article several approaches for the numerical solution of the one‐dimensional parabolic equation subject to the specification of mass, which have been considered in the literature, are reported. Finite difference methods have been proposed for the numerical solution of the new nonclassic boundary value problem. To investigate the performance of the proposed algorithm, we consider solving a test problem. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 |
| Author | Dehghan, Mehdi |
| Author_xml | – sequence: 1 givenname: Mehdi surname: Dehghan fullname: Dehghan, Mehdi email: mdehghan@aut.ac.ir organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran |
| BookMark | eNp1kEtPwzAQhC0EEm3hwD_wlUNav_I6lgLlUYqEqEBcLMdxhEsSl9gR9N_jNoUDgtNKO_ONdqcP9mtTKwBOMBpihMiobqshQSjGe6CHUZoEhJFoH_RQzNIAh-nzIehbu0QI4xCnPWDGUJpq1TrhtKlFCa1r8zU0BXSvCvrsINeVqm0nrkQjMlNqCdV7uyWgbbOlkg46A_0pshTWaumtmWnrXDRraFdK6sLvNnZ7BA4KUVp1vJsDsLi8eJxcBbP76fVkPAsk9ccHNI6YZFhmeZJkVEZI4FAKjCNCFRMhSQRDBfNSnDGvZEmYI5FkBMcCeQuhAzDqcmVjrG1UwaXufnSN0CXHiG_64r4vvu3LE6e_iFWjK__Bn95d-ocu1fp_I58v7r6JoCO0derzhxDNG49iGof8aT7l57dn9CFCN_yFfgEfnY4Q |
| CitedBy_id | crossref_primary_10_1016_j_apm_2015_01_029 crossref_primary_10_1016_j_cpc_2010_04_006 crossref_primary_10_1016_j_enganabound_2023_03_027 crossref_primary_10_1007_s11075_008_9234_3 crossref_primary_10_1140_epjp_i2018_12193_8 crossref_primary_10_1016_j_cpc_2010_04_008 crossref_primary_10_1016_j_na_2009_01_134 crossref_primary_10_1007_s40314_017_0553_7 crossref_primary_10_1016_j_apm_2018_01_034 crossref_primary_10_1002_mma_7601 crossref_primary_10_1016_j_mcm_2009_11_015 crossref_primary_10_1016_j_cam_2008_12_011 crossref_primary_10_1016_j_mcm_2007_11_012 crossref_primary_10_1002_num_20521 crossref_primary_10_1016_j_apm_2008_03_006 crossref_primary_10_1016_j_cpc_2013_12_015 crossref_primary_10_1080_00036811_2018_1434149 crossref_primary_10_1016_j_enganabound_2013_01_009 crossref_primary_10_1007_s40819_020_00859_6 crossref_primary_10_1016_j_cpc_2010_08_035 crossref_primary_10_1080_00036811_2017_1359558 crossref_primary_10_1016_j_joems_2014_06_018 crossref_primary_10_1007_s10586_017_1636_3 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119841 crossref_primary_10_1186_s13662_021_03626_z crossref_primary_10_1016_j_cpc_2010_09_009 crossref_primary_10_1016_j_oceaneng_2014_08_007 crossref_primary_10_1080_00207160802253958 crossref_primary_10_1002_num_20382 crossref_primary_10_1007_s10915_011_9560_9 crossref_primary_10_1016_j_cam_2021_114029 crossref_primary_10_1016_j_amc_2013_05_073 crossref_primary_10_1002_num_20306 crossref_primary_10_1016_j_amc_2015_03_039 crossref_primary_10_1002_mma_6854 crossref_primary_10_1016_j_enganabound_2008_03_011 crossref_primary_10_1155_2021_6880435 crossref_primary_10_1016_j_cma_2007_08_016 crossref_primary_10_1016_j_matcom_2021_12_013 crossref_primary_10_1186_s13660_019_2262_9 crossref_primary_10_1016_j_enganabound_2024_02_015 crossref_primary_10_1155_2014_849682 crossref_primary_10_1007_s00366_018_0656_9 crossref_primary_10_1016_j_mcm_2007_09_016 crossref_primary_10_1016_j_enganabound_2016_07_015 crossref_primary_10_1016_j_apm_2011_07_041 crossref_primary_10_1155_2014_519814 crossref_primary_10_1016_j_cam_2009_01_012 crossref_primary_10_1016_j_chaos_2015_11_036 crossref_primary_10_1002_num_20430 crossref_primary_10_1007_s40314_018_0631_5 crossref_primary_10_1016_j_enganabound_2014_08_014 crossref_primary_10_1016_j_camwa_2009_12_026 crossref_primary_10_1002_num_20313 crossref_primary_10_1016_j_cpc_2009_12_010 crossref_primary_10_1002_num_22973 crossref_primary_10_1016_j_cam_2022_114567 crossref_primary_10_1186_s13662_020_02922_4 crossref_primary_10_1016_j_camwa_2008_03_055 crossref_primary_10_1002_mma_3568 crossref_primary_10_1016_j_camwa_2016_06_041 crossref_primary_10_1080_00207160701405436 crossref_primary_10_1155_2021_6629358 crossref_primary_10_1016_j_amc_2010_09_032 crossref_primary_10_1002_mma_6162 crossref_primary_10_1016_j_amc_2011_11_009 crossref_primary_10_1002_mma_5593 crossref_primary_10_1007_s11253_014_0920_0 crossref_primary_10_1002_num_20204 crossref_primary_10_1002_num_20325 crossref_primary_10_1002_mma_5101 crossref_primary_10_1016_j_amc_2017_03_019 crossref_primary_10_1016_j_enganabound_2013_04_001 crossref_primary_10_1002_num_20569 crossref_primary_10_1002_num_20209 crossref_primary_10_1007_s11868_024_00632_z crossref_primary_10_1007_s11075_009_9293_0 crossref_primary_10_1016_j_ces_2012_11_033 crossref_primary_10_1016_j_enganabound_2008_08_008 crossref_primary_10_1002_num_20289 crossref_primary_10_1002_num_20442 crossref_primary_10_1016_j_na_2007_07_008 crossref_primary_10_1186_s13662_021_03545_z crossref_primary_10_1016_j_amc_2014_07_095 crossref_primary_10_1002_num_20608 crossref_primary_10_1016_j_ijrefrig_2018_11_009 crossref_primary_10_1108_09615531211188784 crossref_primary_10_1002_num_20457 crossref_primary_10_1007_s00366_016_0489_3 crossref_primary_10_1007_s10409_012_0083_x crossref_primary_10_1016_j_camwa_2022_11_020 crossref_primary_10_1016_j_amc_2008_03_008 crossref_primary_10_1016_j_enganabound_2021_04_016 crossref_primary_10_1016_j_apnum_2020_12_017 crossref_primary_10_1002_num_20296 crossref_primary_10_1016_j_cpc_2011_07_018 crossref_primary_10_1002_num_20174 crossref_primary_10_1002_num_20177 crossref_primary_10_1016_j_cam_2011_05_038 crossref_primary_10_1002_nme_4960 crossref_primary_10_1002_num_20297 crossref_primary_10_3390_math9010078 crossref_primary_10_1002_num_20299 crossref_primary_10_1002_cnm_1010 crossref_primary_10_1016_j_camwa_2006_12_076 crossref_primary_10_1016_j_enganabound_2007_11_005 crossref_primary_10_1007_s13398_022_01383_6 crossref_primary_10_1016_j_apm_2011_08_032 crossref_primary_10_1186_s13662_019_2261_7 crossref_primary_10_1016_j_ijrefrig_2017_01_007 crossref_primary_10_1088_1402_4896_abe066 crossref_primary_10_1016_j_apnum_2017_11_008 crossref_primary_10_1002_num_20468 crossref_primary_10_1080_00207160903229881 crossref_primary_10_1080_10236198_2025_2471440 crossref_primary_10_1002_num_20186 crossref_primary_10_1016_j_cam_2010_06_020 crossref_primary_10_1016_j_cam_2011_01_043 crossref_primary_10_1002_num_20341 crossref_primary_10_1002_mma_2847 crossref_primary_10_1007_s11075_012_9595_5 crossref_primary_10_1007_s40314_022_01908_0 crossref_primary_10_1016_j_physa_2016_07_016 crossref_primary_10_1002_num_20590 crossref_primary_10_1016_j_matcom_2008_04_018 crossref_primary_10_1007_s12591_018_0417_7 crossref_primary_10_1007_s40324_017_0123_3 crossref_primary_10_1016_j_amc_2015_03_062 crossref_primary_10_1007_s40571_025_00979_0 crossref_primary_10_1002_mma_6882 crossref_primary_10_1002_num_20230 crossref_primary_10_1016_j_cam_2008_07_008 crossref_primary_10_1007_s00366_016_0449_y crossref_primary_10_1002_num_20352 crossref_primary_10_1002_num_20357 crossref_primary_10_1002_num_22136 crossref_primary_10_1088_1674_1056_18_10_001 |
| Cites_doi | 10.1016/0022-0396(89)90103-4 10.1080/00207160412331284060 10.1016/0377-0427(92)90229-Q 10.1088/0305-4470/35/46/303 10.1016/0020-7225(94)90130-9 10.1090/qam/1178431 10.1016/S0377-0427(99)00065-5 10.1016/0021-9991(74)90011-4 10.1137/0912007 10.32917/hmj/1206126957 10.1090/qam/963580 10.1016/S0377-0427(99)00200-9 10.1016/S0096-3003(02)00479-4 10.1016/0362-546X(92)90148-8 10.1090/qam/693879 10.1002/cnm.1640100910 10.1017/S0027763000020754 10.1007/BF01385851 10.1016/S0362-546X(00)00172-3 10.1007/978-1-4613-9555-3 10.1090/qam/160437 10.1088/0266-5611/5/4/013 10.1080/00207160304670 10.1016/S0378-4754(99)00056-7 10.1090/qam/1178432 10.1002/num.20019 10.1007/BF01931285 10.1016/S0377-0427(96)00097-0 10.1215/S0012-7094-60-02727-7 10.1016/0168-9274(89)90038-X 10.1145/356044.356053 10.1007/BF02127706 10.1007/BF00613273 10.1007/BF00735697 10.1016/0022-247X(86)90012-0 10.1006/jmaa.1995.1113 10.1016/0020-7225(93)90010-R 10.1137/0524004 10.1016/0020-7225(90)90087-Y 10.1016/0020-7225(90)90056-O 10.1137/0716021 10.1007/BF01436565 10.1016/S0017-9310(97)00115-4 10.1016/0377-0427(93)90061-F 10.1016/0022-247X(82)90270-0 10.1512/iumj.1970.20.20037 10.1155/S1024123X03111015 10.1002/zamm.19960760611 10.1029/91WR00162 10.1002/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO;2-3 10.1090/qam/678203 10.1108/03684929810219431 10.1016/S0096-3003(02)00954-2 10.1007/978-3-642-84108-8 10.1155/S1048953396000305 10.1155/S0161171297000215 10.1137/0724036 10.1007/BF01936141 10.1137/S003614109324306X 10.1155/S0161171299225112 10.1090/qam/860893 10.1016/0020-7225(90)90086-X 10.1137/0732025 10.1016/S0168-9274(01)00139-8 10.1007/BF01761503 10.1080/00207160410001712297 10.1090/qam/73292 10.1029/94WR01798 10.1007/s006070050007 10.1029/95WR01396 10.1017/S0334270000010560 10.1016/0041-5553(64)90080-1 |
| ContentType | Journal Article |
| Copyright | Copyright © 2005 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: Copyright © 2005 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/num.20071 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1098-2426 |
| EndPage | 257 |
| ExternalDocumentID | 10_1002_num_20071 NUM20071 ark_67375_WNG_DKB3R60J_Z |
| Genre | article |
| GrantInformation_xml | – fundername: Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran funderid: 84650030 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-c3071-3764c41cbd88b3c60a15ca11623e4a528a40f48b37b415cb85d0a8b217a023e23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233927000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0749-159X |
| IngestDate | Tue Nov 18 22:37:04 EST 2025 Sat Nov 29 05:35:06 EST 2025 Thu Sep 25 07:36:11 EDT 2025 Sun Sep 21 06:18:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3071-3764c41cbd88b3c60a15ca11623e4a528a40f48b37b415cb85d0a8b217a023e23 |
| Notes | ark:/67375/WNG-DKB3R60J-Z Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran - No. 84650030 istex:9795E77FDBC1AC179112F6CD427AC569BF0DEE2F ArticleID:NUM20071 |
| PageCount | 38 |
| ParticipantIDs | crossref_citationtrail_10_1002_num_20071 crossref_primary_10_1002_num_20071 wiley_primary_10_1002_num_20071_NUM20071 istex_primary_ark_67375_WNG_DKB3R60J_Z |
| PublicationCentury | 2000 |
| PublicationDate | 2006-01 January 2006 2006-01-00 |
| PublicationDateYYYYMMDD | 2006-01-01 |
| PublicationDate_xml | – month: 01 year: 2006 text: 2006-01 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Numerical methods for partial differential equations |
| PublicationTitleAlternate | Numer. Methods Partial Differential Eq |
| PublicationYear | 2006 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | J. R. Cannon and A. Fasano, Boundary value multidimensional problems in fast chemical reactions, Arch Rat Mech Anal 53 (1973), 1-13. S. Wang and Y. Lin, A numerical method for the diffusion equation with nonlocal boundary specifications, Internat J Engng Sci 28(6) (1990), 543-546. L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electronic J Differential Eq 45 (1999), 1-6. W. A. Day, Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Quart Appl Math 40 (1982), 319-330. J. R. Cannon, Y. Lin, and J. van der Hoek, A quasilinear parabolic equation with nonlocal boundary conditions, Rendicoti di Mathematica Roma, Serie VII 9 (1989), 239-264. Y. Lin, Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations, SIAM J Math Anal 25(6) (1994), 1577-1594. B. Jumarhon and S. McKee, Product integration methods for solving a system of nonlinear Volterra integral equations, J Comput Appl Math 67(6) (1996), 24-41. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1988. M. Dehghan, Fully explicit finite difference methods for two-dimensional diffusion with an integral condition, Nonlinear Analysis, Theory Methods and Applications 48(5) (2002), 637-650. K. Deng, Comparison principle for some nonlocal problems, Quart Appl Math 50 (1992), 517-522. N. Borovykh, Stability in the numerical solution of the heat equation with non-local boundary conditions, Appl Num Math 42 (2002), 17-27. L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982. R. F. Warming and B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J Computational Physics 14(2) (1974), 159-179. A. M. Nakhushev, On certain approximate method for boundary-value problems for differential equations and its applications in ground waters dynamics, Differentsialnie Uravnenia 18 (1982), 72-81. B. Cahlon, D. M. Kulkrani, and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM J Numer Anal 32(2) (1995), 571-593. W. A. Day, A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Quart Appl Math 41 (1983), 468-475. M. Lees, A priori estimates for the solutions of difference approximations to parabolic partial differential equations, Duke Math J 27 (1960), 297-311. J. C. Strikwerda, Finite difference schemes and partial differential equations, Chapman and Hall, New York, 1989. M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Eq 21(1) (2005), 24-40. J. Douglas, Jr. and T. Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer Math 20 (1973), 213-237. G. Fairweather and R. D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J Sci Stat Comput 12(1) (1991), 127-144. W. T. Ang, A method of solution for the one-dimensional heat equation subject to a nonlocal condition, SEA Bull Math 26(2) (2002), 197-203. B. Jumarhon and M. Pidcock, On a nonlinear Volterra integro-differential equation with a weakly singular kernel, Z Angew Math Mech 76(6) (1996), 357-360. R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media, Numer Methods Partial Differential Eq 16 (2000), 285-311. M. Dehghan, The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure, International Journal of Computer Mathematics, 81 (2004), 979-989. Y. Lin and R. J. Tait, Finite difference approximations for a class of nonlocal parabolic boundary value problems, J Comput Appl Math 47(3) (1993), 335-350. J. R. Cannon and J. van der Hoek, The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy, Supplemento Bolletino Unione Mathematica Italiana 1 (1981), 253-282. M. Dehghan, Numerical solution of a parabolic equation subject to specification of energy, Applied Mathematics and Computation, 149 (2004), 31-45. A. K. Pani, A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc, Ser B 35 (1993), 87-102. V. A. Vodakhova, A boundary-value problem with non-local condition for certain pseudo-parabolic water-transfer equation, Differentsialnie Uravnenia 18 (1982), 280-285. A. L. Araujo and F. A. Oliveira, Semi-discretization method for the heat equation with non-local boundary conditions, Comm Numer Methods Engrg 10 (1994), 751-758. J. H. Cushman, H. Xu, and F. Deng, Nonlocal reactive transport with physical and chemical heterogeneity: Localization error, Water Resource Res 31 (1995), 2219-2237. J. H. Cushman and T. R. Ginn, Nonlocal dispersion in media with continuously evolving scales of heterogeneity, Transport Porous Media 13 (1993), 123-138. G. Fairweather and J. C. Lopez-Marcos, Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions, Adv Comput Math 6 (1996), 243-262. J. R. Cannon and J. van der Hoek, An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numerical Solutions of Partial Differential Equations, North Holland, 527-539, 1982. J. A. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solutions, BIT 25 (1985), 624-634. S. H. Crandall, An optimum implicit recurrence formula for the heat conduction equation, Quart Appl Math 13 (1955), 318-320. P. Shi, Weak solution to an evolution problem with a nonlocal constraint, SIAM J Math Anal 24(1) (1993), 46-58. S. Wang, The numerical method for the conduction subject to moving boundary energy specification, Numer Heat Transfer 130 (1990), 35-38. A. Bouziani, On a class of parabolic equations with a nonlocal boundary condition, Acad Roy Belg Bull Cl Sci 10 (1999), 61-77. M. Hadizadeh and K. Maleknejad, On the decomposition method to the heat equation with non-linear and non-local boundary conditions, Kybernetes 27(4) (1998), 426-434. M. Dehghan, Numerical solution of a parabolic equation with non-local boundary specifications, Applied Mathematics and Computation, 145 (2003), 185-194. W. A. Day, Heat conduction within linear thermoelasticity, Springer-Verlag, New York, 1985. J. Xu and W. Shann, Galerkin-wavelets methods for two-point boundary value problems, Num Math 63 (1992), 123-144. S. H. Behiry, A wavelet-Galerkin method for inhomogeneous diffusion equations subject to mass specification, J Phys A Math Gen 35 (2002), 9745-9753. K. L. Deckert and C. G. Maple, Solutions for diffusion equations with integral type boundary conditions, Proc Iowa, Acad Sci 70 (1963), 345-361. N. I. Ionkin, Solution of a boundary value problem in heat conduction with a non-classical boundary condition, Diff Eq 13 (1977), 204-211. B. Jumarhon and S. McKee, On a heat equation with nonlinear and nonlocal boundary conditions, J Math Anal Appl 190 (1995), 806-820. J. R. Cannon and J. van der Hoek, Diffusion subject to specification of mass, J Math Anal Appl 115 (1986), 517-529. J. R. Cannon, S. Prez-Esteva, and J. van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J Num Anal 24 (1987), 499-515. C. Lanczos, Applied Analysis, Springer-Verlag, New York, 1987. W. Allegretto, Y. Lin, and A. Zhou, A box scheme for coupled systems resulting from micro-sensor thermistor problems, Dynam Discr Contin Impuls Sys 5 (1999), 209-223. B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley, New York, 1960. Y. Lin, S. Xu, and H. M. Yin, Finite difference approximations for a class of nonlocal parabolic equations, Intern J Math and Math Sci 20(1) (1997), 147-164. M. Dehghan, Implicit locally one-dimensional methods for two-dimensional diffusion with a non-local boundary condition, Mathematics and Computers in Simulation, 49 (1999), 331-349. J. R. Cannon and J. van der Hoek, The one phase Stefan problem subject to the specification of energy, J Math Anal Appl 86 (1982), 281-291. M. Dehghan, Fully implicit finite difference methods for two-dimensional diffusion with a nonlocal boundary condition, Journal of Computational and Applied Mathematics, 106 (1999), 255-269. A. Bouziani, Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations, Hiroshima Math J 27 (1997), 373-390. J. R. Cannon, Y. Lin, and S. Wang, An implicit finite difference scheme for the diffusion equation subject to the specification of mass, Intern J Engng Sci 28(7) (1990), 573-578. A. Friedman, Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions, Quart Appl Math 44 (1986), 401-407. Y. Lin, A nonlocal parabolic system in linear thermoelasticity, Dynam Discr Contin Impuls Syst 2(3) (1996), 267-283. J. R. Cannon and J. van der Hoek, The classical solution of the one-dimensional two-phase Stefan problem with energy specification, Annali di Mat Pura ed Appl 130(4) (1982), 385-398. J. R. Cannon and E. Di Benedetto, On the existence solutions of boundary value problems in fast chemical reactions, Bull Della Unione Math Italiana 15 (1978), 835-843. J. Chabrowski, On nonlocal problems for parabolic equations, Nagoya Math J 93 (1984), 109-131. Y. Lin and R. J. Tait, On a class of non-local parabolic boundary value problems, Int J Engng Sci 32(3) (1994), 395-407. C. Diaz, G. Fairweather, and P. Keast, Fortran package for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM Trans Math Software 9 (1983), 358-375. N. I. Ionkin, Stability of a problem in heat transfer theory with a non-classical bounda 1995; 31 1993; 24 1974; 14 1982; 18 1973; 53 1991; 12 1999; 49 1984; 23 1964; 4 1995; 32 1992; 18 1999; 45 1994; 25 1983; 9 2005; 21 1999; 40 1998; 41 1985; 21 1996; 76 1992; 50 1985; 25 1993; 35 2002; 48 1989; VII 2000; 16 1984; 93 1978; 23 2002; 42 1986; 44 1993; 31 1963; 70 1987 1985 1988; 46 1999; 10 1970; 20 1982 1989; 79 1996; 2 1990; 130 1955; 13 1996; 9 1982; 130 1996; 6 1996; 67 1994; 32 1989 1988 1998; 27 1979; 16 1993; 47 1989; 5 1993; 107 2004; 149 1963; 21 2004; 81 2003; 80 1986; 115 1981; 1 1997; 20 2003; 2003 2002; 35 1991; 31 2000; 64 1992; 39 1999; 22 1997; 27 1994 1978; 15 1999; 106 1999; 5 1972; 2 1987; 24 1995; 190 1980; 16 1993; 13 1980; 15 2002; 26 1991; 27 1973; 20 1990; 28 1982; 40 1986; 22 1982; 86 1960; 27 1999; 110 1994; 13 1983; 41 1960 1977; 13 2003; 145 1994; 10 1992; 63 Lanczos C. (e_1_2_1_68_2) 1987 e_1_2_1_81_2 Allegretto W. (e_1_2_1_96_2) 1999; 5 e_1_2_1_89_2 Wang S. (e_1_2_1_57_2) 1990; 130 Carlson D. E. (e_1_2_1_97_2) 1972 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_62_2 e_1_2_1_24_2 e_1_2_1_107_2 Lapidus L. (e_1_2_1_88_2) 1982 e_1_2_1_92_2 e_1_2_1_103_2 Cannon J. R. (e_1_2_1_30_2) 1982 e_1_2_1_54_2 e_1_2_1_4_2 e_1_2_1_77_2 e_1_2_1_12_2 e_1_2_1_31_2 e_1_2_1_73_2 e_1_2_1_35_2 e_1_2_1_58_2 Pani A. K. (e_1_2_1_39_2) 1993; 35 Pulkina L. S. (e_1_2_1_90_2) 1999; 45 e_1_2_1_86_2 e_1_2_1_67_2 e_1_2_1_44_2 e_1_2_1_82_2 e_1_2_1_21_2 Cannon J. R. (e_1_2_1_56_2) 1978; 15 Samarskii A. A. (e_1_2_1_101_2) 1980; 16 e_1_2_1_70_2 Lin Y. (e_1_2_1_80_2) 1996; 2 e_1_2_1_102_2 e_1_2_1_106_2 Ionkin N. I. (e_1_2_1_47_2) 1991; 27 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_78_2 Gerald C. F. (e_1_2_1_63_2) 1994 Nakhushev A. M. (e_1_2_1_93_2) 1982; 18 e_1_2_1_3_2 e_1_2_1_74_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_59_2 Boley B. A. (e_1_2_1_6_2) 1960 e_1_2_1_41_2 e_1_2_1_64_2 e_1_2_1_87_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_83_2 e_1_2_1_26_2 Szego G. (e_1_2_1_48_2) 1978 e_1_2_1_49_2 Bouziani A. (e_1_2_1_8_2) 1997; 27 Cannon J. R. (e_1_2_1_32_2) 1984 Ang W. T. (e_1_2_1_66_2) 2002; 26 Bouziani A. (e_1_2_1_50_2) 1999; 10 Deckert K. L. (e_1_2_1_23_2) 1963; 70 e_1_2_1_105_2 Shelukhin V. V. (e_1_2_1_94_2) 1993; 107 e_1_2_1_98_2 e_1_2_1_2_2 e_1_2_1_33_2 e_1_2_1_71_2 e_1_2_1_10_2 e_1_2_1_52_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_79_2 e_1_2_1_18_2 Yurchuk N. I. (e_1_2_1_29_2) 1986; 22 Jumarhon B. (e_1_2_1_75_2) 1996; 67 Vodakhova V. A. (e_1_2_1_40_2) 1982; 18 e_1_2_1_65_2 Ionkin N. I. (e_1_2_1_17_2) 1980; 15 e_1_2_1_61_2 Cannon J. R. (e_1_2_1_53_2) 1989 e_1_2_1_42_2 e_1_2_1_84_2 e_1_2_1_27_2 e_1_2_1_46_2 Ionkin N. I. (e_1_2_1_25_2) 1977; 13 e_1_2_1_69_2 Strikwerda J. C. (e_1_2_1_85_2) 1989 Cannon J. R. (e_1_2_1_51_2) 1981; 1 Renardy M. (e_1_2_1_95_2) 1987 e_1_2_1_91_2 e_1_2_1_100_2 e_1_2_1_104_2 Ionkin N. I. (e_1_2_1_16_2) 1980; 15 e_1_2_1_76_2 e_1_2_1_99_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_72_2 Makarov V. L. (e_1_2_1_28_2) 1985; 21 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_19_2 e_1_2_1_9_2 |
| References_xml | – reference: M. Lees, A priori estimates for the solutions of difference approximations to parabolic partial differential equations, Duke Math J 27 (1960), 297-311. – reference: Y. Lin, A nonlocal parabolic system in linear thermoelasticity, Dynam Discr Contin Impuls Syst 2(3) (1996), 267-283. – reference: J. R. Cannon and H. M. Yin, On a class of non-classical parabolic problems, Diff Eqs 79 (1989), 266-288. – reference: M. Dehghan, The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure, International Journal of Computer Mathematics, 81 (2004), 979-989. – reference: N. I. Ionkin, Solution of a boundary value problem in heat conduction with a non-classical boundary condition, Diff Eq 13 (1977), 204-211. – reference: S. Mesloub and A. Bouziani, On a class of singular hyperbolic equation with a weighted integral condition, Intern J Math and Math Sci 22 (1999), 511-520. – reference: G. Fairweather and J. C. Lopez-Marcos, Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions, Adv Comput Math 6 (1996), 243-262. – reference: J. Douglas, Jr. and T. Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer Math 20 (1973), 213-237. – reference: Y. Lin, Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations, SIAM J Math Anal 25(6) (1994), 1577-1594. – reference: A. Bouziani, Mixed problem with boundary integral conditions for a certain parabolic equation, J Appl Math Stochastic Anal 9 (1996), 323-330. – reference: A. Saadatmandi and M. Razzaghi, A Tau method approximation for the diffusion equation with nonlocal boundary conditions, Int J Comput Math 81(11) (2004), 1427-1432. – reference: D. Lesnic, L. Elliott, and D. B. Ingham, The solution of an inverse heat conduction problem subject to the specification of energies, Int J Heat Mass Transfer 41(1) (1998), 25-32. – reference: G. Ekolin, Finite difference methods for a non-local boundary value problem for the heat equation, BIT 31(2) (1991), 245-255. – reference: C. Lanczos, Applied Analysis, Springer-Verlag, New York, 1987. – reference: G. Dagan, The significance of heterogeneity of evolving scales to transport in porous formations, Water Resource Res 13 (1994), 3327-3336. – reference: J. R. Cannon and J. van der Hoek, The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy, Supplemento Bolletino Unione Mathematica Italiana 1 (1981), 253-282. – reference: Z. Z. Sun, A second-order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions, J Comput Appl Math 76 (1996), 137-146. – reference: J. R. Cannon and J. van der Hoek, The classical solution of the one-dimensional two-phase Stefan problem with energy specification, Annali di Mat Pura ed Appl 130(4) (1982), 385-398. – reference: J. R. Cannon and A. Fasano, Boundary value multidimensional problems in fast chemical reactions, Arch Rat Mech Anal 53 (1973), 1-13. – reference: V. A. Vodakhova, A boundary-value problem with non-local condition for certain pseudo-parabolic water-transfer equation, Differentsialnie Uravnenia 18 (1982), 280-285. – reference: J. R. Cannon, S. Prez-Esteva, and J. van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J Num Anal 24 (1987), 499-515. – reference: A. A. Samarskii, Some problems in differential equations theory, Diff Eq 16 (1980), 1221-1228. – reference: S. Wang, The numerical method for the conduction subject to moving boundary energy specification, Numer Heat Transfer 130 (1990), 35-38. – reference: W. A. Day, A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Quart Appl Math 41 (1983), 468-475. – reference: S. Wang and Y. Lin, A numerical method for the diffusion equation with nonlocal boundary specifications, Internat J Engng Sci 28(6) (1990), 543-546. – reference: K. L. Deckert and C. G. Maple, Solutions for diffusion equations with integral type boundary conditions, Proc Iowa, Acad Sci 70 (1963), 345-361. – reference: M. Berzins and R. M. Fuzerland, Developing software for time-dependent problems using the method of lines and differential algebraic integrators, Appl Num Math 5(1) (1989), 375-397. – reference: J. R. Cannon, Y. Lin, and S. Wang, An implicit finite difference scheme for the diffusion equation subject to the specification of mass, Intern J Engng Sci 28(7) (1990), 573-578. – reference: J. R. Cannon and E. Di Benedetto, On the existence solutions of boundary value problems in fast chemical reactions, Bull Della Unione Math Italiana 15 (1978), 835-843. – reference: M. Dehghan, Fully implicit finite difference methods for two-dimensional diffusion with a nonlocal boundary condition, Journal of Computational and Applied Mathematics, 106 (1999), 255-269. – reference: S. H. Behiry, A wavelet-Galerkin method for inhomogeneous diffusion equations subject to mass specification, J Phys A Math Gen 35 (2002), 9745-9753. – reference: M. Dehghan, Saulyev's techniques for solving a parabolic equation with a non linear boundary specification, Int J Comput Math 80(2) (2003), 257-265. – reference: J. H. Cushman, H. Xu, and F. Deng, Nonlocal reactive transport with physical and chemical heterogeneity: Localization error, Water Resource Res 31 (1995), 2219-2237. – reference: A. B. Gumel, On the numerical solution of the diffusion equation subject to the specification of mass, J Austral Math Soc Ser B 40 (1999), 475-483. – reference: R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media, Numer Methods Partial Differential Eq 16 (2000), 285-311. – reference: B. Jumarhon and M. Pidcock, On a nonlinear Volterra integro-differential equation with a weakly singular kernel, Z Angew Math Mech 76(6) (1996), 357-360. – reference: S. Wang and Y. Lin, A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equation, Inverse Problems 5 (1989), 631-640. – reference: R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing 64 (2000), 157-182. – reference: Y. Lin, S. Xu, and H. M. Yin, Finite difference approximations for a class of nonlocal parabolic equations, Intern J Math and Math Sci 20(1) (1997), 147-164. – reference: L. I. Kamynin, A boundary value problem in the theory of heat conduction with a non-classical boundary condition, USSR Comp Math and Math Physics 4 (1964), 33-59. – reference: N. I. Ionkin and D. G. Furletov, Uniform stability of difference schemes for a nonlocal nonselfadjoint boundary value problem with variable coefficients, Diff Eq 27 (1991), 820-826. – reference: M. Dehghan, On the numerical solution of the diffusion equation with a non-local boundary condition, Math Problems Engng 2003(2) (2003), 81-92. – reference: J. Xu and W. Shann, Galerkin-wavelets methods for two-point boundary value problems, Num Math 63 (1992), 123-144. – reference: N. I. Ionkin, Stability of a problem in heat transfer theory with a non-classical boundary condition, Diff Eq 15 (1980), 911-914. – reference: V. V. Shelukhin, A non-local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries, Siberian Russian Acad Sci Inst Hydrodynam 107 (1993), 180-193. – reference: B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley, New York, 1960. – reference: M. Dehghan, Numerical solution of a parabolic equation subject to specification of energy, Applied Mathematics and Computation, 149 (2004), 31-45. – reference: C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 5th ed., Addison-Wesley, 1994. – reference: M. Dehghan, Numerical solution of a parabolic equation with non-local boundary specifications, Applied Mathematics and Computation, 145 (2003), 185-194. – reference: J. R. Cannon and J. van der Hoek, The one phase Stefan problem subject to the specification of energy, J Math Anal Appl 86 (1982), 281-291. – reference: W. Allegretto, Y. Lin, and A. Zhou, A box scheme for coupled systems resulting from micro-sensor thermistor problems, Dynam Discr Contin Impuls Sys 5 (1999), 209-223. – reference: J. R. Cannon and J. van der Hoek, An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numerical Solutions of Partial Differential Equations, North Holland, 527-539, 1982. – reference: P. Shi, Weak solution to an evolution problem with a nonlocal constraint, SIAM J Math Anal 24(1) (1993), 46-58. – reference: Y. Lin and R. J. Tait, On a class of non-local parabolic boundary value problems, Int J Engng Sci 32(3) (1994), 395-407. – reference: M. Dehghan, Fully explicit finite difference methods for two-dimensional diffusion with an integral condition, Nonlinear Analysis, Theory Methods and Applications 48(5) (2002), 637-650. – reference: A. L. Araujo and F. A. Oliveira, Semi-discretization method for the heat equation with non-local boundary conditions, Comm Numer Methods Engrg 10 (1994), 751-758. – reference: J. R. Cannon and C. D. Hill, On the movement of a chemical reaction interface, Indiana University J 20 (1970), 429-454. – reference: B. Jumarhon and S. McKee, On a heat equation with nonlinear and nonlocal boundary conditions, J Math Anal Appl 190 (1995), 806-820. – reference: K. Deng, Comparison principle for some nonlocal problems, Quart Appl Math 50 (1992), 517-522. – reference: R. F. Warming and B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J Computational Physics 14(2) (1974), 159-179. – reference: W. A. Day, Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Quart Appl Math 40 (1982), 319-330. – reference: W. A. Day, Parabolic equations and thermodynamics, Quart Appl Math 50 (1992), 523-533. – reference: C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1988. – reference: W. A. Day, Heat conduction within linear thermoelasticity, Springer-Verlag, New York, 1985. – reference: G. Fairweather and R. D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J Sci Stat Comput 12(1) (1991), 127-144. – reference: J. Chabrowski, On nonlocal problems for parabolic equations, Nagoya Math J 93 (1984), 109-131. – reference: A. K. Pani, A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc, Ser B 35 (1993), 87-102. – reference: J. R. Cannon and A. L. Matheson, A numerical procedure for diffusion subject to the specification of mass, Intern J Engng Sci 31(3) (1993), 347-355. – reference: M. Dehghan, Implicit locally one-dimensional methods for two-dimensional diffusion with a non-local boundary condition, Mathematics and Computers in Simulation, 49 (1999), 331-349. – reference: A. Friedman, Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions, Quart Appl Math 44 (1986), 401-407. – reference: Y. Lin and R. J. Tait, Finite difference approximations for a class of nonlocal parabolic boundary value problems, J Comput Appl Math 47(3) (1993), 335-350. – reference: Y. Liu, Numerical solution of the heat equation with nonlocal boundary conditions, J Comput Appl Math 110(1) (1999), 115-127. – reference: J. R. Cannon and J. van der Hoek, Diffusion subject to specification of mass, J Math Anal Appl 115 (1986), 517-529. – reference: V. Capasso and K. Kunisch, A reaction-diffusion system arising in modeling man-environment diseases, Quart Appl Math 46 (1988), 431-449. – reference: N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Diff Eq 22 (1986), 1457-1463. – reference: J. R. Cannon and Y. Lin, A Galerkin procedure for diffusion equations with boundary integral conditions, Intern J Engng Sci 28(7) (1990), 579-587. – reference: J. H. Cushman, Diffusion in fractal porous media, Water Resource Res 27(4) (1991), 643-644. – reference: M. Renardy, W. Hrusa, and J. A. Nohel, Mathematical problems in viscoelasticity, Longman Science and Technology, England, 1987. – reference: A. Bouziani, On a class of parabolic equations with a nonlocal boundary condition, Acad Roy Belg Bull Cl Sci 10 (1999), 61-77. – reference: N. I. Ionkin and E. I. Moiseev, Problem for the heat transfer equation with two-point boundary conditions, Diff Eq 15 (1980), 915-923. – reference: M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Eq 21(1) (2005), 24-40. – reference: V. L. Makarov and D. T. Kulyev, Solution of a boundary value problem for a quasi-linear parabolic equation with nonclassical boundary conditions, Diff Eq 21 (1985), 296-305. – reference: J. H. Cushman and T. R. Ginn, Nonlocal dispersion in media with continuously evolving scales of heterogeneity, Transport Porous Media 13 (1993), 123-138. – reference: J. A. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solutions, BIT 25 (1985), 624-634. – reference: B. Cahlon, D. M. Kulkrani, and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM J Numer Anal 32(2) (1995), 571-593. – reference: L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982. – reference: C. Diaz, G. Fairweather, and P. Keast, Fortran package for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM Trans Math Software 9 (1983), 358-375. – reference: B. Jumarhon and S. McKee, Product integration methods for solving a system of nonlinear Volterra integral equations, J Comput Appl Math 67(6) (1996), 24-41. – reference: A. S. V. Murthy and J. G. Verwer, Solving parabolic integro-differential equations by an explicit integration method, J Comput Appl Math 39 (1992), 121-132. – reference: N. Borovykh, Stability in the numerical solution of the heat equation with non-local boundary conditions, Appl Num Math 42 (2002), 17-27. – reference: J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart Appl Math 21 (1963), 155-160. – reference: J. C. Strikwerda, Finite difference schemes and partial differential equations, Chapman and Hall, New York, 1989. – reference: M. Hadizadeh and K. Maleknejad, On the decomposition method to the heat equation with non-linear and non-local boundary conditions, Kybernetes 27(4) (1998), 426-434. – reference: A. Bouziani, Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations, Hiroshima Math J 27 (1997), 373-390. – reference: M. Luskin, A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions, SIAM J Numer Anal 16 (1979), 284-299. – reference: W. T. Ang, A method of solution for the one-dimensional heat equation subject to a nonlocal condition, SEA Bull Math 26(2) (2002), 197-203. – reference: L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electronic J Differential Eq 45 (1999), 1-6. – reference: J. R. Cannon, Y. Lin, and J. van der Hoek, A quasilinear parabolic equation with nonlocal boundary conditions, Rendicoti di Mathematica Roma, Serie VII 9 (1989), 239-264. – reference: Y. S. Choi and K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Analysis, Theory, Methods, and Applications 18(4) (1992), 317-331. – reference: S. H. Crandall, An optimum implicit recurrence formula for the heat conduction equation, Quart Appl Math 13 (1955), 318-320. – reference: A. M. Nakhushev, On certain approximate method for boundary-value problems for differential equations and its applications in ground waters dynamics, Differentsialnie Uravnenia 18 (1982), 72-81. – volume: 107 start-page: 180 year: 1993 end-page: 193 article-title: A non‐local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries publication-title: Siberian Russian Acad Sci Inst Hydrodynam – volume: 13 start-page: 3327 year: 1994 end-page: 3336 article-title: The significance of heterogeneity of evolving scales to transport in porous formations publication-title: Water Resource Res – volume: 46 start-page: 431 year: 1988 end-page: 449 article-title: A reaction‐diffusion system arising in modeling man‐environment diseases publication-title: Quart Appl Math – volume: 70 start-page: 345 year: 1963 end-page: 361 article-title: Solutions for diffusion equations with integral type boundary conditions publication-title: Proc Iowa, Acad Sci – volume: 5 start-page: 209 year: 1999 end-page: 223 article-title: A box scheme for coupled systems resulting from micro‐sensor thermistor problems publication-title: Dynam Discr Contin Impuls Sys – volume: 10 start-page: 61 year: 1999 end-page: 77 article-title: On a class of parabolic equations with a nonlocal boundary condition publication-title: Acad Roy Belg Bull Cl Sci – volume: 14 start-page: 159 issue: 2 year: 1974 end-page: 179 article-title: The modified equation approach to the stability and accuracy analysis of finite‐difference methods publication-title: J Computational Physics – volume: 24 start-page: 499 year: 1987 end-page: 515 article-title: A Galerkin procedure for the diffusion equation subject to the specification of mass publication-title: SIAM J Num Anal – volume: 67 start-page: 24 issue: 6 year: 1996 end-page: 41 article-title: Product integration methods for solving a system of nonlinear Volterra integral equations publication-title: J Comput Appl Math – volume: 76 start-page: 357 issue: 6 year: 1996 end-page: 360 article-title: On a nonlinear Volterra integro‐differential equation with a weakly singular kernel publication-title: Z Angew Math Mech – volume: 50 start-page: 523 year: 1992 end-page: 533 article-title: Parabolic equations and thermodynamics publication-title: Quart Appl Math – volume: 12 start-page: 127 issue: 1 year: 1991 end-page: 144 article-title: The reformulation and numerical solution of certain nonclassical initial‐boundary value problems publication-title: SIAM J Sci Stat Comput – year: 1989 – volume: 23 year: 1978 – volume: 40 start-page: 475 year: 1999 end-page: 483 article-title: On the numerical solution of the diffusion equation subject to the specification of mass publication-title: J Austral Math Soc Ser B – volume: 25 start-page: 1577 issue: 6 year: 1994 end-page: 1594 article-title: Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations publication-title: SIAM J Math Anal – volume: 25 start-page: 624 year: 1985 end-page: 634 article-title: On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non‐smooth solutions publication-title: BIT – volume: 23 year: 1984 – volume: 81 start-page: 979 year: 2004 end-page: 989 article-title: The solution of a nonclassic problem for one‐dimensional hyperbolic equation using the decomposition procedure publication-title: International Journal of Computer Mathematics – volume: 4 start-page: 33 year: 1964 end-page: 59 article-title: A boundary value problem in the theory of heat conduction with a non‐classical boundary condition publication-title: USSR Comp Math and Math Physics – volume: 21 start-page: 155 year: 1963 end-page: 160 article-title: The solution of the heat equation subject to the specification of energy publication-title: Quart Appl Math – volume: 190 start-page: 806 year: 1995 end-page: 820 article-title: On a heat equation with nonlinear and nonlocal boundary conditions publication-title: J Math Anal Appl – volume: 45 start-page: 1 year: 1999 end-page: 6 article-title: A nonlocal problem with integral conditions for hyperbolic equations publication-title: Electronic J Differential Eq – volume: 86 start-page: 281 year: 1982 end-page: 291 article-title: The one phase Stefan problem subject to the specification of energy publication-title: J Math Anal Appl – volume: 110 start-page: 115 issue: 1 year: 1999 end-page: 127 article-title: Numerical solution of the heat equation with nonlocal boundary conditions publication-title: J Comput Appl Math – volume: 6 start-page: 243 year: 1996 end-page: 262 article-title: Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions publication-title: Adv Comput Math – volume: 32 start-page: 571 issue: 2 year: 1995 end-page: 593 article-title: Stepwise stability for the heat equation with a nonlocal constraint publication-title: SIAM J Numer Anal – volume: 63 start-page: 123 year: 1992 end-page: 144 article-title: Galerkin‐wavelets methods for two‐point boundary value problems publication-title: Num Math – volume: 42 start-page: 17 year: 2002 end-page: 27 article-title: Stability in the numerical solution of the heat equation with non‐local boundary conditions publication-title: Appl Num Math – volume: 16 start-page: 1221 year: 1980 end-page: 1228 article-title: Some problems in differential equations theory publication-title: Diff Eq – volume: 76 start-page: 137 year: 1996 end-page: 146 article-title: A second‐order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions publication-title: J Comput Appl Math – volume: 32 start-page: 395 issue: 3 year: 1994 end-page: 407 article-title: On a class of non‐local parabolic boundary value problems publication-title: Int J Engng Sci – volume: 28 start-page: 573 issue: 7 year: 1990 end-page: 578 article-title: An implicit finite difference scheme for the diffusion equation subject to the specification of mass publication-title: Intern J Engng Sci – volume: 20 start-page: 429 year: 1970 end-page: 454 article-title: On the movement of a chemical reaction interface publication-title: Indiana University J – volume: 10 start-page: 751 year: 1994 end-page: 758 article-title: Semi‐discretization method for the heat equation with non‐local boundary condition publication-title: Comm Numer Methods Engrg – year: 1987 – volume: 41 start-page: 468 year: 1983 end-page: 475 article-title: A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories publication-title: Quart Appl Math – volume: 64 start-page: 157 year: 2000 end-page: 182 article-title: Finite volume element approximations of nonlocal in time one‐dimensional flows in porous media publication-title: Computing – volume: 22 start-page: 511 year: 1999 end-page: 520 article-title: On a class of singular hyperbolic equation with a weighted integral condition publication-title: Intern J Math and Math Sci – volume: 27 start-page: 820 year: 1991 end-page: 826 article-title: Uniform stability of difference schemes for a nonlocal nonselfadjoint boundary value problem with variable coefficients publication-title: Diff Eq – volume: 130 start-page: 35 year: 1990 end-page: 38 article-title: The numerical method for the conduction subject to moving boundary energy specification publication-title: Numer Heat Transfer – volume: 93 start-page: 109 year: 1984 end-page: 131 article-title: On nonlocal problems for parabolic equations publication-title: Nagoya Math J – volume: 18 start-page: 280 year: 1982 end-page: 285 article-title: A boundary‐value problem with non‐local condition for certain pseudo‐parabolic water‐transfer equation publication-title: Differentsialnie Uravnenia – volume: 27 start-page: 373 year: 1997 end-page: 390 article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations publication-title: Hiroshima Math J – volume: 149 start-page: 31 year: 2004 end-page: 45 article-title: Numerical solution of a parabolic equation subject to specification of energy publication-title: Applied Mathematics and Computation – volume: 2 start-page: 267 issue: 3 year: 1996 end-page: 283 article-title: A nonlocal parabolic system in linear thermoelasticity publication-title: Dynam Discr Contin Impuls Syst – volume: 5 start-page: 375 issue: 1 year: 1989 end-page: 397 article-title: Developing software for time‐dependent problems using the method of lines and differential algebraic integrators publication-title: Appl Num Math – volume: 13 start-page: 318 year: 1955 end-page: 320 article-title: An optimum implicit recurrence formula for the heat conduction equation publication-title: Quart Appl Math – volume: 28 start-page: 543 issue: 6 year: 1990 end-page: 546 article-title: A numerical method for the diffusion equation with nonlocal boundary specifications publication-title: Internat J Engng Sci – volume: 20 start-page: 147 issue: 1 year: 1997 end-page: 164 article-title: Finite difference approximations for a class of nonlocal parabolic equations publication-title: Intern J Math and Math Sci – volume: 31 start-page: 2219 year: 1995 end-page: 2237 article-title: Nonlocal reactive transport with physical and chemical heterogeneity: Localization error publication-title: Water Resource Res – volume: 13 start-page: 123 year: 1993 end-page: 138 article-title: Nonlocal dispersion in media with continuously evolving scales of heterogeneity publication-title: Transport Porous Media – volume: 15 start-page: 915 year: 1980 end-page: 923 article-title: Problem for the heat transfer equation with two‐point boundary conditions publication-title: Diff Eq – year: 1985 – volume: 106 start-page: 255 year: 1999 end-page: 269 article-title: Fully implicit finite difference methods for two‐dimensional diffusion with a nonlocal boundary condition publication-title: Journal of Computational and Applied Mathematics – volume: 81 start-page: 1427 issue: 11 year: 2004 end-page: 1432 article-title: A Tau method approximation for the diffusion equation with nonlocal boundary conditions publication-title: Int J Comput Math – volume: 2003 start-page: 81 issue: 2 year: 2003 end-page: 92 article-title: On the numerical solution of the diffusion equation with a non‐local boundary condition publication-title: Math Problems Engng – volume: 31 start-page: 245 issue: 2 year: 1991 end-page: 255 article-title: Finite difference methods for a non‐local boundary value problem for the heat equation publication-title: BIT – volume: 47 start-page: 335 issue: 3 year: 1993 end-page: 350 article-title: Finite difference approximations for a class of nonlocal parabolic boundary value problems publication-title: J Comput Appl Math – volume: 145 start-page: 185 year: 2003 end-page: 194 article-title: Numerical solution of a parabolic equation with non‐local boundary specifications publication-title: Applied Mathematics and Computation – volume: 35 start-page: 9745 year: 2002 end-page: 9753 article-title: A wavelet‐Galerkin method for inhomogeneous diffusion equations subject to mass specification publication-title: J Phys A Math Gen – year: 1994 – volume: 26 start-page: 197 issue: 2 year: 2002 end-page: 203 article-title: A method of solution for the one‐dimensional heat equation subject to a nonlocal condition publication-title: SEA Bull Math – volume: 9 start-page: 358 year: 1983 end-page: 375 article-title: Fortran package for solving certain almost block diagonal linear systems by modified alternate row and column elimination publication-title: ACM Trans Math Software – volume: 21 start-page: 24 issue: 1 year: 2005 end-page: 40 article-title: On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation publication-title: Numer Methods Partial Differential Eq – volume: 27 start-page: 643 issue: 4 year: 1991 end-page: 644 article-title: Diffusion in fractal porous media publication-title: Water Resource Res – year: 1982 – volume: 16 start-page: 284 year: 1979 end-page: 299 article-title: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions publication-title: SIAM J Numer Anal – volume: 15 start-page: 835 year: 1978 end-page: 843 article-title: On the existence solutions of boundary value problems in fast chemical reactions publication-title: Bull Della Unione Math Italiana – volume: 20 start-page: 213 year: 1973 end-page: 237 article-title: Galerkin methods for parabolic equations with nonlinear boundary conditions publication-title: Numer Math – volume: 27 start-page: 426 issue: 4 year: 1998 end-page: 434 article-title: On the decomposition method to the heat equation with non‐linear and non‐local boundary conditions publication-title: Kybernetes – volume: 2 year: 1972 – volume: 18 start-page: 317 issue: 4 year: 1992 end-page: 331 article-title: A parabolic equation with nonlocal boundary conditions arising from electrochemistry publication-title: Nonlinear Analysis, Theory, Methods, and Applications – volume: 44 start-page: 401 year: 1986 end-page: 407 article-title: Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions publication-title: Quart Appl Math – volume: 79 start-page: 266 year: 1989 end-page: 288 article-title: On a class of non‐classical parabolic problems publication-title: Diff Eqs – volume: 15 start-page: 911 year: 1980 end-page: 914 article-title: Stability of a problem in heat transfer theory with a non‐classical boundary condition publication-title: Diff Eq – volume: 9 start-page: 323 year: 1996 end-page: 330 article-title: Mixed problem with boundary integral conditions for a certain parabolic equation publication-title: J Appl Math Stochastic Anal – article-title: Orthogonal spline collocation for a quasilinear nonlocal parabolic problem – volume: 21 start-page: 296 year: 1985 end-page: 305 article-title: Solution of a boundary value problem for a quasi‐linear parabolic equation with nonclassical boundary conditions publication-title: Diff Eq – volume: 53 start-page: 1 year: 1973 end-page: 13 article-title: Boundary value multidimensional problems in fast chemical reactions publication-title: Arch Rat Mech Anal – start-page: 527 year: 1982 end-page: 539 – volume: 80 start-page: 257 issue: 2 year: 2003 end-page: 265 article-title: Saulyev's techniques for solving a parabolic equation with a non linear boundary specification publication-title: Int J Comput Math – volume: 41 start-page: 25 issue: 1 year: 1998 end-page: 32 article-title: The solution of an inverse heat conduction problem subject to the specification of energies publication-title: Int J Heat Mass Transfer – volume: 35 start-page: 87 year: 1993 end-page: 102 article-title: A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc publication-title: Ser B – volume: 5 start-page: 631 year: 1989 end-page: 640 article-title: A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equation publication-title: Inverse Problems – volume: 48 start-page: 637 issue: 5 year: 2002 end-page: 650 article-title: Fully explicit finite difference methods for two‐dimensional diffusion with an integral condition publication-title: Nonlinear Analysis, Theory Methods and Applications – volume: 39 start-page: 121 year: 1992 end-page: 132 article-title: Solving parabolic integro‐differential equations by an explicit integration method publication-title: J Comput Appl Math – year: 1960 – volume: 31 start-page: 347 issue: 3 year: 1993 end-page: 355 article-title: A numerical procedure for diffusion subject to the specification of mass publication-title: Intern J Engng Sci – volume: 18 start-page: 72 year: 1982 end-page: 81 article-title: On certain approximate method for boundary‐value problems for differential equations and its applications in ground waters dynamics publication-title: Differentsialnie Uravnenia – volume: 40 start-page: 319 year: 1982 end-page: 330 article-title: Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories publication-title: Quart Appl Math – volume: 22 start-page: 1457 year: 1986 end-page: 1463 article-title: Mixed problem with an integral condition for certain parabolic equations publication-title: Diff Eq – volume: 49 start-page: 331 year: 1999 end-page: 349 article-title: Implicit locally one‐dimensional methods for two‐dimensional diffusion with a non‐local boundary condition publication-title: Mathematics and Computers in Simulation – volume: 50 start-page: 517 year: 1992 end-page: 522 article-title: Comparison principle for some nonlocal problems publication-title: Quart Appl Math – volume: 27 start-page: 297 year: 1960 end-page: 311 article-title: A priori estimates for the solutions of difference approximations to parabolic partial differential equations publication-title: Duke Math J – volume: 130 start-page: 385 issue: 4 year: 1982 end-page: 398 article-title: The classical solution of the one‐dimensional two‐phase Stefan problem with energy specification publication-title: Annali di Mat Pura ed Appl – volume: 16 start-page: 285 year: 2000 end-page: 311 article-title: Finite volume element approximations of nonlocal reactive flows in porous media publication-title: Numer Methods Partial Differential Eq – volume: 24 start-page: 46 issue: 1 year: 1993 end-page: 58 article-title: Weak solution to an evolution problem with a nonlocal constraint publication-title: SIAM J Math Anal – volume: 28 start-page: 579 issue: 7 year: 1990 end-page: 587 article-title: A Galerkin procedure for diffusion equations with boundary integral conditions publication-title: Intern J Engng Sci – volume: VII start-page: 239 year: 1989 end-page: 264 – year: 1988 – volume: 13 start-page: 204 year: 1977 end-page: 211 article-title: Solution of a boundary value problem in heat conduction with a non‐classical boundary condition publication-title: Diff Eq – volume: 115 start-page: 517 year: 1986 end-page: 529 article-title: Diffusion subject to specification of mass publication-title: J Math Anal Appl – volume: 1 start-page: 253 year: 1981 end-page: 282 article-title: The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy publication-title: Supplemento Bolletino Unione Mathematica Italiana – ident: e_1_2_1_13_2 doi: 10.1016/0022-0396(89)90103-4 – ident: e_1_2_1_67_2 doi: 10.1080/00207160412331284060 – ident: e_1_2_1_5_2 doi: 10.1016/0377-0427(92)90229-Q – ident: e_1_2_1_21_2 doi: 10.1088/0305-4470/35/46/303 – ident: e_1_2_1_82_2 doi: 10.1016/0020-7225(94)90130-9 – volume: 15 start-page: 911 year: 1980 ident: e_1_2_1_16_2 article-title: Stability of a problem in heat transfer theory with a non‐classical boundary condition publication-title: Diff Eq – ident: e_1_2_1_15_2 doi: 10.1090/qam/1178431 – ident: e_1_2_1_106_2 doi: 10.1016/S0377-0427(99)00065-5 – volume-title: Numerical solution of partial differential equations in science and engineering year: 1982 ident: e_1_2_1_88_2 – ident: e_1_2_1_87_2 doi: 10.1016/0021-9991(74)90011-4 – volume-title: Applied Numerical Analysis year: 1994 ident: e_1_2_1_63_2 – ident: e_1_2_1_24_2 doi: 10.1137/0912007 – volume: 27 start-page: 373 year: 1997 ident: e_1_2_1_8_2 article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations publication-title: Hiroshima Math J doi: 10.32917/hmj/1206126957 – ident: e_1_2_1_9_2 doi: 10.1090/qam/963580 – ident: e_1_2_1_62_2 doi: 10.1016/S0377-0427(99)00200-9 – ident: e_1_2_1_105_2 doi: 10.1016/S0096-3003(02)00479-4 – ident: e_1_2_1_2_2 doi: 10.1016/0362-546X(92)90148-8 – volume: 5 start-page: 209 year: 1999 ident: e_1_2_1_96_2 article-title: A box scheme for coupled systems resulting from micro‐sensor thermistor problems publication-title: Dynam Discr Contin Impuls Sys – volume-title: Theory of thermal stresses year: 1960 ident: e_1_2_1_6_2 – ident: e_1_2_1_61_2 doi: 10.1090/qam/693879 – ident: e_1_2_1_64_2 doi: 10.1002/cnm.1640100910 – ident: e_1_2_1_14_2 doi: 10.1017/S0027763000020754 – ident: e_1_2_1_20_2 doi: 10.1007/BF01385851 – ident: e_1_2_1_77_2 doi: 10.1016/S0362-546X(00)00172-3 – volume: 130 start-page: 35 year: 1990 ident: e_1_2_1_57_2 article-title: The numerical method for the conduction subject to moving boundary energy specification publication-title: Numer Heat Transfer – volume: 13 start-page: 204 year: 1977 ident: e_1_2_1_25_2 article-title: Solution of a boundary value problem in heat conduction with a non‐classical boundary condition publication-title: Diff Eq – ident: e_1_2_1_4_2 doi: 10.1007/978-1-4613-9555-3 – ident: e_1_2_1_37_2 doi: 10.1090/qam/160437 – ident: e_1_2_1_10_2 doi: 10.1088/0266-5611/5/4/013 – ident: e_1_2_1_78_2 doi: 10.1080/00207160304670 – ident: e_1_2_1_107_2 doi: 10.1016/S0378-4754(99)00056-7 – volume: 107 start-page: 180 year: 1993 ident: e_1_2_1_94_2 article-title: A non‐local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries publication-title: Siberian Russian Acad Sci Inst Hydrodynam – volume: 22 start-page: 1457 year: 1986 ident: e_1_2_1_29_2 article-title: Mixed problem with an integral condition for certain parabolic equations publication-title: Diff Eq – ident: e_1_2_1_84_2 doi: 10.1090/qam/1178432 – ident: e_1_2_1_89_2 doi: 10.1002/num.20019 – ident: e_1_2_1_60_2 doi: 10.1007/BF01931285 – year: 1978 ident: e_1_2_1_48_2 – ident: e_1_2_1_102_2 doi: 10.1016/S0377-0427(96)00097-0 – ident: e_1_2_1_31_2 doi: 10.1215/S0012-7094-60-02727-7 – ident: e_1_2_1_42_2 doi: 10.1016/0168-9274(89)90038-X – ident: e_1_2_1_43_2 doi: 10.1145/356044.356053 – ident: e_1_2_1_71_2 doi: 10.1007/BF02127706 – volume: 1 start-page: 253 year: 1981 ident: e_1_2_1_51_2 article-title: The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy publication-title: Supplemento Bolletino Unione Mathematica Italiana – volume: 21 start-page: 296 year: 1985 ident: e_1_2_1_28_2 article-title: Solution of a boundary value problem for a quasi‐linear parabolic equation with nonclassical boundary conditions publication-title: Diff Eq – ident: e_1_2_1_11_2 doi: 10.1007/BF00613273 – volume: 70 start-page: 345 year: 1963 ident: e_1_2_1_23_2 article-title: Solutions for diffusion equations with integral type boundary conditions publication-title: Proc Iowa, Acad Sci – ident: e_1_2_1_55_2 doi: 10.1007/BF00735697 – ident: e_1_2_1_44_2 doi: 10.1016/0022-247X(86)90012-0 – ident: e_1_2_1_72_2 doi: 10.1006/jmaa.1995.1113 – volume: 35 start-page: 87 year: 1993 ident: e_1_2_1_39_2 article-title: A finite element method for a diffusion equation with constrained energy and nonlinear boundary conditions, J Austral Math Soc publication-title: Ser B – ident: e_1_2_1_49_2 doi: 10.1016/0020-7225(93)90010-R – ident: e_1_2_1_41_2 doi: 10.1137/0524004 – volume: 10 start-page: 61 year: 1999 ident: e_1_2_1_50_2 article-title: On a class of parabolic equations with a nonlocal boundary condition publication-title: Acad Roy Belg Bull Cl Sci – volume: 2 start-page: 267 issue: 3 year: 1996 ident: e_1_2_1_80_2 article-title: A nonlocal parabolic system in linear thermoelasticity publication-title: Dynam Discr Contin Impuls Syst – year: 1972 ident: e_1_2_1_97_2 – year: 1984 ident: e_1_2_1_32_2 – volume: 45 start-page: 1 year: 1999 ident: e_1_2_1_90_2 article-title: A nonlocal problem with integral conditions for hyperbolic equations publication-title: Electronic J Differential Eq – volume: 27 start-page: 820 year: 1991 ident: e_1_2_1_47_2 article-title: Uniform stability of difference schemes for a nonlocal nonselfadjoint boundary value problem with variable coefficients publication-title: Diff Eq – ident: e_1_2_1_26_2 doi: 10.1016/0020-7225(90)90087-Y – ident: e_1_2_1_36_2 doi: 10.1016/0020-7225(90)90056-O – volume: 67 start-page: 24 issue: 6 year: 1996 ident: e_1_2_1_75_2 article-title: Product integration methods for solving a system of nonlinear Volterra integral equations publication-title: J Comput Appl Math – ident: e_1_2_1_22_2 doi: 10.1137/0716021 – volume-title: Mathematical problems in viscoelasticity year: 1987 ident: e_1_2_1_95_2 – ident: e_1_2_1_45_2 doi: 10.1007/BF01436565 – ident: e_1_2_1_35_2 doi: 10.1016/S0017-9310(97)00115-4 – ident: e_1_2_1_81_2 doi: 10.1016/0377-0427(93)90061-F – start-page: 527 volume-title: An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numerical Solutions of Partial Differential Equations year: 1982 ident: e_1_2_1_30_2 – ident: e_1_2_1_52_2 doi: 10.1016/0022-247X(82)90270-0 – ident: e_1_2_1_54_2 doi: 10.1512/iumj.1970.20.20037 – ident: e_1_2_1_58_2 doi: 10.1155/S1024123X03111015 – ident: e_1_2_1_73_2 doi: 10.1002/zamm.19960760611 – ident: e_1_2_1_92_2 doi: 10.1029/91WR00162 – ident: e_1_2_1_100_2 doi: 10.1002/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO;2-3 – ident: e_1_2_1_27_2 doi: 10.1090/qam/678203 – ident: e_1_2_1_76_2 doi: 10.1108/03684929810219431 – ident: e_1_2_1_18_2 – start-page: 239 volume-title: A quasilinear parabolic equation with nonlocal boundary conditions year: 1989 ident: e_1_2_1_53_2 – ident: e_1_2_1_103_2 doi: 10.1016/S0096-3003(02)00954-2 – ident: e_1_2_1_69_2 doi: 10.1007/978-3-642-84108-8 – volume-title: Finite difference schemes and partial differential equations year: 1989 ident: e_1_2_1_85_2 – ident: e_1_2_1_7_2 doi: 10.1155/S1048953396000305 – ident: e_1_2_1_83_2 doi: 10.1155/S0161171297000215 – ident: e_1_2_1_33_2 doi: 10.1137/0724036 – volume: 16 start-page: 1221 year: 1980 ident: e_1_2_1_101_2 article-title: Some problems in differential equations theory publication-title: Diff Eq – ident: e_1_2_1_74_2 doi: 10.1007/BF01936141 – ident: e_1_2_1_79_2 doi: 10.1137/S003614109324306X – ident: e_1_2_1_19_2 doi: 10.1155/S0161171299225112 – ident: e_1_2_1_98_2 doi: 10.1090/qam/860893 – ident: e_1_2_1_34_2 doi: 10.1016/0020-7225(90)90086-X – volume: 15 start-page: 835 year: 1978 ident: e_1_2_1_56_2 article-title: On the existence solutions of boundary value problems in fast chemical reactions publication-title: Bull Della Unione Math Italiana – volume: 18 start-page: 280 year: 1982 ident: e_1_2_1_40_2 article-title: A boundary‐value problem with non‐local condition for certain pseudo‐parabolic water‐transfer equation publication-title: Differentsialnie Uravnenia – ident: e_1_2_1_46_2 doi: 10.1137/0732025 – volume: 18 start-page: 72 year: 1982 ident: e_1_2_1_93_2 article-title: On certain approximate method for boundary‐value problems for differential equations and its applications in ground waters dynamics publication-title: Differentsialnie Uravnenia – ident: e_1_2_1_65_2 doi: 10.1016/S0168-9274(01)00139-8 – volume-title: Applied Analysis year: 1987 ident: e_1_2_1_68_2 – ident: e_1_2_1_12_2 doi: 10.1007/BF01761503 – ident: e_1_2_1_104_2 doi: 10.1080/00207160410001712297 – volume: 26 start-page: 197 issue: 2 year: 2002 ident: e_1_2_1_66_2 article-title: A method of solution for the one‐dimensional heat equation subject to a nonlocal condition publication-title: SEA Bull Math – ident: e_1_2_1_86_2 doi: 10.1090/qam/73292 – ident: e_1_2_1_3_2 doi: 10.1029/94WR01798 – ident: e_1_2_1_99_2 doi: 10.1007/s006070050007 – volume: 15 start-page: 915 year: 1980 ident: e_1_2_1_17_2 article-title: Problem for the heat transfer equation with two‐point boundary conditions publication-title: Diff Eq – ident: e_1_2_1_91_2 doi: 10.1029/95WR01396 – ident: e_1_2_1_59_2 doi: 10.1017/S0334270000010560 – ident: e_1_2_1_70_2 – ident: e_1_2_1_38_2 doi: 10.1016/0041-5553(64)90080-1 |
| SSID | ssj0011519 |
| Score | 2.135165 |
| Snippet | Certain problems arising in engineering are modeled by nonstandard parabolic initial‐boundary value problems in one space variable, which involve an integral... |
| SourceID | crossref wiley istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 220 |
| SubjectTerms | boundary element method decomposition method double shifted Legendre series existence explicit schemes finite difference schemes Galerkin procedure implicit techniques Keller-box scheme Legendre Tau method nonstandard boundary value problems numerical integration orthogonal spline collocation pade approximant parallel algorithms product integration method representation of solutions Runge-Kutta-Chebyshev formula second-order parabolic equation semidiscretization techniques separation of variables stability uniqueness wavelet-Galerkin technique |
| Title | A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications |
| URI | https://api.istex.fr/ark:/67375/WNG-DKB3R60J-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.20071 |
| Volume | 22 |
| WOSCitedRecordID | wos000233927000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-2426 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011519 issn: 0749-159X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEICDtB704FusL4KIeFncTbPdLJ7qo4qPImK1eFmSaRZEae1L9OZP8Df6S5wk21VBQfC2sJNkySSZyWzyDSGbXDMfIhXj6qe5xyGIPYlutxelgWxVZATKcguuz6J6XTSb8cUY2R3dhXF8iDzgZmaGXa_NBJeqv_MFGjp0F8lx61NkOG7DAikeXNYaZ_lPBDRmsaNwxh5a7eYILOSznbzwN3NUND37_N1NtXamNv2vL5whU5l7SatuPMySMd2eI5PnOZu1P0-6VQo2lUMWBqSWMEs7KUUh2mnr99e3lmH-O14HNXBwZejBVHcdF5z2h8qEb-igQ9udNhgH3OiaKpujqfdCzf1NcwbJhQMXSKN2eLV_7GWJFzzAKR-YRYcDD0C1hFBlqPgyCAFViK6S5jJkQnI_5fgqUmj_QYmw5UuhcHcj0QXQrLxICti8XiJUAEBQkcBUGnEshv4YMKbLkcAKUwElsj3q_wQyKrlJjvGQOJ4yM5lREtuLJbKRiz46FMdPQltWibmE7N2bs2tRmNzUj5KD073yZcU_SW6xYau736tK6o1z-7D8d9EVMvEZo1klhUFvqNfIODwN7vq99WyAfgBr1uwS |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7FCurBt1ifQUS8LO5u024WvKi1vtpFxGrxsiTTLIjSah-iN3-Cv9Ff4iTZrgoKgreFnSRLZibzZTb5hpBNpnwXAhni6qeYw8ALHYGw2wkST7TKIgBpeAuuakEU8WYzPM-R3eFdGMsPkSXctGeY9Vo7uE5I73xhDR3Ym-S498kzNCO073zlotqoZX8RMJqFloYzdDBsN4fMQq6_kzX-Fo_yemqfv-NUE2iqU__7xGkymQJMumctYobkVHuWTNQzdtbeHHnco2CKOaSJQGo4ZmknoShEO231_vrW0qz_lrGDanpwqfmDqXq0zOC0N5A6gUP7HdrutEFDcK1tKk2Vpu4L1Tc49SkkmxCcJ43q4eXBsZOWXnAAnd7Tyw4D5oFscS6LUHaFVwJUIoIlxUTJ54K5CcNXgUQEAJKXWq7gEvc3AkGA8osLZASHV4uEcgDwygJ8mQQMmyEiA99XxYBjhwmHAtkeKiCGlJdcl8e4jy2jsq9ro8RmFgtkIxN9sGQcPwltGS1mEqJ7p0-vBaX4OjqKK2f7xYuyexrf4MBGeb93FUeNunlY-rvoOhk7vqzX4tpJdLZMxj8zNitkpN8dqFUyCk_92153LbXWD4gb8AI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dSxwxEMAHuStiH2z9KNXaGkTEl8XdvdxtFnzRXq9-nIuIp4cvSzKbhaLc6X0UffNP8G_sX-Ik2dsqKAi-LewkWTJJZjKb_AZgnevQx0jFtPpp7nEMYk-S2-1FeSCzhoxQWW7BWTtKEtHtxsdTsD25C-P4EGXAzcwMu16bCa6vs3zrCTV07G6S096nyk0SmQpUmyetTrv8i0DWLHYYztgjs92dkIX8cKss_MweVU3X3j73U62haX163yd-htnCwWQ7bkTMwZTuzcPHo5LOOlyAmx2GNplDEQhkljHL-jkjIdbv6X_3D5mh_jtiBzN4cGX4wUzfODI4G46VCeCwUZ_1-j00LrjRNlM2S9PgjpkbnOYUkgsILkKn9ev0555XpF7wkCZ9YJYdjjxAlQmhatjwZVBHUiI5S5rLeigk93NOryJFHgAqUc98KRTtbyQ5ATqsfYEKNa-_AhOIGDQkhiqPOBUjjwzDUNciQRXmApdgc6KAFAsuuUmPcZU6onJocqOktheXYK0UvXYwjpeENqwWSwk5uDSn16J6ep78TpuHu7WThn-QXlDDVnmvV5UmnSP7sPx20VWYPm620vZ-cvgNZv4HbFagMhqM9Xf4gH9Hf4aDH8VgfQQrxu99 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+study+of+the+one-dimensional+parabolic+equation+subject+to+nonclassical+boundary+specifications&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Dehghan%2C+Mehdi&rft.date=2006-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=22&rft.issue=1&rft.spage=220&rft.epage=257&rft_id=info:doi/10.1002%2Fnum.20071&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DKB3R60J_Z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |