IIRNet: A lightweight deep neural network using intensely inverted residuals for image recognition

Deep neural networks have achieved great success in many tasks of pattern recognition. However, large model size and high cost in computation limit their applications in resource-limited systems. In this paper, our focus is to design a lightweight and efficient convolutional neural network architect...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Image and vision computing Ročník 92; s. 103819
Hlavní autoři: Li, Yuyuan, Zhang, Dong, Lee, Dah-Jye
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2019
Témata:
ISSN:0262-8856, 1872-8138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep neural networks have achieved great success in many tasks of pattern recognition. However, large model size and high cost in computation limit their applications in resource-limited systems. In this paper, our focus is to design a lightweight and efficient convolutional neural network architecture by directly training the compact network for image recognition. To achieve a good balance among classification accuracy, model size, and computation complexity, we propose a lightweight convolutional neural network architecture named IIRNet for resource-limited systems. The new architecture is built based on Intensely Inverted Residual block (IIR block) to decrease the redundancy of the convolutional blocks. By utilizing two new operations, intensely inverted residual and multi-scale low-redundancy convolutions, IIR block greatly reduces its model size and computational costs while matches the classification accuracy of the state-of-the-art networks. Experiments on CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate the superior performance of IIRNet on the trade-offs among classification accuracy, computation complexity, and model size, compared to the mainstream compact network architectures. •A lightweight and efficient convolutional neural network architecture is constructed.•Intensely inverted residual and multi-scale low-redundancy convolutions are used to reduce the model size and complexity.•The proposed network achieves comparable classification accuracy to the mainstream compact network architectures.•Balanced performance is obtained on three challenging datasets.
AbstractList Deep neural networks have achieved great success in many tasks of pattern recognition. However, large model size and high cost in computation limit their applications in resource-limited systems. In this paper, our focus is to design a lightweight and efficient convolutional neural network architecture by directly training the compact network for image recognition. To achieve a good balance among classification accuracy, model size, and computation complexity, we propose a lightweight convolutional neural network architecture named IIRNet for resource-limited systems. The new architecture is built based on Intensely Inverted Residual block (IIR block) to decrease the redundancy of the convolutional blocks. By utilizing two new operations, intensely inverted residual and multi-scale low-redundancy convolutions, IIR block greatly reduces its model size and computational costs while matches the classification accuracy of the state-of-the-art networks. Experiments on CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate the superior performance of IIRNet on the trade-offs among classification accuracy, computation complexity, and model size, compared to the mainstream compact network architectures. •A lightweight and efficient convolutional neural network architecture is constructed.•Intensely inverted residual and multi-scale low-redundancy convolutions are used to reduce the model size and complexity.•The proposed network achieves comparable classification accuracy to the mainstream compact network architectures.•Balanced performance is obtained on three challenging datasets.
ArticleNumber 103819
Author Li, Yuyuan
Zhang, Dong
Lee, Dah-Jye
Author_xml – sequence: 1
  givenname: Yuyuan
  surname: Li
  fullname: Li, Yuyuan
  organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  email: zhangd@mail.sysu.edu.cn
  organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Dah-Jye
  surname: Lee
  fullname: Lee, Dah-Jye
  organization: Sun Yat-sen University, Shunde Research Institute, Shunde, Foshan, China
BookMark eNqFkM9OwzAMxiM0JMbgDTjkBVqSdkmzHZCmiT-TJpAQnKMkdUtGSack27S3J9U4cYCLbX32Z9m_SzRyvQOEbijJKaH8dpPbL7W3IS8InSUpJ4SdoTEVVZEJWooRGpOCp1owfoEuQ9gQQipSzcZIr1avzxDneIE7237EAwwR1wBb7GDnVZdSPPT-E--CdS22LoIL0B1TtQcfocYegq13qgu46T1Op7SQNNO3zkbbuyt03qQmXP_kCXp_uH9bPmXrl8fVcrHOTEl4zBqt-FTPhJ4WNW-YJsQYbagpWaOFUFBVNQOmeUOFZlwZoQ0TROmal4UpQJQTND_tNb4PwUMjjY1quCB6ZTtJiRxoyY080ZIDrUFNtJJ5-su89WnMH_-z3Z1skB7bW_AyGAvOQG0TgSjr3v694BtDsovr
CitedBy_id crossref_primary_10_1109_JIOT_2025_3586661
crossref_primary_10_1007_s10489_023_04544_1
crossref_primary_10_1109_ACCESS_2023_3272985
crossref_primary_10_1109_JIOT_2021_3063497
crossref_primary_10_1007_s11282_023_00677_8
crossref_primary_10_1016_j_ress_2024_110145
crossref_primary_10_1038_s41598_025_93718_7
crossref_primary_10_3390_jne2040036
crossref_primary_10_1155_2021_4529107
crossref_primary_10_3390_math9111245
crossref_primary_10_1109_TCDS_2023_3311171
crossref_primary_10_1016_j_imavis_2024_105037
crossref_primary_10_1016_j_imavis_2025_105646
crossref_primary_10_1109_ACCESS_2022_3151660
crossref_primary_10_1007_s11760_025_03945_8
crossref_primary_10_1016_j_imavis_2021_104286
Cites_doi 10.1016/j.neucom.2018.10.075
10.1016/j.neucom.2018.10.070
10.1109/TPAMI.2008.128
10.1016/j.neucom.2018.11.028
10.1016/j.neucom.2018.11.010
10.1016/j.neucom.2018.11.031
10.1016/j.neucom.2018.10.071
10.1109/TPAMI.2015.2502579
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2019.10.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
ExternalDocumentID 10_1016_j_imavis_2019_10_005
S0262885619301441
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-fba64b98b42d6f5b00ccbc1c35fb88ae77d5e5b6f18b56ac8bc580abd632c2e83
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502884200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0262-8856
IngestDate Tue Nov 18 22:13:35 EST 2025
Sat Nov 29 07:19:19 EST 2025
Fri Feb 23 02:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lightweight CNN
Computation complexity
Image recognition
Model size
Low-redundancy
Convolutional neural network (CNN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-fba64b98b42d6f5b00ccbc1c35fb88ae77d5e5b6f18b56ac8bc580abd632c2e83
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2019_10_005
crossref_primary_10_1016_j_imavis_2019_10_005
elsevier_sciencedirect_doi_10_1016_j_imavis_2019_10_005
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Image and vision computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Chen, Yan (bb0195) 2014
Torralba, Fergus, Freeman (bb0180) 2008; 30
He, Zhang, Ren, Sun (bb0210) 2016
Gholami, Kwon, Wu (bb0255) 2018
He, Zhang, Ren, Sun (bb0040) 2016
Wang, Wei, Zhang, Zeng (bb0220) 2016
Yang, Huang, Lv (bb0015) 2019; 330
Chollet (bb0160) 2017
Novikov, Podoprikhin, Osokin, Vetrov (bb0060) 2015
Lebedev, Ganin, Rakhuba, Oseledets, Lempitsky (bb0050) 2015
Huang, Li, Pleiss, Liu, Hopcroft, Weinberger (bb0230) 2017
Chen, Choi, Yu, Han, Chandraker (bb0110) 2017
Li, Zhang, Lee (bb0130) 2019; 329
Krizhevsky, Hinton (bb0175) 2009
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0170) 2014; 15
Singh, Hoiem, Forsyth (bb0250) 2016
Ren, Pokrovsky, Yang, Urtasun (bb0070) 2018
Romero, Ballas, Kahou, Chassang, Gatta, Bengio (bb0200) 2015
Zagoruyko, Komodakis (bb0235) 2016
Yim, Joo, Bae, Kim (bb0105) 2017
Krizhevsky, Sutskever, Hinton (bb0025) 2012; 60
Yoon, Hwang (bb0075) 2017; 70
Luo, Wu, Lin (bb0080) 2017
He, Zhang, Sun (bb0085) 2017
Targ, Almeida, Lyman (bb0240) 2016
Zhang, Zou, He, Sun (bb0045) 2016; 38
Xie, Wang, Zhang, Lai, Hong, Qi (bb0140) 2018
Srivastava, Greff, Schmidhuber (bb0205) 2015
Lee, Xie, Gallagher, Zhang, Tu (bb0185) 2014
Wang, Sun, Eriksson, Wang (bb0065) 2018
Taheri, Toygar (bb0005) 2019; 329
Leng, Dou, Li, Zhu, Jin (bb0090) 2018
Yuan, Guo, Feng, Zhao, Xu, Wang, Choe, Duan (bb0020) 2019; 330
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bb0115) 2017
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (bb0150) 2016
Sun, Li, Liu, Wang (bb0155) 2018
Wang, Hu, Zhang, Zhang, Liu, Cheng (bb0095) 2018
Huang, Sun, Liu, Sedra, Weinberger (bb0215) 2016
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bb0035) 2015
Sandler, Howard, Zhu, Zhmoginov, Chen (bb0120) 2018
Zhang, Zhou, Lin, Sun (bb0125) 2018
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bb0165) 2016
Ou, Li (bb0145) 2019; 330
Zhang, Qi, Xiao, Wang (bb0135) 2017
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bb0190) 2014
Alistarh, Grubic, Li, Tomioka, Vojnovic (bb0100) 2017
Larsson, Maire, Shakhnarovich (bb0225) 2016
Zhao, Wang, Li, Tu (bb0245) 2016
Kim, Park, Yoo, Choi, Yang, Shin (bb0055) 2016
Simonyan, Zisserman (bb0030) 2015
Brahimi, Aoun, Amar (bb0010) 2019; 330
Wang (10.1016/j.imavis.2019.10.005_bb0095) 2018
Wang (10.1016/j.imavis.2019.10.005_bb0065) 2018
Yoon (10.1016/j.imavis.2019.10.005_bb0075) 2017; 70
Li (10.1016/j.imavis.2019.10.005_bb0130) 2019; 329
Torralba (10.1016/j.imavis.2019.10.005_bb0180) 2008; 30
Chollet (10.1016/j.imavis.2019.10.005_bb0160) 2017
Yang (10.1016/j.imavis.2019.10.005_bb0015) 2019; 330
He (10.1016/j.imavis.2019.10.005_bb0040) 2016
Zhang (10.1016/j.imavis.2019.10.005_bb0045) 2016; 38
Szegedy (10.1016/j.imavis.2019.10.005_bb0165) 2016
He (10.1016/j.imavis.2019.10.005_bb0210) 2016
Srivastava (10.1016/j.imavis.2019.10.005_bb0205) 2015
Zhang (10.1016/j.imavis.2019.10.005_bb0135) 2017
Yuan (10.1016/j.imavis.2019.10.005_bb0020) 2019; 330
Brahimi (10.1016/j.imavis.2019.10.005_bb0010) 2019; 330
Luo (10.1016/j.imavis.2019.10.005_bb0080) 2017
Singh (10.1016/j.imavis.2019.10.005_bb0250) 2016
Targ (10.1016/j.imavis.2019.10.005_bb0240) 2016
Chen (10.1016/j.imavis.2019.10.005_bb0110) 2017
Krizhevsky (10.1016/j.imavis.2019.10.005_bb0025) 2012; 60
Sun (10.1016/j.imavis.2019.10.005_bb0155) 2018
Huang (10.1016/j.imavis.2019.10.005_bb0230) 2017
Xie (10.1016/j.imavis.2019.10.005_bb0140) 2018
Iandola (10.1016/j.imavis.2019.10.005_bb0150) 2016
Novikov (10.1016/j.imavis.2019.10.005_bb0060) 2015
Jia (10.1016/j.imavis.2019.10.005_bb0190) 2014
Wang (10.1016/j.imavis.2019.10.005_bb0220) 2016
He (10.1016/j.imavis.2019.10.005_bb0085) 2017
Srivastava (10.1016/j.imavis.2019.10.005_bb0170) 2014; 15
Howard (10.1016/j.imavis.2019.10.005_bb0115) 2017
Gholami (10.1016/j.imavis.2019.10.005_bb0255) 2018
Taheri (10.1016/j.imavis.2019.10.005_bb0005) 2019; 329
Alistarh (10.1016/j.imavis.2019.10.005_bb0100) 2017
Yim (10.1016/j.imavis.2019.10.005_bb0105) 2017
Kim (10.1016/j.imavis.2019.10.005_bb0055) 2016
Leng (10.1016/j.imavis.2019.10.005_bb0090) 2018
Szegedy (10.1016/j.imavis.2019.10.005_bb0035) 2015
Zagoruyko (10.1016/j.imavis.2019.10.005_bb0235) 2016
Simonyan (10.1016/j.imavis.2019.10.005_bb0030) 2015
Lee (10.1016/j.imavis.2019.10.005_bb0185) 2014
Sandler (10.1016/j.imavis.2019.10.005_bb0120) 2018
Romero (10.1016/j.imavis.2019.10.005_bb0200) 2015
Lebedev (10.1016/j.imavis.2019.10.005_bb0050) 2015
Ou (10.1016/j.imavis.2019.10.005_bb0145) 2019; 330
Zhao (10.1016/j.imavis.2019.10.005_bb0245) 2016
Zhang (10.1016/j.imavis.2019.10.005_bb0125) 2018
Lin (10.1016/j.imavis.2019.10.005_bb0195) 2014
Larsson (10.1016/j.imavis.2019.10.005_bb0225) 2016
Krizhevsky (10.1016/j.imavis.2019.10.005_bb0175) 2009
Ren (10.1016/j.imavis.2019.10.005_bb0070) 2018
Huang (10.1016/j.imavis.2019.10.005_bb0215) 2016
References_xml – start-page: 1707
  year: 2017
  end-page: 1718
  ident: bb0100
  article-title: QSGD: communication-efficient SGD via gradient quantization and encoding
  publication-title: Advances in Neural Information Processing Systems
– volume: 38
  start-page: 1943
  year: 2016
  end-page: 1955
  ident: bb0045
  article-title: Accelerating very deep convolutional networks for classification and detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0040
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 28
  year: 2016
  end-page: 36
  ident: bb0250
  article-title: Swapout: learning an ensemble of deep architectures
  publication-title: Advances in Neural Information Processing Systems
– volume: 330
  start-page: 253
  year: 2019
  end-page: 258
  ident: bb0145
  article-title: Vector-kernel convolutional neural networks
  publication-title: Neurocomputing
– start-page: 646
  year: 2016
  end-page: 661
  ident: bb0215
  article-title: Deep networks with stochastic depth
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 60
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0025
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 442
  year: 2015
  end-page: 450
  ident: bb0060
  article-title: Tensorizing neural networks
  publication-title: Proceedings of the Neural Information Processing Systems
– start-page: 742
  year: 2017
  end-page: 751
  ident: bb0110
  article-title: Learning efficient object detection models with knowledge distillation
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: bb0230
  article-title: Snapshot Ensembles: Train 1, Get m for Free
– start-page: 1
  year: 2016
  end-page: 4
  ident: bb0240
  article-title: Resnet in resnet: generalizing residual architectures
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2018
  ident: bb0140
  article-title: IGCV2: interleaved structured sparse convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 8711
  year: 2018
  end-page: 8720
  ident: bb0070
  article-title: SBNet: Sparse Blocks Network for fast inference
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: bb0065
  article-title: Wide compression: tensor ring nets
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2015
  ident: bb0050
  article-title: Speeding-up convolutional neural networks using fine-tuned CP-decomposition
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2016
  ident: bb0225
  article-title: Fractalnet: Ultra-deep Neural Networks Without Residuals
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0170
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bb0035
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: bb0095
  article-title: Two-step quantization for low-bit neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bb0160
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: bb0090
  article-title: Extremely low bit neural network: squeeze the last bit out with ADMM
  publication-title: Proceedings of the Thirty-second AAAI Conference on Artificial Intelligence
– year: 2017
  ident: bb0135
  article-title: Interleaved group convolutions for deep neural networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 330
  start-page: 127
  year: 2019
  end-page: 137
  ident: bb0020
  article-title: A jointly learned deep embedding for person re-identification
  publication-title: Neurocomputing
– year: 2017
  ident: bb0115
  article-title: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
– year: 2014
  ident: bb0190
  article-title: Caffe: Convolutional Architecture for Fast Feature Embedding
– volume: 70
  start-page: 3958
  year: 2017
  end-page: 3966
  ident: bb0075
  article-title: Combined group and exclusive sparsity for deep neural networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 30
  start-page: 1958
  year: 2008
  end-page: 1970
  ident: bb0180
  article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 5068
  year: 2017
  end-page: 5076
  ident: bb0080
  article-title: ThiNet: a filter level pruning method for deep neural network compression
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: bb0120
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2016
  ident: bb0150
  article-title: SqueezeNet: AlexNet-level Accuracy With 50X Fewer Parameters and <
– volume: 329
  start-page: 329
  year: 2019
  end-page: 338
  ident: bb0130
  article-title: Automatic fabric defect detection with a wide-and-compact network
  publication-title: Neurocomputing
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bb0165
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 330
  start-page: 48
  year: 2019
  end-page: 55
  ident: bb0015
  article-title: A feature learning approach for face recognition with robustness to noisy label based on top-N prediction
  publication-title: Neurocomputing
– year: 2014
  ident: bb0185
  publication-title: Deeply-supervised Nets
– year: 2016
  ident: bb0235
  article-title: Wide Residual Networks
– year: 2015
  ident: bb0205
  publication-title: Highway Networks
– year: 2015
  ident: bb0030
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proceedings of the International Conference on Learning Representations
– start-page: 630
  year: 2016
  end-page: 645
  ident: bb0210
  article-title: Identity mappings in deep residual networks
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2018
  ident: bb0125
  article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 330
  start-page: 337
  year: 2019
  end-page: 354
  ident: bb0010
  article-title: Boosted convolutional neural network for object recognition at large scale
  publication-title: Neurocomputing
– volume: 329
  start-page: 300
  year: 2019
  end-page: 310
  ident: bb0005
  article-title: On the use of DAG-CNN architecture for age estimation with multi-stage features fusion
  publication-title: Neurocomputing
– start-page: 1
  year: 2009
  end-page: 60
  ident: bb0175
  article-title: Learning Multiple Layers of Features From Tiny Images
– year: 2018
  ident: bb0255
  article-title: SqueezeNext: Hardware-aware Neural Network Design
– year: 2016
  ident: bb0055
  article-title: Compression of deep convolutional neural networks for fast and low power mobile applications
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2018
  ident: bb0155
  article-title: IGCV3: interleaved low-rank group convolutions for efficient deep neural networks
  publication-title: Proceedings of the 29
– start-page: 1389
  year: 2017
  end-page: 1397
  ident: bb0085
  article-title: Channel pruning for accelerating very deep neural networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 7130
  year: 2017
  end-page: 7138
  ident: bb0105
  article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2015
  ident: bb0200
  article-title: FITNETS: hints for thin deep nets
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2016
  ident: bb0245
  article-title: Deep Convolutional Neural Networks With Merge-and-run Mappings
– year: 2014
  ident: bb0195
  article-title: Network in network
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2016
  ident: bb0220
  publication-title: Deeply-fused Nets
– start-page: 770
  year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0040
  article-title: Deep residual learning for image recognition
– start-page: 742
  year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0110
  article-title: Learning efficient object detection models with knowledge distillation
– year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0230
– year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0220
  publication-title: Deeply-fused Nets
– start-page: 1389
  year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0085
  article-title: Channel pruning for accelerating very deep neural networks
– year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0150
– start-page: 1707
  year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0100
  article-title: QSGD: communication-efficient SGD via gradient quantization and encoding
– start-page: 7130
  year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0105
  article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning
– volume: 330
  start-page: 48
  year: 2019
  ident: 10.1016/j.imavis.2019.10.005_bb0015
  article-title: A feature learning approach for face recognition with robustness to noisy label based on top-N prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.075
– volume: 329
  start-page: 329
  year: 2019
  ident: 10.1016/j.imavis.2019.10.005_bb0130
  article-title: Automatic fabric defect detection with a wide-and-compact network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.070
– volume: 30
  start-page: 1958
  issue: 11
  year: 2008
  ident: 10.1016/j.imavis.2019.10.005_bb0180
  article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.128
– volume: 60
  start-page: 1097
  issue: 2
  year: 2012
  ident: 10.1016/j.imavis.2019.10.005_bb0025
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: 10.1016/j.imavis.2019.10.005_bb0190
– year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0155
  article-title: IGCV3: interleaved low-rank group convolutions for efficient deep neural networks
– start-page: 8711
  year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0070
  article-title: SBNet: Sparse Blocks Network for fast inference
– year: 2014
  ident: 10.1016/j.imavis.2019.10.005_bb0185
  publication-title: Deeply-supervised Nets
– volume: 330
  start-page: 253
  year: 2019
  ident: 10.1016/j.imavis.2019.10.005_bb0145
  article-title: Vector-kernel convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.028
– start-page: 1
  year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0240
  article-title: Resnet in resnet: generalizing residual architectures
– year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0090
  article-title: Extremely low bit neural network: squeeze the last bit out with ADMM
– start-page: 2818
  year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0165
  article-title: Rethinking the inception architecture for computer vision
– start-page: 442
  year: 2015
  ident: 10.1016/j.imavis.2019.10.005_bb0060
  article-title: Tensorizing neural networks
– volume: 330
  start-page: 127
  year: 2019
  ident: 10.1016/j.imavis.2019.10.005_bb0020
  article-title: A jointly learned deep embedding for person re-identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.010
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.imavis.2019.10.005_bb0170
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: 10.1016/j.imavis.2019.10.005_bb0205
  publication-title: Highway Networks
– year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0235
– volume: 70
  start-page: 3958
  year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0075
  article-title: Combined group and exclusive sparsity for deep neural networks
– year: 2015
  ident: 10.1016/j.imavis.2019.10.005_bb0030
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2014
  ident: 10.1016/j.imavis.2019.10.005_bb0195
  article-title: Network in network
– start-page: 646
  year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0215
  article-title: Deep networks with stochastic depth
– year: 2015
  ident: 10.1016/j.imavis.2019.10.005_bb0200
  article-title: FITNETS: hints for thin deep nets
– year: 2015
  ident: 10.1016/j.imavis.2019.10.005_bb0050
  article-title: Speeding-up convolutional neural networks using fine-tuned CP-decomposition
– start-page: 28
  year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0250
  article-title: Swapout: learning an ensemble of deep architectures
– start-page: 4510
  year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0120
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
– volume: 330
  start-page: 337
  year: 2019
  ident: 10.1016/j.imavis.2019.10.005_bb0010
  article-title: Boosted convolutional neural network for object recognition at large scale
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.031
– start-page: 5068
  year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0080
  article-title: ThiNet: a filter level pruning method for deep neural network compression
– volume: 329
  start-page: 300
  year: 2019
  ident: 10.1016/j.imavis.2019.10.005_bb0005
  article-title: On the use of DAG-CNN architecture for age estimation with multi-stage features fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.071
– year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0255
– start-page: 1
  year: 2015
  ident: 10.1016/j.imavis.2019.10.005_bb0035
  article-title: Going deeper with convolutions
– year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0065
  article-title: Wide compression: tensor ring nets
– year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0140
  article-title: IGCV2: interleaved structured sparse convolutional neural networks
– year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0055
  article-title: Compression of deep convolutional neural networks for fast and low power mobile applications
– year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0095
  article-title: Two-step quantization for low-bit neural networks
– year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0245
– year: 2018
  ident: 10.1016/j.imavis.2019.10.005_bb0125
  article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices
– start-page: 630
  year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0210
  article-title: Identity mappings in deep residual networks
– year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0160
  article-title: Xception: deep learning with depthwise separable convolutions
– start-page: 1
  year: 2009
  ident: 10.1016/j.imavis.2019.10.005_bb0175
– year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0135
  article-title: Interleaved group convolutions for deep neural networks
– volume: 38
  start-page: 1943
  issue: 10
  year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0045
  article-title: Accelerating very deep convolutional networks for classification and detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2502579
– year: 2017
  ident: 10.1016/j.imavis.2019.10.005_bb0115
– year: 2016
  ident: 10.1016/j.imavis.2019.10.005_bb0225
SSID ssj0007079
Score 2.3960495
Snippet Deep neural networks have achieved great success in many tasks of pattern recognition. However, large model size and high cost in computation limit their...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103819
SubjectTerms Computation complexity
Convolutional neural network (CNN)
Image recognition
Lightweight CNN
Low-redundancy
Model size
Title IIRNet: A lightweight deep neural network using intensely inverted residuals for image recognition
URI https://dx.doi.org/10.1016/j.imavis.2019.10.005
Volume 92
WOSCitedRecordID wos000502884200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEODAaIAUM-cIsyNT-c2NwqtmmdUIVgSOVCZDuOtqlk1dqM7b_nPdtJI4r4JXGJKjeuG78vz89P3_dMyGupTZolZRrGJmNhqlkZSgHvoy7TkRIyzhizQuF3-XTKZzPxfjD40mphrud5XfObG7H4r6aGNjA2Smf_wtzdj0IDfAajwxXMDtc_Mvxk8mFqXMIvmOPW-5vNfgalMYsAy1eCUWpH_g6apZO0II3dzFECiMczG1S0LK1Ky1ZrCM6_IrOn4xp5S_qQdmK_xPy706lblnqzapdEJPtYxsDn5rZZQ7FLVB9c9m50rKADeRae3Jp-QiISP5A7NpUy1pnFGXheznzZa-dseQ5tkavu0npjdzLehmN3OYaLfXhgeBik5Il9y8pj64Wsoxd-xNFwMIhO7Y7xDtmKcyb4kGyNJ4ezk26txvqALgvn_l0rrrQMwM2xfh689AKS04fkgd9J0LFDwCMyMPUO2fa7Cup99nKH3O-VnHxMlIPHGzqmPXBQBAd14KAeHNSCg3bgoC04aAcOCuCgFhy0B44n5NPR4enb49CfsxFq2DCuwkrJLFWCqzQus4qBI9Za6UgnrFKcS5PnJTNMZVXEFcuk5kozPpKqzJJYx4YnT8mwvqzNM0Ih-o-MVOmoTGQKwbjAdECamCiRSlei3CVJO4GF9kXo8SyUedGyDS8KN-0FTju2wrTvkrDrtXBFWH5zf97apvCBpAsQC4DTL3s-_-eeL8i99cvwkgxXV43ZI3f19ep8efXK4-47EHec_g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IIRNet%3A+A+lightweight+deep+neural+network+using+intensely+inverted+residuals+for+image+recognition&rft.jtitle=Image+and+vision+computing&rft.au=Li%2C+Yuyuan&rft.au=Zhang%2C+Dong&rft.au=Lee%2C+Dah-Jye&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=92&rft_id=info:doi/10.1016%2Fj.imavis.2019.10.005&rft.externalDocID=S0262885619301441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon