An improved arithmetic optimization algorithm for training feedforward neural networks under dynamic environments

This paper proposes an improved Arithmetic Optimization Algorithm (AOA) to train artificial neural networks (ANNs) under dynamic environments. Despite many successful applications of metaheuristic training of ANNs, these studies assume static environments, which might not be realistic in real-world...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 263; s. 110274
Hlavní autori: Gölcük, İlker, Ozsoydan, Fehmi Burcin, Durmaz, Esra Duygu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 05.03.2023
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes an improved Arithmetic Optimization Algorithm (AOA) to train artificial neural networks (ANNs) under dynamic environments. Despite many successful applications of metaheuristic training of ANNs, these studies assume static environments, which might not be realistic in real-world nonstationary processes. In this study, the training of ANNs is modeled as a dynamic optimization problem, and the proposed AOA is used to optimize connection weights and biases of the ANN under the presence of concept drift. The proposed method is designed to work for classification tasks. The performance of the proposed algorithm has been tested on twelve dynamic classification problems. Comparative analysis with state-of-the-art metaheuristic optimization algorithms has been provided. The superiority of the compared algorithms has been verified using nonparametric statistical tests. The results show that the improved AOA outperforms compared algorithms in training ANNs under dynamic environments. The findings demonstrate the potential of improved AOA for dynamic data-driven applications. •Artificial neural networks (ANNs) are trained in dynamic environments.•An improved arithmetic optimization algorithm (AOA) is developed.•The improved AOA is used to train ANNs under concept drift.•The effectiveness of the proposed algorithm is statistically verified.
AbstractList This paper proposes an improved Arithmetic Optimization Algorithm (AOA) to train artificial neural networks (ANNs) under dynamic environments. Despite many successful applications of metaheuristic training of ANNs, these studies assume static environments, which might not be realistic in real-world nonstationary processes. In this study, the training of ANNs is modeled as a dynamic optimization problem, and the proposed AOA is used to optimize connection weights and biases of the ANN under the presence of concept drift. The proposed method is designed to work for classification tasks. The performance of the proposed algorithm has been tested on twelve dynamic classification problems. Comparative analysis with state-of-the-art metaheuristic optimization algorithms has been provided. The superiority of the compared algorithms has been verified using nonparametric statistical tests. The results show that the improved AOA outperforms compared algorithms in training ANNs under dynamic environments. The findings demonstrate the potential of improved AOA for dynamic data-driven applications. •Artificial neural networks (ANNs) are trained in dynamic environments.•An improved arithmetic optimization algorithm (AOA) is developed.•The improved AOA is used to train ANNs under concept drift.•The effectiveness of the proposed algorithm is statistically verified.
ArticleNumber 110274
Author Ozsoydan, Fehmi Burcin
Durmaz, Esra Duygu
Gölcük, İlker
Author_xml – sequence: 1
  givenname: İlker
  orcidid: 0000-0002-8430-7952
  surname: Gölcük
  fullname: Gölcük, İlker
  email: ilker.golcuk@bakircay.edu.tr
  organization: Department of Industrial Engineering, İzmir Bakırçay University, İzmir 35665, Türkiye
– sequence: 2
  givenname: Fehmi Burcin
  orcidid: 0000-0002-6368-4425
  surname: Ozsoydan
  fullname: Ozsoydan, Fehmi Burcin
  email: burcin.ozsoydan@deu.edu.tr
  organization: Department of Industrial Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir 35397, Türkiye
– sequence: 3
  givenname: Esra Duygu
  orcidid: 0000-0002-8882-333X
  surname: Durmaz
  fullname: Durmaz, Esra Duygu
  email: esradurmaz@gazi.edu.tr
  organization: Department of Industrial Engineering, Faculty of Engineering, Gazi University, Ankara 06570, Türkiye
BookMark eNqFkM1KAzEUhYNUsFbfwEVeYGqS-Y0LoRT_oOBG1yGT3NS0naQmaUt9eqetKxe6OnAv34HzXaKB8w4QuqFkTAmtbhfjpfNxH8eMsHxMKWF1cYaGtKlZVheED9CQ8JJkNSnpBbqMcUEIYYw2Q_Q5cdh26-C3oLEMNn10kKzCfp1sZ79kst5huZr74wsbH3AK0jrr5tgA6P6wk0FjB5sgV32knQ_LiDdOQ8B672TXt4Hb2uBdBy7FK3Ru5CrC9U-O0Pvjw9v0OZu9Pr1MJ7NM5aRKmTFGq4JWpuBlrata523bKsZZWVU5J7whBYXcSNZy2TSlqgrgVEluyhIMEJOP0N2pVwUfYwAjlE3HPYcBK0GJOMgTC3GSJw7yxEleDxe_4HWwnQz7_7D7Ewb9sK2FIKKy4BRoG0Alob39u-AbWgmSMQ
CitedBy_id crossref_primary_10_3390_sym16070866
crossref_primary_10_1007_s11042_023_17084_0
crossref_primary_10_1016_j_knosys_2023_111019
crossref_primary_10_3390_app14156735
crossref_primary_10_1038_s41598_025_13539_6
crossref_primary_10_1016_j_jestch_2024_101684
crossref_primary_10_1007_s00500_024_09765_1
crossref_primary_10_1007_s10586_024_04730_x
crossref_primary_10_3390_math11132891
Cites_doi 10.1016/j.eswa.2020.114202
10.1007/s10489-014-0645-7
10.1007/s00521-013-1367-1
10.1109/MHS.1995.494215
10.1007/s00500-016-2442-1
10.1016/j.eswa.2014.08.018
10.1016/j.advengsoft.2016.01.008
10.1016/j.ins.2020.06.037
10.1007/s10898-012-9864-9
10.1109/69.250074
10.1016/j.swevo.2011.02.002
10.1007/s10489-017-1019-8
10.1016/j.asoc.2015.03.003
10.1108/02644401211235834
10.21105/joss.02173
10.1016/j.knosys.2020.105586
10.1109/ICTAI.2017.00046
10.1007/BF02478259
10.1109/CEC.2009.4983009
10.1007/s11063-019-10061-5
10.1016/j.ejor.2011.08.031
10.1016/j.ins.2014.08.050
10.1016/S0167-7012(00)00201-3
10.1016/j.advengsoft.2013.12.007
10.1016/j.knosys.2022.108833
10.1109/WAC.2002.1049555
10.1016/j.engappai.2021.104284
10.1016/j.knosys.2015.12.022
10.1016/j.engstruct.2019.109637
10.1016/j.ejor.2006.06.042
10.1007/s00500-018-3424-2
10.1007/s00521-021-05960-5
10.1016/j.engappai.2017.01.013
10.1007/s11721-012-0071-6
10.1186/1471-2105-7-125
10.1016/j.asoc.2014.04.032
10.1016/j.eswa.2017.11.048
10.1016/j.eswa.2018.08.007
10.1016/j.advengsoft.2017.07.002
10.1007/s00521-020-05163-4
10.1016/j.cma.2020.113609
10.1023/A:1018046501280
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2023.110274
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2023_110274
S0950705123000242
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-fffdc416f4957d67d3bbbc29256639098041e3fa2b9a885c64e91ca9f55efe0f3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000925673200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:07:13 EST 2025
Tue Nov 18 22:20:39 EST 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Arithmetic optimization algorithm
Concept drift
Artificial neural networks
Dynamic optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-fffdc416f4957d67d3bbbc29256639098041e3fa2b9a885c64e91ca9f55efe0f3
ORCID 0000-0002-8430-7952
0000-0002-6368-4425
0000-0002-8882-333X
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2023_110274
crossref_primary_10_1016_j_knosys_2023_110274
elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110274
PublicationCentury 2000
PublicationDate 2023-03-05
PublicationDateYYYYMMDD 2023-03-05
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ozsoydan, Baykasoğlu (b43) 2019; 115
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b52) 2017; 114
Yang, Gandomi (b14) 2012; 29
Abd Elaziz, Dahou, Abualigah, Yu, Alshinwan, Khasawneh, Lu (b23) 2021; 33
du Plessis, Engelbrecht (b39) 2012; 218
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (b45) 2011; 12
Tran-Ngoc, Khatir, De Roeck, Bui-Tien, Abdel Wahab (b11) 2019; 199
Ahmadianfar, Bozorg-Haddad, Chu (b32) 2020; 540
Mirjalili (b35) 2016; 96
Bifet, Holmes, Pfahringer, Kranen, Kremer, Jansen, Seidl (b33) 2010
Rao (b51) 2016; 7
Gama, Medas, Castillo, Rodrigues (b48) 2004
Turkoglu, Kaya (b2) 2020; 23
Agrawal, Imielinski, Swami (b46) 1993; 5
Mirjalili (b15) 2015; 43
Bishop (b4) 1995
Turky, Abdullah (b40) 2014; 22
Wang, Zeng, Chen (b7) 2015; 42
Abed-Alguni, Paul (b37) 2020; 29
Deb, Agrawal (b36) 1995; 9
Herbold (b56) 2020; 5
Heidari, Faris, Aljarah, Mirjalili (b18) 2019; 23
G.H.F.M. Oliveira, R.C. Cavalcante, G.G. Cabral, L.L. Minku, A.L.I. Oliveira, Time Series Forecasting in the Presence of Concept Drift: A PSO-based Approach, in: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence, ICTAI, 2017, pp. 239–246.
Jaddi, Abdullah, Hamdan (b13) 2015; 294
Abdulkarim, Engelbrecht (b24) 2020; 33
Gölcük, Ozsoydan (b53) 2020; 194
A. Carlisle, G. Dozler, Tracking changing extrema with adaptive particle swarm optimizer, in: Proceedings of the 5th Biannual World Automation Congress, 2002, pp. 265–270.
Ozsoydan, Gölcük (b21) 2022
Meissner, Schmuker, Schneider (b9) 2006; 7
Rumelhart, Hinton, Williams (b5) 1985
Derrac, García, Molina, Herrera (b55) 2011; 1
Widmer, Kubat (b25) 1996; 23
Branke (b49) 2002
Deb, Tiwari (b31) 2008; 185
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b30) 2021; 376
Abualigah, Almotairi, Al-qaness, Ewees, Yousri, Elaziz, Nadimi-Shahraki (b38) 2022; 248
Yang, Deb (b12) 2014; 24
Ojha, Abraham, Snášel (b22) 2017; 60
Basheer, Hajmeer (b3) 2000; 43
Mirjalili, Lewis (b17) 2016; 95
Montiel, Read, Bifet, Abdessalem (b34) 2018; 19
McCulloch, Pitts (b1) 1943; 5
A.S. Rakitianskaia, A.P. Engelbrecht, Training neural networks with PSO in dynamic environments, in: 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 667–673.
Aljarah, Faris, Mirjalili (b8) 2018; 22
Gölcük, Ozsoydan (b42) 2021; 167
Baykasoğlu, Ozsoydan (b50) 2018; 96
Li, Cheng, Shi, Huang (b6) 2012
Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b19) 2018; 48
Mirjalili, Mirjalili, Lewis (b16) 2014; 69
Street, Kim (b47) 2001
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43.
du Plessis, Engelbrecht (b44) 2012; 55
Rakitianskaia, Engelbrecht (b27) 2012; 6
Abdulkarim, Engelbrecht (b29) 2019; 50
Uymaz, Tezel, Yel (b20) 2015; 31
Gölcük, Ozsoydan (b54) 2021; 102
Branke (10.1016/j.knosys.2023.110274_b49) 2002
Gölcük (10.1016/j.knosys.2023.110274_b42) 2021; 167
Pedregosa (10.1016/j.knosys.2023.110274_b45) 2011; 12
McCulloch (10.1016/j.knosys.2023.110274_b1) 1943; 5
Heidari (10.1016/j.knosys.2023.110274_b18) 2019; 23
Bishop (10.1016/j.knosys.2023.110274_b4) 1995
Agrawal (10.1016/j.knosys.2023.110274_b46) 1993; 5
10.1016/j.knosys.2023.110274_b10
Abd Elaziz (10.1016/j.knosys.2023.110274_b23) 2021; 33
Widmer (10.1016/j.knosys.2023.110274_b25) 1996; 23
Turky (10.1016/j.knosys.2023.110274_b40) 2014; 22
Abdulkarim (10.1016/j.knosys.2023.110274_b29) 2019; 50
Gölcük (10.1016/j.knosys.2023.110274_b53) 2020; 194
Yang (10.1016/j.knosys.2023.110274_b12) 2014; 24
du Plessis (10.1016/j.knosys.2023.110274_b39) 2012; 218
Deb (10.1016/j.knosys.2023.110274_b31) 2008; 185
Montiel (10.1016/j.knosys.2023.110274_b34) 2018; 19
Deb (10.1016/j.knosys.2023.110274_b36) 1995; 9
Derrac (10.1016/j.knosys.2023.110274_b55) 2011; 1
Basheer (10.1016/j.knosys.2023.110274_b3) 2000; 43
Mirjalili (10.1016/j.knosys.2023.110274_b15) 2015; 43
Abed-Alguni (10.1016/j.knosys.2023.110274_b37) 2020; 29
Abualigah (10.1016/j.knosys.2023.110274_b30) 2021; 376
Rumelhart (10.1016/j.knosys.2023.110274_b5) 1985
10.1016/j.knosys.2023.110274_b41
Aljarah (10.1016/j.knosys.2023.110274_b8) 2018; 22
Yang (10.1016/j.knosys.2023.110274_b14) 2012; 29
Tran-Ngoc (10.1016/j.knosys.2023.110274_b11) 2019; 199
Meissner (10.1016/j.knosys.2023.110274_b9) 2006; 7
Ozsoydan (10.1016/j.knosys.2023.110274_b21) 2022
Mirjalili (10.1016/j.knosys.2023.110274_b17) 2016; 95
Ahmadianfar (10.1016/j.knosys.2023.110274_b32) 2020; 540
Rao (10.1016/j.knosys.2023.110274_b51) 2016; 7
Bifet (10.1016/j.knosys.2023.110274_b33) 2010
Abdulkarim (10.1016/j.knosys.2023.110274_b24) 2020; 33
Rakitianskaia (10.1016/j.knosys.2023.110274_b27) 2012; 6
Li (10.1016/j.knosys.2023.110274_b6) 2012
Mirjalili (10.1016/j.knosys.2023.110274_b52) 2017; 114
Wang (10.1016/j.knosys.2023.110274_b7) 2015; 42
du Plessis (10.1016/j.knosys.2023.110274_b44) 2012; 55
Mirjalili (10.1016/j.knosys.2023.110274_b16) 2014; 69
Turkoglu (10.1016/j.knosys.2023.110274_b2) 2020; 23
Mirjalili (10.1016/j.knosys.2023.110274_b35) 2016; 96
Street (10.1016/j.knosys.2023.110274_b47) 2001
Ojha (10.1016/j.knosys.2023.110274_b22) 2017; 60
Ozsoydan (10.1016/j.knosys.2023.110274_b43) 2019; 115
Gölcük (10.1016/j.knosys.2023.110274_b54) 2021; 102
Jaddi (10.1016/j.knosys.2023.110274_b13) 2015; 294
10.1016/j.knosys.2023.110274_b26
Herbold (10.1016/j.knosys.2023.110274_b56) 2020; 5
10.1016/j.knosys.2023.110274_b28
Gama (10.1016/j.knosys.2023.110274_b48) 2004
Abualigah (10.1016/j.knosys.2023.110274_b38) 2022; 248
Baykasoğlu (10.1016/j.knosys.2023.110274_b50) 2018; 96
Uymaz (10.1016/j.knosys.2023.110274_b20) 2015; 31
Mirjalili (10.1016/j.knosys.2023.110274_b19) 2018; 48
References_xml – volume: 42
  start-page: 855
  year: 2015
  end-page: 863
  ident: b7
  article-title: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 69
  year: 1996
  end-page: 101
  ident: b25
  article-title: Learning in the presence of concept drift and hidden contexts
  publication-title: Mach. Learn.
– start-page: 44
  year: 2010
  end-page: 50
  ident: b33
  article-title: Moa: Massive online analysis, a framework for stream classification and clustering
  publication-title: Proceedings of the First Workshop on Applications of Pattern Analysis
– reference: A. Carlisle, G. Dozler, Tracking changing extrema with adaptive particle swarm optimizer, in: Proceedings of the 5th Biannual World Automation Congress, 2002, pp. 265–270.
– volume: 24
  start-page: 169
  year: 2014
  end-page: 174
  ident: b12
  article-title: Cuckoo search: Recent advances and applications
  publication-title: Neural Comput. Appl.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b55
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 376
  year: 2021
  ident: b30
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 23
  start-page: 1342
  year: 2020
  end-page: 1350
  ident: b2
  article-title: Training multi-layer perceptron with artificial algae algorithm
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 23
  start-page: 7941
  year: 2019
  end-page: 7958
  ident: b18
  article-title: An efficient hybrid multilayer perceptron neural network with grasshopper optimization
  publication-title: Soft Comput.
– volume: 50
  start-page: 2763
  year: 2019
  end-page: 2795
  ident: b29
  article-title: Time series forecasting using neural networks: Are recurrent connections necessary?
  publication-title: Neural Process. Lett.
– volume: 102
  year: 2021
  ident: b54
  article-title: Q-learning and hyper-heuristic based algorithm recommendation for changing environments
  publication-title: Eng. Appl. Artif. Intell.
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  ident: b20
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 474
  year: 2014
  end-page: 482
  ident: b40
  article-title: A multi-population electromagnetic algorithm for dynamic optimisation problems
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b45
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 248
  year: 2022
  ident: b38
  article-title: Efficient text document clustering approach using multi-search arithmetic optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 29
  start-page: 1043
  year: 2020
  end-page: 1062
  ident: b37
  article-title: Hybridizing the cuckoo search algorithm with different mutation operators for numerical optimization problems
  publication-title: J. Intell. Syst.
– year: 2002
  ident: b49
  article-title: Evolutionary Optimization in Dynamic Environments
– volume: 218
  start-page: 7
  year: 2012
  end-page: 20
  ident: b39
  article-title: Using competitive population evaluation in a differential evolution algorithm for dynamic environments
  publication-title: European J. Oper. Res.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b52
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b16
  article-title: Grey Wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 33
  start-page: 2667
  year: 2020
  end-page: 2683
  ident: b24
  article-title: Time series forecasting with feedforward neural networks trained using particle swarm optimizers for dynamic environments
  publication-title: Neural Comput. Appl.
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  ident: b15
  article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intell.
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b1
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– year: 2022
  ident: b21
  article-title: A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b35
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– start-page: 553
  year: 2012
  end-page: 558
  ident: b6
  article-title: Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement
– volume: 48
  start-page: 805
  year: 2018
  end-page: 820
  ident: b19
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl. Intell.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 15
  ident: b8
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
– volume: 167
  year: 2021
  ident: b42
  article-title: Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 233
  year: 2012
  end-page: 270
  ident: b27
  article-title: Training feedforward neural networks with dynamic particle swarm optimisation
  publication-title: Swarm Intell.
– volume: 185
  start-page: 1062
  year: 2008
  end-page: 1087
  ident: b31
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b17
  article-title: The Whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 96
  start-page: 157
  year: 2018
  end-page: 174
  ident: b50
  article-title: Dynamic optimization in binary search spaces via weighted superposition attraction algorithm
  publication-title: Expert Syst. Appl.
– volume: 194
  year: 2020
  ident: b53
  article-title: Evolutionary and adaptive inheritance enhanced Grey Wolf optimization algorithm for binary domains
  publication-title: Knowl.-Based Syst.
– volume: 33
  start-page: 14079
  year: 2021
  end-page: 14099
  ident: b23
  article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: A review
  publication-title: Neural Comput. Appl.
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: b36
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: b3
  article-title: Artificial neural networks: Fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
– year: 1985
  ident: b5
  article-title: Learning internal representations by error propagation
  publication-title: California Univ San Diego la Jolla Inst for Cognitive Science
– volume: 5
  start-page: 2173
  year: 2020
  ident: b56
  article-title: Autorank: A Python package for automated ranking of classifiers
  publication-title: J. Open Source Software
– reference: G.H.F.M. Oliveira, R.C. Cavalcante, G.G. Cabral, L.L. Minku, A.L.I. Oliveira, Time Series Forecasting in the Presence of Concept Drift: A PSO-based Approach, in: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence, ICTAI, 2017, pp. 239–246.
– start-page: 377
  year: 2001
  end-page: 382
  ident: b47
  article-title: A streaming ensemble algorithm (SEA) for large-scale classification
  publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 55
  start-page: 73
  year: 2012
  end-page: 99
  ident: b44
  article-title: Differential evolution for dynamic environments with unknown numbers of optima
  publication-title: J. Global Optim.
– volume: 7
  start-page: 19
  year: 2016
  end-page: 34
  ident: b51
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43.
– volume: 199
  year: 2019
  ident: b11
  article-title: An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm
  publication-title: Eng. Struct.
– volume: 115
  start-page: 189
  year: 2019
  end-page: 199
  ident: b43
  article-title: Quantum firefly swarms for multimodal dynamic optimization problems
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 5
  ident: b34
  article-title: Scikit-multiflow: A multi-output streaming framework
  publication-title: J. Mach. Learn. Res.
– start-page: 286
  year: 2004
  end-page: 295
  ident: b48
  article-title: Learning with Drift Detection
– reference: A.S. Rakitianskaia, A.P. Engelbrecht, Training neural networks with PSO in dynamic environments, in: 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 667–673.
– year: 1995
  ident: b4
  article-title: Neural Networks for Pattern Recognition
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  ident: b32
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
– volume: 60
  start-page: 97
  year: 2017
  end-page: 116
  ident: b22
  article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
– volume: 29
  start-page: 464
  year: 2012
  end-page: 483
  ident: b14
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
– volume: 294
  start-page: 628
  year: 2015
  end-page: 644
  ident: b13
  article-title: Multi-population cooperative bat algorithm-based optimization of artificial neural network model
  publication-title: Inform. Sci.
– volume: 5
  start-page: 914
  year: 1993
  end-page: 925
  ident: b46
  article-title: Database mining: A performance perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 7
  start-page: 125
  year: 2006
  ident: b9
  article-title: Optimized particle swarm optimization (OPSO) and its application to artificial neural network training
  publication-title: BMC Bioinformatics
– start-page: 377
  year: 2001
  ident: 10.1016/j.knosys.2023.110274_b47
  article-title: A streaming ensemble algorithm (SEA) for large-scale classification
– volume: 167
  year: 2021
  ident: 10.1016/j.knosys.2023.110274_b42
  article-title: Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114202
– start-page: 553
  year: 2012
  ident: 10.1016/j.knosys.2023.110274_b6
– volume: 43
  start-page: 150
  year: 2015
  ident: 10.1016/j.knosys.2023.110274_b15
  article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0645-7
– volume: 24
  start-page: 169
  year: 2014
  ident: 10.1016/j.knosys.2023.110274_b12
  article-title: Cuckoo search: Recent advances and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1367-1
– volume: 7
  start-page: 19
  year: 2016
  ident: 10.1016/j.knosys.2023.110274_b51
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– ident: 10.1016/j.knosys.2023.110274_b10
  doi: 10.1109/MHS.1995.494215
– volume: 23
  start-page: 1342
  year: 2020
  ident: 10.1016/j.knosys.2023.110274_b2
  article-title: Training multi-layer perceptron with artificial algae algorithm
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2023.110274_b8
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2442-1
– volume: 42
  start-page: 855
  year: 2015
  ident: 10.1016/j.knosys.2023.110274_b7
  article-title: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.018
– year: 2002
  ident: 10.1016/j.knosys.2023.110274_b49
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.knosys.2023.110274_b17
  article-title: The Whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 1985
  ident: 10.1016/j.knosys.2023.110274_b5
  article-title: Learning internal representations by error propagation
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.knosys.2023.110274_b45
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 540
  start-page: 131
  year: 2020
  ident: 10.1016/j.knosys.2023.110274_b32
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.037
– volume: 55
  start-page: 73
  year: 2012
  ident: 10.1016/j.knosys.2023.110274_b44
  article-title: Differential evolution for dynamic environments with unknown numbers of optima
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9864-9
– volume: 5
  start-page: 914
  year: 1993
  ident: 10.1016/j.knosys.2023.110274_b46
  article-title: Database mining: A performance perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.250074
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.knosys.2023.110274_b55
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 48
  start-page: 805
  year: 2018
  ident: 10.1016/j.knosys.2023.110274_b19
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1019-8
– volume: 31
  start-page: 153
  year: 2015
  ident: 10.1016/j.knosys.2023.110274_b20
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.003
– volume: 29
  start-page: 464
  year: 2012
  ident: 10.1016/j.knosys.2023.110274_b14
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– volume: 5
  start-page: 2173
  year: 2020
  ident: 10.1016/j.knosys.2023.110274_b56
  article-title: Autorank: A Python package for automated ranking of classifiers
  publication-title: J. Open Source Software
  doi: 10.21105/joss.02173
– volume: 194
  year: 2020
  ident: 10.1016/j.knosys.2023.110274_b53
  article-title: Evolutionary and adaptive inheritance enhanced Grey Wolf optimization algorithm for binary domains
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105586
– volume: 19
  start-page: 1
  issue: 72
  year: 2018
  ident: 10.1016/j.knosys.2023.110274_b34
  article-title: Scikit-multiflow: A multi-output streaming framework
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.knosys.2023.110274_b28
  doi: 10.1109/ICTAI.2017.00046
– year: 1995
  ident: 10.1016/j.knosys.2023.110274_b4
– volume: 5
  start-page: 115
  year: 1943
  ident: 10.1016/j.knosys.2023.110274_b1
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– ident: 10.1016/j.knosys.2023.110274_b26
  doi: 10.1109/CEC.2009.4983009
– volume: 50
  start-page: 2763
  year: 2019
  ident: 10.1016/j.knosys.2023.110274_b29
  article-title: Time series forecasting using neural networks: Are recurrent connections necessary?
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10061-5
– start-page: 286
  year: 2004
  ident: 10.1016/j.knosys.2023.110274_b48
– volume: 218
  start-page: 7
  year: 2012
  ident: 10.1016/j.knosys.2023.110274_b39
  article-title: Using competitive population evaluation in a differential evolution algorithm for dynamic environments
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2011.08.031
– volume: 294
  start-page: 628
  year: 2015
  ident: 10.1016/j.knosys.2023.110274_b13
  article-title: Multi-population cooperative bat algorithm-based optimization of artificial neural network model
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.08.050
– volume: 43
  start-page: 3
  year: 2000
  ident: 10.1016/j.knosys.2023.110274_b3
  article-title: Artificial neural networks: Fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.knosys.2023.110274_b16
  article-title: Grey Wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 9
  start-page: 115
  year: 1995
  ident: 10.1016/j.knosys.2023.110274_b36
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– year: 2022
  ident: 10.1016/j.knosys.2023.110274_b21
  article-title: A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 248
  year: 2022
  ident: 10.1016/j.knosys.2023.110274_b38
  article-title: Efficient text document clustering approach using multi-search arithmetic optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108833
– ident: 10.1016/j.knosys.2023.110274_b41
  doi: 10.1109/WAC.2002.1049555
– volume: 102
  year: 2021
  ident: 10.1016/j.knosys.2023.110274_b54
  article-title: Q-learning and hyper-heuristic based algorithm recommendation for changing environments
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104284
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.knosys.2023.110274_b35
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 199
  year: 2019
  ident: 10.1016/j.knosys.2023.110274_b11
  article-title: An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.109637
– volume: 185
  start-page: 1062
  year: 2008
  ident: 10.1016/j.knosys.2023.110274_b31
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.042
– volume: 23
  start-page: 7941
  year: 2019
  ident: 10.1016/j.knosys.2023.110274_b18
  article-title: An efficient hybrid multilayer perceptron neural network with grasshopper optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3424-2
– volume: 33
  start-page: 14079
  year: 2021
  ident: 10.1016/j.knosys.2023.110274_b23
  article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: A review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05960-5
– volume: 60
  start-page: 97
  year: 2017
  ident: 10.1016/j.knosys.2023.110274_b22
  article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.013
– volume: 6
  start-page: 233
  year: 2012
  ident: 10.1016/j.knosys.2023.110274_b27
  article-title: Training feedforward neural networks with dynamic particle swarm optimisation
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-012-0071-6
– volume: 7
  start-page: 125
  year: 2006
  ident: 10.1016/j.knosys.2023.110274_b9
  article-title: Optimized particle swarm optimization (OPSO) and its application to artificial neural network training
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-125
– start-page: 44
  year: 2010
  ident: 10.1016/j.knosys.2023.110274_b33
  article-title: Moa: Massive online analysis, a framework for stream classification and clustering
– volume: 22
  start-page: 474
  year: 2014
  ident: 10.1016/j.knosys.2023.110274_b40
  article-title: A multi-population electromagnetic algorithm for dynamic optimisation problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.04.032
– volume: 96
  start-page: 157
  year: 2018
  ident: 10.1016/j.knosys.2023.110274_b50
  article-title: Dynamic optimization in binary search spaces via weighted superposition attraction algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.048
– volume: 115
  start-page: 189
  year: 2019
  ident: 10.1016/j.knosys.2023.110274_b43
  article-title: Quantum firefly swarms for multimodal dynamic optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.007
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.knosys.2023.110274_b52
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 29
  start-page: 1043
  year: 2020
  ident: 10.1016/j.knosys.2023.110274_b37
  article-title: Hybridizing the cuckoo search algorithm with different mutation operators for numerical optimization problems
  publication-title: J. Intell. Syst.
– volume: 33
  start-page: 2667
  year: 2020
  ident: 10.1016/j.knosys.2023.110274_b24
  article-title: Time series forecasting with feedforward neural networks trained using particle swarm optimizers for dynamic environments
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05163-4
– volume: 376
  year: 2021
  ident: 10.1016/j.knosys.2023.110274_b30
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113609
– volume: 23
  start-page: 69
  year: 1996
  ident: 10.1016/j.knosys.2023.110274_b25
  article-title: Learning in the presence of concept drift and hidden contexts
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018046501280
SSID ssj0002218
Score 2.4126961
Snippet This paper proposes an improved Arithmetic Optimization Algorithm (AOA) to train artificial neural networks (ANNs) under dynamic environments. Despite many...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110274
SubjectTerms Arithmetic optimization algorithm
Artificial neural networks
Concept drift
Dynamic optimization
Title An improved arithmetic optimization algorithm for training feedforward neural networks under dynamic environments
URI https://dx.doi.org/10.1016/j.knosys.2023.110274
Volume 263
WOSCitedRecordID wos000925673200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb5tAFB65SQ-9dK-SbppDbwiLHc_RTpxuUtpDKvmGYJhJnOAhxcZK-kP6e_tmw7ip0ubQC7bGMIDfx5vvPd6C0DuPhQzW2dDlCQEDhcURPHOhL7NAWOnzqPAjqppNpMfHo9mMfB0MftpcmHWVCjG6uiKX_1XUMAbClqmzdxB3NykMwHcQOmxB7LD9J8GPhUx9bOo1UEkwhFdnC5mn6NSgGxYm6dLJq9Na_aSjDE2bCIfDUgYDMpDWkYUuQXxCh4kvVb_cxil1A_ut_Lg-v_1sXXSuXB5LUyi64-3v5Xv5SVJR9XmgNLGksxOvutiECX_5sayvS-2ZPWJni7kzaRs672B82MJqohzf02WTO4ft9Wnb914EoQrfirfckJ6beqborNHIgdF5WqcCQQl0J58b6l57Hs6HF6KG-xnKEww3u29X1_5t1etiEW2Y23mmZ8nkLJme5R7aDdKYgMLfHX-czj51a3wQKM9xd_U2KVNFDt68mj-Tnh6ROXmMHhoLBI81cp6gARNP0SPb3QMbZf8MfR8LbIGEN0DCfSDhDkgYcIMtkHAPSFgDCVsgYQUkbICE-0B6jr4dTU8OPrimQYdLwdJcuZzzkgKj52Blp2WSlmFRFDQgQKOB-HpE1rZiIc-DguSjUUyTiBGf5oTHMePM4-ELtCNqwfYQTmCXOAlTLyFJBCQy96M8BlsBFAkYvFGyj0L7D2bUVK-XN1Vlt8lvH7ndUZe6estf9k-tcDLDQDWzzABxtx758o5neoUebB6H12hn1bTsDbpP16v5snlr4PYLQ_-uMA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+arithmetic+optimization+algorithm+for+training+feedforward+neural+networks+under+dynamic+environments&rft.jtitle=Knowledge-based+systems&rft.au=G%C3%B6lc%C3%BCk%2C+%C4%B0lker&rft.au=Ozsoydan%2C+Fehmi+Burcin&rft.au=Durmaz%2C+Esra+Duygu&rft.date=2023-03-05&rft.issn=0950-7051&rft.volume=263&rft.spage=110274&rft_id=info:doi/10.1016%2Fj.knosys.2023.110274&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2023_110274
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon