An optimization framework for task allocation in the edge/hub/cloud paradigm
With the advent of the Internet of Things (IoT), novel critical applications have emerged that leverage the edge/hub/cloud paradigm, which diverges from the conventional edge computing perspective. A growing number of such applications require a streamlined architecture for their effective execution...
Uložené v:
| Vydané v: | Future generation computer systems Ročník 155; s. 354 - 366 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.06.2024
|
| Predmet: | |
| ISSN: | 0167-739X, 1872-7115 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the advent of the Internet of Things (IoT), novel critical applications have emerged that leverage the edge/hub/cloud paradigm, which diverges from the conventional edge computing perspective. A growing number of such applications require a streamlined architecture for their effective execution, often comprising a single edge device with sensing capabilities, a single hub device (e.g., a laptop or smartphone) for managing and assisting the edge device, and a more computationally capable cloud server. Typical examples include the utilization of an unmanned aerial vehicle (UAV) for critical infrastructure inspection or a wearable biomedical device (e.g., a smartwatch) for remote patient monitoring. Task allocation in this streamlined architecture is particularly challenging, due to the computational, communication, and energy limitations of the devices at the network edge. Consequently, there is a need for a comprehensive framework that can address the specific task allocation problem optimally and efficiently. To this end, we propose a complete, binary integer linear programming (BILP) based formulation for an application-driven design-time approach, capable of providing an optimal task allocation in the targeted edge/hub/cloud environment. The proposed method minimizes the desired objective, either the overall latency or overall energy consumption, while considering several crucial parameters and constraints often overlooked in related literature. We evaluate our framework using a real-world use-case scenario, as well as appropriate synthetic benchmarks. Our extensive experimentation reveals that the proposed approach yields optimal and scalable results, enabling efficient design space exploration for different applications and computational devices.
•Comprehensive framework for optimal task allocation in edge/hub/cloud.•Optimization objective can be minimization of either latency or energy.•Formulation includes parameters and constraints often overlooked in related studies.•Experimental evaluation using real-world use-case scenario and synthetic benchmarks.•Proposed method yields scalable results enabling efficient design space exploration. |
|---|---|
| AbstractList | With the advent of the Internet of Things (IoT), novel critical applications have emerged that leverage the edge/hub/cloud paradigm, which diverges from the conventional edge computing perspective. A growing number of such applications require a streamlined architecture for their effective execution, often comprising a single edge device with sensing capabilities, a single hub device (e.g., a laptop or smartphone) for managing and assisting the edge device, and a more computationally capable cloud server. Typical examples include the utilization of an unmanned aerial vehicle (UAV) for critical infrastructure inspection or a wearable biomedical device (e.g., a smartwatch) for remote patient monitoring. Task allocation in this streamlined architecture is particularly challenging, due to the computational, communication, and energy limitations of the devices at the network edge. Consequently, there is a need for a comprehensive framework that can address the specific task allocation problem optimally and efficiently. To this end, we propose a complete, binary integer linear programming (BILP) based formulation for an application-driven design-time approach, capable of providing an optimal task allocation in the targeted edge/hub/cloud environment. The proposed method minimizes the desired objective, either the overall latency or overall energy consumption, while considering several crucial parameters and constraints often overlooked in related literature. We evaluate our framework using a real-world use-case scenario, as well as appropriate synthetic benchmarks. Our extensive experimentation reveals that the proposed approach yields optimal and scalable results, enabling efficient design space exploration for different applications and computational devices.
•Comprehensive framework for optimal task allocation in edge/hub/cloud.•Optimization objective can be minimization of either latency or energy.•Formulation includes parameters and constraints often overlooked in related studies.•Experimental evaluation using real-world use-case scenario and synthetic benchmarks.•Proposed method yields scalable results enabling efficient design space exploration. |
| Author | Kouloumpris, Andreas Stavrinides, Georgios L. Theocharides, Theocharis Michael, Maria K. |
| Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0002-9582-6803 surname: Kouloumpris fullname: Kouloumpris, Andreas email: kouloumpris.andreas@ucy.ac.cy organization: Department of Electrical and Computer Engineering, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, P.O. Box 20537, Nicosia, 1678, Cyprus – sequence: 2 givenname: Georgios L. orcidid: 0000-0001-7289-9682 surname: Stavrinides fullname: Stavrinides, Georgios L. organization: KIOS Research and Innovation Center of Excellence, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, P.O. Box 20537, Nicosia, 1678, Cyprus – sequence: 3 givenname: Maria K. orcidid: 0000-0002-1943-6547 surname: Michael fullname: Michael, Maria K. organization: Department of Electrical and Computer Engineering, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, P.O. Box 20537, Nicosia, 1678, Cyprus – sequence: 4 givenname: Theocharis orcidid: 0000-0001-7222-9152 surname: Theocharides fullname: Theocharides, Theocharis organization: Department of Electrical and Computer Engineering, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, P.O. Box 20537, Nicosia, 1678, Cyprus |
| BookMark | eNqFkMtOwzAQRS0EEm3hD1j4B5LazsMJC6Sq4iVVYgMSO2vijFu3aVw5Dgi-npSwYgGru5g5V7pnSk5b1yIhV5zFnPF8vo1NH3qPsWAijZmIGctOyIQXUkSS8-yUTIY3GcmkfD0n067bMsa4TPiErBYtdYdg9_YTgnUtNR72-O78jhrnaYBuR6FpnB6vtqVhgxTrNc43fTXXjetregAPtV3vL8iZgabDy5-ckZe72-flQ7R6un9cLlaRTlgeIgMSyxQ0kxryoqoAQKap5jrnJtNmSNCikGXNCwCEGkRRlZnOjEAQGupkRtKxV3vXdR6NOni7B_-hOFNHI2qrRiPqaEQxoQYjA3b9C9M2fO8KHmzzH3wzwjgMe7PoVactthpr61EHVTv7d8EXei-EcA |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07295_7 crossref_primary_10_1016_j_jii_2024_100719 crossref_primary_10_1007_s00607_025_01496_x crossref_primary_10_3390_s25133949 |
| Cites_doi | 10.1145/3358209 10.3390/s22020660 10.1109/MNET.010.2100025 10.1145/3398038 10.1109/TCC.2022.3149963 10.1016/j.future.2017.07.061 10.1109/ACCESS.2021.3134941 10.1145/3584985 10.1016/j.future.2018.03.033 10.1109/TCAD.2022.3222293 10.1109/TSC.2021.3079110 10.1016/j.sysarc.2021.102167 10.1016/j.sysarc.2023.102847 10.1049/cmu2.12460 10.1016/j.future.2022.07.006 10.1016/j.sysarc.2022.102790 10.1109/TSC.2021.3063148 10.1016/j.jnca.2022.103333 10.1109/JIOT.2020.2999063 10.1016/j.jpdc.2013.06.002 10.1016/j.future.2019.02.019 10.1016/j.future.2022.06.012 10.1016/j.future.2022.06.005 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2024.02.005 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 366 |
| ExternalDocumentID | 10_1016_j_future_2024_02_005 S0167739X24000505 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-fa7e94ac07ca68bbaaa744c1c61f5cf1c6ac2879d18aaeada28b95c5f2ea2cad3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195429700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 22:03:01 EST 2025 Sat Nov 29 03:48:12 EST 2025 Sat Mar 23 16:40:29 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Edge/hub/cloud continuum Latency optimization Binary integer linear programming Task flow graph Task allocation Energy optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-fa7e94ac07ca68bbaaa744c1c61f5cf1c6ac2879d18aaeada28b95c5f2ea2cad3 |
| ORCID | 0000-0001-7289-9682 0000-0002-1943-6547 0000-0002-9582-6803 0000-0001-7222-9152 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2024_02_005 crossref_citationtrail_10_1016_j_future_2024_02_005 elsevier_sciencedirect_doi_10_1016_j_future_2024_02_005 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | S.A. Noghabi, J. Kolb, P. Bodik, E. Cuervo, Steel: Simplified development and deployment of edge-cloud applications, in: Proc. 10th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’18, 2018, pp. 1–7. Phoronix R.P. Dick, D.L. Rhodes, K. Vallerio, TGFF Tong, Deng, Mei, Dai, Li, Li (b31) 2023; 137 Huang, Qian, Gerber, Mao, Sen, Spatscheck (b34) 2012 Weikert, Steup, Mostaghim (b18) 2022 Li, Mo, Kritikakou, Sentieys (b13) 2023; 42 OpenBenchmarking Li, Dai, Yu (b28) 2022; 16 Sidhardhan, Das (b2) 2021 Azizi, Shojafar, Abawajy, Buyya (b27) 2022; 201 Dinh, Tang, La, Quek (b30) 2017; 65 Avgeris, Spatharakis, Dechouniotis, Leivadeas, Karyotis, Papavassiliou (b23) 2022; 22 Khalil, Ozdemir, Tosun (b24) 2018; 86 Tang, Jalalzai, Feng, Xiong, Zhang (b21) 2023; 11 Alfakih, Hassan, Al-Razgan (b16) 2021; 9 Dao (b7) 2023; 138 Genez, Bittencourt, Madeira (b10) 2020; 107 Guevara, Torres, Bittencourt, da Fonseca (b17) 2022 Wang, Chen, Xu (b32) 2017 Ajwani, Ali, Katrinis, Li, Park, Morrison, Schenfeld (b40) 2013; 73 Geekbench Akselrod, Becker, Fidler, Luebben (b33) 2017 Zhang, Gui, Ren, Li (b29) 2021; 8 Kanbar, Faraj (b12) 2022; 137 Iorga, Feldman, Barton, Martin, Goren, Mahmoudi (b3) 2018 Jayanetti, Halgamuge, Buyya (b11) 2022; 137 (Accessed: 4 May 2023). Mo, Zhou, Kritikakou, Cao (b15) 2023; 19 Savva, Zacharia, Makrigiorgis, Anastasiou, Kyrkou, Kolios, Panayiotou, Theocharides (b6) 2021 Stavrinides, Karatza (b9) 2019; 96 Gurobi Optimization LLC Sysprof Cui, Kritikakou, Mo, Casseau (b25) 2023; 134 Peixoto, Genez, Bittencourt (b14) 2022; 15 Kuang, Ma, Li, Deng (b22) 2021; 118 Kekki, Featherstone, Fang, Kuure, Li, Ranjan, Purkayastha, Jiangping, Frydman, Verin, Wen, Kim, Arora, Odgers, Contreras, Scarpina (b4) 2018 Hu, Li, Liu, Li (b26) 2020; 19 Dick, Rhodes, Wolf (b38) 1998 Cheng, Gao, Liwang, Huang, Du, Guizani (b5) 2021; 35 PowerTOP Barijough, Zhao, Gerstlauer (b20) 2019; 18 Kouloumpris, Theocharides, Michael (b8) 2019 Lai, He, Xia, Chen, Abdelrazek, Grundy, Hosking, Yang (b19) 2022; 15 Lai (10.1016/j.future.2024.02.005_b19) 2022; 15 Cui (10.1016/j.future.2024.02.005_b25) 2023; 134 Avgeris (10.1016/j.future.2024.02.005_b23) 2022; 22 Tong (10.1016/j.future.2024.02.005_b31) 2023; 137 10.1016/j.future.2024.02.005_b39 Tang (10.1016/j.future.2024.02.005_b21) 2023; 11 Barijough (10.1016/j.future.2024.02.005_b20) 2019; 18 10.1016/j.future.2024.02.005_b35 Kuang (10.1016/j.future.2024.02.005_b22) 2021; 118 Zhang (10.1016/j.future.2024.02.005_b29) 2021; 8 10.1016/j.future.2024.02.005_b36 10.1016/j.future.2024.02.005_b37 Li (10.1016/j.future.2024.02.005_b28) 2022; 16 Ajwani (10.1016/j.future.2024.02.005_b40) 2013; 73 Mo (10.1016/j.future.2024.02.005_b15) 2023; 19 Alfakih (10.1016/j.future.2024.02.005_b16) 2021; 9 10.1016/j.future.2024.02.005_b1 Wang (10.1016/j.future.2024.02.005_b32) 2017 Sidhardhan (10.1016/j.future.2024.02.005_b2) 2021 Savva (10.1016/j.future.2024.02.005_b6) 2021 Kanbar (10.1016/j.future.2024.02.005_b12) 2022; 137 Stavrinides (10.1016/j.future.2024.02.005_b9) 2019; 96 Kekki (10.1016/j.future.2024.02.005_b4) 2018 Dao (10.1016/j.future.2024.02.005_b7) 2023; 138 Dinh (10.1016/j.future.2024.02.005_b30) 2017; 65 Weikert (10.1016/j.future.2024.02.005_b18) 2022 Khalil (10.1016/j.future.2024.02.005_b24) 2018; 86 Azizi (10.1016/j.future.2024.02.005_b27) 2022; 201 10.1016/j.future.2024.02.005_b41 Kouloumpris (10.1016/j.future.2024.02.005_b8) 2019 Akselrod (10.1016/j.future.2024.02.005_b33) 2017 10.1016/j.future.2024.02.005_b42 10.1016/j.future.2024.02.005_b43 Guevara (10.1016/j.future.2024.02.005_b17) 2022 Iorga (10.1016/j.future.2024.02.005_b3) 2018 Hu (10.1016/j.future.2024.02.005_b26) 2020; 19 Peixoto (10.1016/j.future.2024.02.005_b14) 2022; 15 Cheng (10.1016/j.future.2024.02.005_b5) 2021; 35 Genez (10.1016/j.future.2024.02.005_b10) 2020; 107 Jayanetti (10.1016/j.future.2024.02.005_b11) 2022; 137 Dick (10.1016/j.future.2024.02.005_b38) 1998 Huang (10.1016/j.future.2024.02.005_b34) 2012 Li (10.1016/j.future.2024.02.005_b13) 2023; 42 |
| References_xml | – start-page: 69 year: 2017 end-page: 80 ident: b32 article-title: Xpro: A cross-end processing architecture for data analytics in wearables publication-title: Proc. 44th Annual International Symposium on Computer Architecture – reference: . OpenBenchmarking, – volume: 86 start-page: 121 year: 2018 end-page: 133 ident: b24 article-title: Evolutionary task allocation in Internet of Things-based application domains publication-title: Future Gener. Comput. Syst. – reference: . Phoronix, – reference: S.A. Noghabi, J. Kolb, P. Bodik, E. Cuervo, Steel: Simplified development and deployment of edge-cloud applications, in: Proc. 10th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’18, 2018, pp. 1–7. – volume: 96 start-page: 216 year: 2019 end-page: 226 ident: b9 article-title: An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations publication-title: Future Gener. Comput. Syst. – reference: . Gurobi Optimization LLC, – volume: 19 start-page: 76:1 year: 2023 end-page: 76:26 ident: b15 article-title: Energy optimized task mapping for reliable and real-time networked systems publication-title: ACM Trans. Sen. Netw. – volume: 137 start-page: 14 year: 2022 end-page: 30 ident: b11 article-title: Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments publication-title: Future Gener. Comput. Syst. – volume: 118 year: 2021 ident: b22 article-title: Cooperative computation offloading and resource allocation for delay minimization in mobile edge computing publication-title: J. Syst. Archit. – volume: 137 year: 2023 ident: b31 article-title: Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing publication-title: J. Syst. Archit. – start-page: 225 year: 2012 end-page: 238 ident: b34 article-title: A close examination of performance and power characteristics of 4G LTE networks publication-title: Proc. 10th International Conference on Mobile Systems, Applications, and Services – volume: 35 start-page: 42 year: 2021 end-page: 49 ident: b5 article-title: Intelligent task offloading and energy allocation in the UAV-aided mobile edge-cloud continuum publication-title: IEEE Netw. – reference: . (Accessed: 4 May 2023). – volume: 134 year: 2023 ident: b25 article-title: Near-optimal energy-efficient partial-duplication task mapping of real-time parallel applications publication-title: J. Syst. Archit. – start-page: 2328 year: 2022 end-page: 2333 ident: b17 article-title: QoS-aware task scheduling based on reinforcement learning for the cloud-fog continuum publication-title: Proc. 2022 IEEE Global Communications Conference – reference: . PowerTOP, – volume: 201 year: 2022 ident: b27 article-title: Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach publication-title: J. Netw. Comput. Appl. – volume: 73 start-page: 1362 year: 2013 end-page: 1374 ident: b40 article-title: Generating synthetic task graphs for simulating stream computing systems publication-title: J. Parallel Distrib. Comput. – volume: 15 start-page: 2824 year: 2022 end-page: 2837 ident: b14 article-title: Hierarchical scheduling mechanisms in multi-level fog computing publication-title: IEEE Trans. Serv. Comput. – volume: 65 start-page: 3571 year: 2017 end-page: 3584 ident: b30 article-title: Offloading in mobile edge computing: Task allocation and computational frequency scaling publication-title: IEEE Trans. Commun. – start-page: 128 year: 2019 end-page: 133 ident: b8 article-title: Metis: Optimal task allocation framework for the edge/hub/cloud paradigm publication-title: Proc. 2019 International Conference on Omni-Layer Intelligent Systems – volume: 22 start-page: 660:1 year: 2022 end-page: 660:29 ident: b23 article-title: ENERDGE: Distributed energy-aware resource allocation at the edge publication-title: Sensors – reference: . Sysprof, – volume: 16 start-page: 2070 year: 2022 end-page: 2081 ident: b28 article-title: Resource allocation for multi-UAV-assisted mobile edge computing to minimize weighted energy consumption publication-title: IET Commun. – volume: 19 start-page: 29:1 year: 2020 end-page: 29:21 ident: b26 article-title: Game-based task offloading of multiple mobile devices with QoS in mobile edge computing systems of limited computation capacity publication-title: ACM Trans. Embed. Comput. Syst. – volume: 18 start-page: 83:1 year: 2019 end-page: 83:23 ident: b20 article-title: Quality/latency-aware real-time scheduling of distributed streaming IoT applications publication-title: ACM Trans. Embed. Comput. Syst. – year: 2018 ident: b4 article-title: MEC in 5G networks publication-title: White Paper 28 – volume: 107 start-page: 1116 year: 2020 end-page: 1129 ident: b10 article-title: Time-discretization for speeding-up scheduling of deadline-constrained workflows in clouds publication-title: Future Gener. Comput. Syst. – volume: 137 start-page: 70 year: 2022 end-page: 86 ident: b12 article-title: Region aware dynamic task scheduling and resource virtualization for load balancing in IoT–fog multi-cloud environment publication-title: Future Gener. Comput. Syst. – volume: 11 start-page: 1575 year: 2023 end-page: 1590 ident: b21 article-title: Latency-aware task scheduling in software-defined edge and cloud computing with erasure-coded storage systems publication-title: IEEE Trans. Cloud Comput. – start-page: 1 year: 2017 end-page: 6 ident: b33 article-title: 4G LTE on the road - What impacts download speeds most? publication-title: Proc. IEEE 86th Vehicular Technology Conference – start-page: 1 year: 2021 end-page: 4 ident: b2 article-title: Reliable edge service for IoT home environment publication-title: Proc. 2021 IEEE International Conference on Electronics, Computing and Communication Technologies – volume: 9 start-page: 167503 year: 2021 end-page: 167520 ident: b16 article-title: Multi-objective accelerated particle swarm optimization with dynamic programing technique for resource allocation in mobile edge computing publication-title: IEEE Access – volume: 138 start-page: 172 year: 2023 end-page: 184 ident: b7 article-title: Internet of wearable things: Advancements and benefits from 6G technologies publication-title: Future Gener. Comput. Syst. – start-page: 97 year: 1998 end-page: 101 ident: b38 article-title: TGFF: Task graphs for free publication-title: Proc. Sixth International Workshop on Hardware/Software Codesign – start-page: 918 year: 2021 end-page: 926 ident: b6 article-title: ICARUS: Automatic autonomous power infrastructure inspection with UAVs publication-title: Proc. 2021 International Conference on Unmanned Aircraft Systems – reference: R.P. Dick, D.L. Rhodes, K. Vallerio, TGFF, – reference: . Geekbench, – year: 2018 ident: b3 article-title: Fog computing conceptual model publication-title: Special Publication 500–325 – start-page: 1 year: 2022 end-page: 5 ident: b18 article-title: Multi-objective task allocation for dynamic IoT networks publication-title: Proc. 2022 IEEE International Conference on Omni-Layer Intelligent Systems – volume: 15 start-page: 2699 year: 2022 end-page: 2712 ident: b19 article-title: Dynamic user allocation in stochastic mobile edge computing systems publication-title: IEEE Trans. Serv. Comput. – volume: 42 start-page: 2108 year: 2023 end-page: 2121 ident: b13 article-title: Approximation-aware task deployment on heterogeneous multi-core platforms with DVFS publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. – volume: 8 start-page: 6709 year: 2021 end-page: 6719 ident: b29 article-title: Energy-latency tradeoff for computation offloading in UAV-assisted multiaccess edge computing system publication-title: IEEE Internet Things J. – year: 2018 ident: 10.1016/j.future.2024.02.005_b3 article-title: Fog computing conceptual model – volume: 18 start-page: 83:1 issue: 5s year: 2019 ident: 10.1016/j.future.2024.02.005_b20 article-title: Quality/latency-aware real-time scheduling of distributed streaming IoT applications publication-title: ACM Trans. Embed. Comput. Syst. doi: 10.1145/3358209 – volume: 22 start-page: 660:1 issue: 2 year: 2022 ident: 10.1016/j.future.2024.02.005_b23 article-title: ENERDGE: Distributed energy-aware resource allocation at the edge publication-title: Sensors doi: 10.3390/s22020660 – volume: 35 start-page: 42 issue: 5 year: 2021 ident: 10.1016/j.future.2024.02.005_b5 article-title: Intelligent task offloading and energy allocation in the UAV-aided mobile edge-cloud continuum publication-title: IEEE Netw. doi: 10.1109/MNET.010.2100025 – ident: 10.1016/j.future.2024.02.005_b43 – volume: 19 start-page: 29:1 issue: 4 year: 2020 ident: 10.1016/j.future.2024.02.005_b26 article-title: Game-based task offloading of multiple mobile devices with QoS in mobile edge computing systems of limited computation capacity publication-title: ACM Trans. Embed. Comput. Syst. doi: 10.1145/3398038 – volume: 11 start-page: 1575 issue: 2 year: 2023 ident: 10.1016/j.future.2024.02.005_b21 article-title: Latency-aware task scheduling in software-defined edge and cloud computing with erasure-coded storage systems publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2022.3149963 – volume: 107 start-page: 1116 year: 2020 ident: 10.1016/j.future.2024.02.005_b10 article-title: Time-discretization for speeding-up scheduling of deadline-constrained workflows in clouds publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.07.061 – ident: 10.1016/j.future.2024.02.005_b37 – start-page: 97 year: 1998 ident: 10.1016/j.future.2024.02.005_b38 article-title: TGFF: Task graphs for free – volume: 65 start-page: 3571 issue: 8 year: 2017 ident: 10.1016/j.future.2024.02.005_b30 article-title: Offloading in mobile edge computing: Task allocation and computational frequency scaling publication-title: IEEE Trans. Commun. – ident: 10.1016/j.future.2024.02.005_b39 – ident: 10.1016/j.future.2024.02.005_b35 – ident: 10.1016/j.future.2024.02.005_b42 – volume: 9 start-page: 167503 year: 2021 ident: 10.1016/j.future.2024.02.005_b16 article-title: Multi-objective accelerated particle swarm optimization with dynamic programing technique for resource allocation in mobile edge computing publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3134941 – start-page: 2328 year: 2022 ident: 10.1016/j.future.2024.02.005_b17 article-title: QoS-aware task scheduling based on reinforcement learning for the cloud-fog continuum – start-page: 918 year: 2021 ident: 10.1016/j.future.2024.02.005_b6 article-title: ICARUS: Automatic autonomous power infrastructure inspection with UAVs – ident: 10.1016/j.future.2024.02.005_b1 – start-page: 128 year: 2019 ident: 10.1016/j.future.2024.02.005_b8 article-title: Metis: Optimal task allocation framework for the edge/hub/cloud paradigm – volume: 19 start-page: 76:1 issue: 4 year: 2023 ident: 10.1016/j.future.2024.02.005_b15 article-title: Energy optimized task mapping for reliable and real-time networked systems publication-title: ACM Trans. Sen. Netw. doi: 10.1145/3584985 – volume: 86 start-page: 121 year: 2018 ident: 10.1016/j.future.2024.02.005_b24 article-title: Evolutionary task allocation in Internet of Things-based application domains publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.033 – volume: 42 start-page: 2108 issue: 7 year: 2023 ident: 10.1016/j.future.2024.02.005_b13 article-title: Approximation-aware task deployment on heterogeneous multi-core platforms with DVFS publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2022.3222293 – start-page: 225 year: 2012 ident: 10.1016/j.future.2024.02.005_b34 article-title: A close examination of performance and power characteristics of 4G LTE networks – volume: 15 start-page: 2824 issue: 5 year: 2022 ident: 10.1016/j.future.2024.02.005_b14 article-title: Hierarchical scheduling mechanisms in multi-level fog computing publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2021.3079110 – volume: 118 year: 2021 ident: 10.1016/j.future.2024.02.005_b22 article-title: Cooperative computation offloading and resource allocation for delay minimization in mobile edge computing publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2021.102167 – volume: 137 year: 2023 ident: 10.1016/j.future.2024.02.005_b31 article-title: Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2023.102847 – volume: 16 start-page: 2070 issue: 17 year: 2022 ident: 10.1016/j.future.2024.02.005_b28 article-title: Resource allocation for multi-UAV-assisted mobile edge computing to minimize weighted energy consumption publication-title: IET Commun. doi: 10.1049/cmu2.12460 – ident: 10.1016/j.future.2024.02.005_b36 – volume: 138 start-page: 172 year: 2023 ident: 10.1016/j.future.2024.02.005_b7 article-title: Internet of wearable things: Advancements and benefits from 6G technologies publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.07.006 – volume: 134 year: 2023 ident: 10.1016/j.future.2024.02.005_b25 article-title: Near-optimal energy-efficient partial-duplication task mapping of real-time parallel applications publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2022.102790 – volume: 15 start-page: 2699 issue: 5 year: 2022 ident: 10.1016/j.future.2024.02.005_b19 article-title: Dynamic user allocation in stochastic mobile edge computing systems publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2021.3063148 – volume: 201 year: 2022 ident: 10.1016/j.future.2024.02.005_b27 article-title: Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2022.103333 – start-page: 69 year: 2017 ident: 10.1016/j.future.2024.02.005_b32 article-title: Xpro: A cross-end processing architecture for data analytics in wearables – volume: 8 start-page: 6709 issue: 8 year: 2021 ident: 10.1016/j.future.2024.02.005_b29 article-title: Energy-latency tradeoff for computation offloading in UAV-assisted multiaccess edge computing system publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2999063 – volume: 73 start-page: 1362 issue: 10 year: 2013 ident: 10.1016/j.future.2024.02.005_b40 article-title: Generating synthetic task graphs for simulating stream computing systems publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2013.06.002 – volume: 96 start-page: 216 year: 2019 ident: 10.1016/j.future.2024.02.005_b9 article-title: An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.019 – start-page: 1 year: 2017 ident: 10.1016/j.future.2024.02.005_b33 article-title: 4G LTE on the road - What impacts download speeds most? – ident: 10.1016/j.future.2024.02.005_b41 – volume: 137 start-page: 14 year: 2022 ident: 10.1016/j.future.2024.02.005_b11 article-title: Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.06.012 – start-page: 1 year: 2022 ident: 10.1016/j.future.2024.02.005_b18 article-title: Multi-objective task allocation for dynamic IoT networks – year: 2018 ident: 10.1016/j.future.2024.02.005_b4 article-title: MEC in 5G networks – start-page: 1 year: 2021 ident: 10.1016/j.future.2024.02.005_b2 article-title: Reliable edge service for IoT home environment – volume: 137 start-page: 70 year: 2022 ident: 10.1016/j.future.2024.02.005_b12 article-title: Region aware dynamic task scheduling and resource virtualization for load balancing in IoT–fog multi-cloud environment publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.06.005 |
| SSID | ssj0001731 |
| Score | 2.4460664 |
| Snippet | With the advent of the Internet of Things (IoT), novel critical applications have emerged that leverage the edge/hub/cloud paradigm, which diverges from the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 354 |
| SubjectTerms | Binary integer linear programming Edge/hub/cloud continuum Energy optimization Latency optimization Task allocation Task flow graph |
| Title | An optimization framework for task allocation in the edge/hub/cloud paradigm |
| URI | https://dx.doi.org/10.1016/j.future.2024.02.005 |
| Volume | 155 |
| WOSCitedRecordID | wos001195429700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWMpIdeuhdNN_DQmyAnIilTPBpFjC5G0ENa-CZQFNkqteUgXpAvyndmKC5ymyJtDr3QtmRStuZpZkjOvEHonR5xYygR8CBVJmVVRlOZ24nrKKtoURuedZXnvk35yUkxm4kvg8FVyIXZznnbFpeX4vy_ihqOgbBt6uwdxB0HhQPwHoQOLYgd2n8S_BgcQNADC59gmZgQfuUiCuXqZ2I3291SXQhz1F2J9cmPTQWtmi83dWJJwevm-2LXfZ10DCS27LL2yFG-KoSnhO63hpYbGGVhWRZj3KSMZ8HF3dqto1r3C_PNcpVMhxEALpzfpxM1MvkcT1k6AZssFnrHz78sYRDWh1qFVU3Q1px2NXV7tZznO4qVOqppb6Opq9RyQ_27lYizoeNjGdprOUbWvDd3YYv_NysYYxND2NtZ6UYp7SjlESk7qtx9wnMBBmB__PF49ina_Iz7ypf-j4QkzS6S8Oav-bMTtOPYnD5CD_yMBI8dkh6jgW6foIeh2gf2yv8pmo5bvAssHIGFAVjYAgv3wMJNiwFY2ALrEGB12IEKB1A9Q18nx6fvP6S-FkeqYFK5To3kWjCpjriSo6KqpJScMZWpUWZyZeBVKph8izorpATtJElRiVzlhmhJlKzpc7TXLlv9AmFKGeGCk5oIxigprA-qmATTqVRWV-QA0XBzSuWJ6m29lHl5m2gOUBp7nTuilr98n4f7Xnpn0zmRJYDp1p4v73ilV-h-D_rXaG99sdFv0D21XTeri7ceSdfVxqeg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization+framework+for+task+allocation+in+the+edge%2Fhub%2Fcloud+paradigm&rft.jtitle=Future+generation+computer+systems&rft.au=Kouloumpris%2C+Andreas&rft.au=Stavrinides%2C+Georgios+L.&rft.au=Michael%2C+Maria+K.&rft.au=Theocharides%2C+Theocharis&rft.date=2024-06-01&rft.issn=0167-739X&rft.volume=155&rft.spage=354&rft.epage=366&rft_id=info:doi/10.1016%2Fj.future.2024.02.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2024_02_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |