Instance-aware diversity feature generation for unsupervised person re-identification

Unsupervised person re-identification (Re-ID) methods have made significant progress by exploiting contrastive learning from unlabeled data. However, the previous approaches including cluster-level or instance-level contrast loss, did not fully explore inherent commonality of each identified individ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Displays Ročník 83; s. 102717
Hlavní autoři: Zhang, Xiaowei, Dou, Xiao, Zhao, Xinpeng, Li, Guocong, Wang, Zekang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2024
Témata:
ISSN:0141-9382, 1872-7387
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Unsupervised person re-identification (Re-ID) methods have made significant progress by exploiting contrastive learning from unlabeled data. However, the previous approaches including cluster-level or instance-level contrast loss, did not fully explore inherent commonality of each identified individual from unlabeled samples, where the divergence of individual cluster and convergence of different clusters leads to a set of noisy pseudo labels which may result in label noise accumulation. To address this issue, we propose an instance-aware diversity feature generation (IDFG) framework, which can form a stable clustering feature space by exhuming diverse counterparts of given exemplars to update memory dictionary of each cluster, so as to reduce the effect of noisy labels. Specifically, we combines instance segmentation and masked auto-encoder to generate foreground-invariant diversity counterparts of given exemplars to reduce inter-class convergence caused by background similarity between different identification instances. Further, we introduce an instance-aware diversity feature mining module, which gradually creates more reliable clusters to generate more robust pseudo labels by exploiting the compactness and independence of clustering to update the memory dictionary. Extensive experiments demonstrate that the proposed IDFG framework achieves impressive performances of 85.6%, 73.7%, and 31.0% mAP on Market1501, DukeMTMC-reID and MSMT17, respectively. •We propose a novel instance-aware diversity feature generation (IDFG) framework, which transcends the limitations of solely relying on hard positive or negative samples for unsupervised person re-identification.•We introduce instance-aware masked auto-encoder that generates foreground-invariant diversity counterparts of given exemplars to alleviate the instance background interference.•We devise an instance-aware diversity feature mining module, which joints diversity-level contrastive loss to exploit the compactness and independence of clustering to update the memory dictionary.•Extensive experiments validate the superiority of our proposed IDFG compared to the star-of-the-art unsupervised ReID methods on Market1501, DukeMTMC-reID and MSMT17 datasets.
AbstractList Unsupervised person re-identification (Re-ID) methods have made significant progress by exploiting contrastive learning from unlabeled data. However, the previous approaches including cluster-level or instance-level contrast loss, did not fully explore inherent commonality of each identified individual from unlabeled samples, where the divergence of individual cluster and convergence of different clusters leads to a set of noisy pseudo labels which may result in label noise accumulation. To address this issue, we propose an instance-aware diversity feature generation (IDFG) framework, which can form a stable clustering feature space by exhuming diverse counterparts of given exemplars to update memory dictionary of each cluster, so as to reduce the effect of noisy labels. Specifically, we combines instance segmentation and masked auto-encoder to generate foreground-invariant diversity counterparts of given exemplars to reduce inter-class convergence caused by background similarity between different identification instances. Further, we introduce an instance-aware diversity feature mining module, which gradually creates more reliable clusters to generate more robust pseudo labels by exploiting the compactness and independence of clustering to update the memory dictionary. Extensive experiments demonstrate that the proposed IDFG framework achieves impressive performances of 85.6%, 73.7%, and 31.0% mAP on Market1501, DukeMTMC-reID and MSMT17, respectively. •We propose a novel instance-aware diversity feature generation (IDFG) framework, which transcends the limitations of solely relying on hard positive or negative samples for unsupervised person re-identification.•We introduce instance-aware masked auto-encoder that generates foreground-invariant diversity counterparts of given exemplars to alleviate the instance background interference.•We devise an instance-aware diversity feature mining module, which joints diversity-level contrastive loss to exploit the compactness and independence of clustering to update the memory dictionary.•Extensive experiments validate the superiority of our proposed IDFG compared to the star-of-the-art unsupervised ReID methods on Market1501, DukeMTMC-reID and MSMT17 datasets.
ArticleNumber 102717
Author Zhao, Xinpeng
Li, Guocong
Zhang, Xiaowei
Dou, Xiao
Wang, Zekang
Author_xml – sequence: 1
  givenname: Xiaowei
  orcidid: 0000-0003-4854-3736
  surname: Zhang
  fullname: Zhang, Xiaowei
  email: xiaowei19870119@sina.com
  organization: School of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
– sequence: 2
  givenname: Xiao
  surname: Dou
  fullname: Dou, Xiao
  organization: School of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
– sequence: 3
  givenname: Xinpeng
  surname: Zhao
  fullname: Zhao, Xinpeng
  organization: School of Computer Science and Technology, Shandong University, Qingdao, 266237, China
– sequence: 4
  givenname: Guocong
  surname: Li
  fullname: Li, Guocong
  organization: School of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
– sequence: 5
  givenname: Zekang
  surname: Wang
  fullname: Wang, Zekang
  organization: School of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
BookMark eNqFkM1OQjEQhRuDiYC-gYv7Ahf7x-3FhYkh_pCQuJF1U9qpGYK9pC0Y3t7CdeVCVzM5M2cy5xuRQegCEHLL6IRR1txtJg7TbmsmnHJZJK6YuiBD1ipeK9GqARlSJlk9Ey2_IqOUNpSWTcWHZLUIKZtgoTZfJkLl8AAxYT5WHkzeF-UDAkSTsQuV72K1D2m_g3jABK4qTSp6hBodhIwe7Xnzmlx6s01w81PHZPX89D5_rZdvL4v547K2gja59oY1jXXMMdFYsZ5R7r0wU-WmUymBw0yuG1NmrWy8sSVOuzbWCa-U4AaoFGNy39-1sUspgtcW8_mDHA1uNaP6BEhvdA9InwDpHlAxy1_mXcRPE4__2R56G5RgB4Sok0UoBB1GsFm7Dv8-8A2KOIZN
CitedBy_id crossref_primary_10_1007_s11227_025_07041_z
crossref_primary_10_1016_j_imavis_2024_105244
crossref_primary_10_1109_ACCESS_2025_3538168
crossref_primary_10_1109_ACCESS_2024_3508760
crossref_primary_10_1109_ACCESS_2024_3514129
crossref_primary_10_1016_j_displa_2025_103187
Cites_doi 10.1109/CVPR.2017.660
10.1109/CVPR42600.2020.01367
10.1109/CVPR.2019.00098
10.1109/CVPR52688.2022.00722
10.1109/IC-NIDC54101.2021.9660560
10.1109/CVPR42600.2020.00345
10.1016/j.displa.2023.102467
10.1109/TMM.2022.3174414
10.1007/978-3-030-58536-5_6
10.1007/978-3-030-58621-8_5
10.1109/CVPR52688.2022.01553
10.1016/j.displa.2023.102437
10.1109/TIP.2022.3173163
10.1109/TIP.2022.3169693
10.1007/978-3-030-58571-6_35
10.1109/CVPR.2018.00110
10.1109/CVPR.2016.90
10.1007/978-3-030-58586-0_29
10.1109/ICCV.2017.405
10.1109/CVPR42600.2020.01099
10.1109/ICCV.2019.00621
10.1109/TCSVT.2023.3261898
10.1007/978-3-030-01225-0_30
10.1109/ICCV48922.2021.01469
10.1109/ICCV.2015.133
10.1109/CVPR.2017.389
10.1109/TIP.2022.3224325
10.1109/CVPR42600.2020.00975
10.1109/CVPR.2009.5206848
10.1109/ICCV.2019.00380
10.1109/CVPR.2018.00541
10.1007/978-3-030-58598-3_38
10.1109/CVPR.2018.00016
10.1109/ICCV.2019.00032
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.displa.2024.102717
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7387
ExternalDocumentID 10_1016_j_displa_2024_102717
S0141938224000817
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSM
SSO
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-fa166cd1d136c3b902ff3a57d5544e2e94b6a136846fac1878bacd3f7732ae043
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236351000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-9382
IngestDate Sat Nov 29 05:27:52 EST 2025
Tue Nov 18 22:13:59 EST 2025
Tue Jun 18 08:51:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Masked autoencoder
Diversity features
Unsupervised re-ID
Pseudo label
Contrastive learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-fa166cd1d136c3b902ff3a57d5544e2e94b6a136846fac1878bacd3f7732ae043
ORCID 0000-0003-4854-3736
ParticipantIDs crossref_citationtrail_10_1016_j_displa_2024_102717
crossref_primary_10_1016_j_displa_2024_102717
elsevier_sciencedirect_doi_10_1016_j_displa_2024_102717
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Displays
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR, 2016, pp. 770–778.
Y. Lin, L. Xie, Y. Wu, C. Yan, Q. Tian, Unsupervised person re-identification via softened similarity learning, in: CVPR, 2020, pp. 3390–3399.
H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: CVPR, 2017, pp. 2881–2890.
Cheng, Zhou, Wang, Gao (b12) 2022; 31
Y. Ge, D. Chen, H. Li, Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification, in: ICLR, 2020.
Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), in: European Conference on Computer Vision, ECCV, 2018, pp. 480–496.
L. Wei, S. Zhang, W. Gao, Q. Tian, Person transfer gan to bridge domain gap for person re-identification, in: CVPR, 2018, pp. 79–88.
Han, Yu, Li, Zhao, Pan, Ye, Jiao, Han (b38) 2022; 32
Li, Li, Guo (b14) 2022; 31
Z. Zhong, L. Zheng, D. Cao, S. Li, Re-ranking person re-identification with k-reciprocal encoding, in: CVPR, 2017, pp. 1318–1327.
S.-H. Zhang, R. Li, X. Dong, P. Rosin, Z. Cai, X. Han, D. Yang, H. Huang, S.-M. Hu, Pose2Seg: Detection Free Human Instance Segmentation, in: CVPR, 2019, pp. 889–898.
X. Zhang, D. Li, Z. Wang, J. Wang, E. Ding, J.Q. Shi, Z. Zhang, J. Wang, Implicit Sample Extension for Unsupervised Person Re-Identification, in: CVPR, 2022, pp. 7359–7368.
D. Wang, S. Zhang, Unsupervised person re-identification via multi-label classification, in: CVPR, 2020, pp. 10981–10990.
Hermans, Beyer, Leibe (b26) 2017
Qu, Zhang, Zhang (b4) 2023; 78
Z. Hu, C. Zhu, G. He, Hard-sample Guided Hybrid Contrast Learning for Unsupervised Person Re-Identification, in: 2021 7th IEEE International Conference on Network Intelligence and Digital Content, IC-NIDC, 2021, pp. 91–95.
H. Chen, B. Lagadec, F. Bremond, ICE: Inter-instance contrastive encoding for unsupervised person re-identification, in: ICCV, 2021, pp. 14960–14969.
J. Li, S. Zhang, Joint visual and temporal consistency for unsupervised domain adaptive person re-identification, in: European Conference on Computer Vision, 2020, pp. 483–499.
Z. Zheng, L. Zheng, Y. Yang, Unlabeled samples generated by gan improve the person re-identification baseline in vitro, in: ICCV, 2017, pp. 3754–3762.
G. Chen, Y. Lu, J. Lu, J. Zhou, Deep credible metric learning for unsupervised domain adaptation person re-identification, in: European Conference on Computer Vision, 2020, pp. 643–659.
MacQueen (b20) 1967; vol. 1
K. Zeng, M. Ning, Y. Wang, Y. Guo, Hierarchical clustering with hard-batch triplet loss for person re-identification, in: CVPR, 2020, pp. 13657–13665.
Dai, Liu, Chen, Liu, Shi, Liu, Zhou (b24) 2023; 161
Y. Fu, Y. Wei, G. Wang, Y. Zhou, H. Shi, T.S. Huang, Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification, in: ICCV, 2019, pp. 6112–6121.
Y. Zhai, Q. Ye, S. Lu, M. Jia, R. Ji, Y. Tian, Multiple expert brainstorming for domain adaptive person re-identification, in: European Conference on Computer Vision, 2020, pp. 594–611.
Si, He, Zhang, Duan (b15) 2023; 25
Z. Dai, G. Wang, S. Zhu, W. Yuan, P. Tan, Cluster Contrast for Unsupervised Person Re-Identification, in: ACCV, 2022, pp. 1142–1160.
K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: CVPR, 2022, pp. 16000–16009.
K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: CVPR, 2020, pp. 9729–9738.
K. Zhou, Y. Yang, A. Cavallaro, T. Xiang, Omni-scale feature learning for person re-identification, in: ICCV, 2019, pp. 3702–3712.
L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable person re-identification: A benchmark, in: ICCV, 2015, pp. 1116–1124.
Zou, Yang, Yu, Kumar, Kautz (b23) 2020
Ning, Zhang, Wang, Ning, Chen, Bai (b3) 2023; 79
Z. Zhong, L. Zheng, Z. Zheng, S. Li, Y. Yang, Camera Style Adaptation for Person Re-identification, in: CVPR, 2018, pp. 5157–5166.
Y. Chen, X. Zhu, S. Gong, Instance-guided context rendering for cross-domain person re-identification, in: ICCV, 2019, pp. 232–242.
W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, J. Jiao, Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification, in: CVPR, 2018, pp. 994–1003.
Z. Wang, J. Zhang, L. Zheng, Y. Liu, Y. Sun, Y. Li, S. Wang, Cycas: Self-supervised cycle association for learning re-identifiable descriptions, in: European Conference on Computer Vision, 2020, pp. 72–88.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: CVPR, 2009, pp. 248–255.
Zhong, Zheng, Luo, Li, Yang (b32) 2020; 43
Y. Zou, X. Yang, Z. Yu, B. Kumar, J. Kautz, Joint disentangling and adaptation for cross-domain person re-identification, in: European Conference on Computer Vision, 2020, pp. 87–104.
Chen, Cui, Zhang, Zhou, Liu (b13) 2023; 33
Ge, Zhu, Chen, Zhao (b7) 2020; 33
MacQueen (10.1016/j.displa.2024.102717_b20) 1967; vol. 1
Zhong (10.1016/j.displa.2024.102717_b32) 2020; 43
Han (10.1016/j.displa.2024.102717_b38) 2022; 32
Ge (10.1016/j.displa.2024.102717_b7) 2020; 33
10.1016/j.displa.2024.102717_b19
Si (10.1016/j.displa.2024.102717_b15) 2023; 25
10.1016/j.displa.2024.102717_b18
10.1016/j.displa.2024.102717_b17
10.1016/j.displa.2024.102717_b39
10.1016/j.displa.2024.102717_b16
10.1016/j.displa.2024.102717_b37
10.1016/j.displa.2024.102717_b36
10.1016/j.displa.2024.102717_b35
10.1016/j.displa.2024.102717_b34
10.1016/j.displa.2024.102717_b11
10.1016/j.displa.2024.102717_b33
10.1016/j.displa.2024.102717_b10
Li (10.1016/j.displa.2024.102717_b14) 2022; 31
10.1016/j.displa.2024.102717_b31
10.1016/j.displa.2024.102717_b30
Qu (10.1016/j.displa.2024.102717_b4) 2023; 78
10.1016/j.displa.2024.102717_b1
10.1016/j.displa.2024.102717_b2
Dai (10.1016/j.displa.2024.102717_b24) 2023; 161
Cheng (10.1016/j.displa.2024.102717_b12) 2022; 31
Chen (10.1016/j.displa.2024.102717_b13) 2023; 33
Zou (10.1016/j.displa.2024.102717_b23) 2020
10.1016/j.displa.2024.102717_b29
Ning (10.1016/j.displa.2024.102717_b3) 2023; 79
10.1016/j.displa.2024.102717_b28
10.1016/j.displa.2024.102717_b27
Hermans (10.1016/j.displa.2024.102717_b26) 2017
10.1016/j.displa.2024.102717_b25
10.1016/j.displa.2024.102717_b5
10.1016/j.displa.2024.102717_b6
10.1016/j.displa.2024.102717_b22
10.1016/j.displa.2024.102717_b8
10.1016/j.displa.2024.102717_b21
10.1016/j.displa.2024.102717_b9
10.1016/j.displa.2024.102717_b42
10.1016/j.displa.2024.102717_b41
10.1016/j.displa.2024.102717_b40
References_xml – reference: K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: CVPR, 2022, pp. 16000–16009.
– volume: 79
  year: 2023
  ident: b3
  article-title: Pedestrian re-ID based on feature consistency and contrast enhancement
  publication-title: Displays
– volume: 78
  year: 2023
  ident: b4
  article-title: PMA-Net: A parallelly mixed attention network for person re-identification
  publication-title: Displays
– start-page: 87
  year: 2020
  end-page: 104
  ident: b23
  article-title: Joint disentangling and adaptation for cross-domain person re-identification
  publication-title: ECCV
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR, 2016, pp. 770–778.
– reference: Z. Hu, C. Zhu, G. He, Hard-sample Guided Hybrid Contrast Learning for Unsupervised Person Re-Identification, in: 2021 7th IEEE International Conference on Network Intelligence and Digital Content, IC-NIDC, 2021, pp. 91–95.
– reference: L. Wei, S. Zhang, W. Gao, Q. Tian, Person transfer gan to bridge domain gap for person re-identification, in: CVPR, 2018, pp. 79–88.
– reference: J. Li, S. Zhang, Joint visual and temporal consistency for unsupervised domain adaptive person re-identification, in: European Conference on Computer Vision, 2020, pp. 483–499.
– reference: S.-H. Zhang, R. Li, X. Dong, P. Rosin, Z. Cai, X. Han, D. Yang, H. Huang, S.-M. Hu, Pose2Seg: Detection Free Human Instance Segmentation, in: CVPR, 2019, pp. 889–898.
– reference: Z. Wang, J. Zhang, L. Zheng, Y. Liu, Y. Sun, Y. Li, S. Wang, Cycas: Self-supervised cycle association for learning re-identifiable descriptions, in: European Conference on Computer Vision, 2020, pp. 72–88.
– reference: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: CVPR, 2009, pp. 248–255.
– reference: H. Chen, B. Lagadec, F. Bremond, ICE: Inter-instance contrastive encoding for unsupervised person re-identification, in: ICCV, 2021, pp. 14960–14969.
– reference: Z. Zhong, L. Zheng, Z. Zheng, S. Li, Y. Yang, Camera Style Adaptation for Person Re-identification, in: CVPR, 2018, pp. 5157–5166.
– volume: vol. 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: b20
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– reference: K. Zeng, M. Ning, Y. Wang, Y. Guo, Hierarchical clustering with hard-batch triplet loss for person re-identification, in: CVPR, 2020, pp. 13657–13665.
– reference: Z. Dai, G. Wang, S. Zhu, W. Yuan, P. Tan, Cluster Contrast for Unsupervised Person Re-Identification, in: ACCV, 2022, pp. 1142–1160.
– volume: 32
  start-page: 29
  year: 2022
  end-page: 42
  ident: b38
  article-title: Rethinking sampling strategies for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
– reference: W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, J. Jiao, Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification, in: CVPR, 2018, pp. 994–1003.
– volume: 161
  year: 2023
  ident: b24
  article-title: Swin MAE: Masked autoencoders for small datasets
  publication-title: Comput. Biol. Med.
– reference: Z. Zheng, L. Zheng, Y. Yang, Unlabeled samples generated by gan improve the person re-identification baseline in vitro, in: ICCV, 2017, pp. 3754–3762.
– volume: 25
  start-page: 4323
  year: 2023
  end-page: 4334
  ident: b15
  article-title: Hybrid contrastive learning for unsupervised person re-identification
  publication-title: IEEE Trans. Multimed.
– reference: Y. Ge, D. Chen, H. Li, Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification, in: ICLR, 2020.
– volume: 31
  start-page: 3606
  year: 2022
  end-page: 3617
  ident: b14
  article-title: Cluster-guided asymmetric contrastive learning for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
– reference: X. Zhang, D. Li, Z. Wang, J. Wang, E. Ding, J.Q. Shi, Z. Zhang, J. Wang, Implicit Sample Extension for Unsupervised Person Re-Identification, in: CVPR, 2022, pp. 7359–7368.
– reference: D. Wang, S. Zhang, Unsupervised person re-identification via multi-label classification, in: CVPR, 2020, pp. 10981–10990.
– reference: Y. Chen, X. Zhu, S. Gong, Instance-guided context rendering for cross-domain person re-identification, in: ICCV, 2019, pp. 232–242.
– reference: K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: CVPR, 2020, pp. 9729–9738.
– reference: Y. Zou, X. Yang, Z. Yu, B. Kumar, J. Kautz, Joint disentangling and adaptation for cross-domain person re-identification, in: European Conference on Computer Vision, 2020, pp. 87–104.
– reference: Y. Zhai, Q. Ye, S. Lu, M. Jia, R. Ji, Y. Tian, Multiple expert brainstorming for domain adaptive person re-identification, in: European Conference on Computer Vision, 2020, pp. 594–611.
– volume: 31
  start-page: 3334
  year: 2022
  end-page: 3346
  ident: b12
  article-title: Hybrid dynamic contrast and probability distillation for unsupervised person re-id
  publication-title: IEEE Trans. Image Process.
– volume: 33
  start-page: 5908
  year: 2023
  end-page: 5920
  ident: b13
  article-title: Dual clustering co-teaching with consistent sample mining for unsupervised person re-identification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: G. Chen, Y. Lu, J. Lu, J. Zhou, Deep credible metric learning for unsupervised domain adaptation person re-identification, in: European Conference on Computer Vision, 2020, pp. 643–659.
– reference: Z. Zhong, L. Zheng, D. Cao, S. Li, Re-ranking person re-identification with k-reciprocal encoding, in: CVPR, 2017, pp. 1318–1327.
– reference: K. Zhou, Y. Yang, A. Cavallaro, T. Xiang, Omni-scale feature learning for person re-identification, in: ICCV, 2019, pp. 3702–3712.
– volume: 43
  start-page: 2723
  year: 2020
  end-page: 2738
  ident: b32
  article-title: Learning to adapt invariance in memory for person re-identification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), in: European Conference on Computer Vision, ECCV, 2018, pp. 480–496.
– reference: Y. Fu, Y. Wei, G. Wang, Y. Zhou, H. Shi, T.S. Huang, Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification, in: ICCV, 2019, pp. 6112–6121.
– reference: L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable person re-identification: A benchmark, in: ICCV, 2015, pp. 1116–1124.
– volume: 33
  start-page: 11309
  year: 2020
  end-page: 11321
  ident: b7
  article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: CVPR, 2017, pp. 2881–2890.
– reference: Y. Lin, L. Xie, Y. Wu, C. Yan, Q. Tian, Unsupervised person re-identification via softened similarity learning, in: CVPR, 2020, pp. 3390–3399.
– year: 2017
  ident: b26
  article-title: In defense of the triplet loss for person re-identification
– ident: 10.1016/j.displa.2024.102717_b27
  doi: 10.1109/CVPR.2017.660
– ident: 10.1016/j.displa.2024.102717_b36
  doi: 10.1109/CVPR42600.2020.01367
– ident: 10.1016/j.displa.2024.102717_b10
– ident: 10.1016/j.displa.2024.102717_b16
  doi: 10.1109/CVPR.2019.00098
– ident: 10.1016/j.displa.2024.102717_b19
  doi: 10.1109/CVPR52688.2022.00722
– ident: 10.1016/j.displa.2024.102717_b11
  doi: 10.1109/IC-NIDC54101.2021.9660560
– ident: 10.1016/j.displa.2024.102717_b35
  doi: 10.1109/CVPR42600.2020.00345
– volume: 79
  year: 2023
  ident: 10.1016/j.displa.2024.102717_b3
  article-title: Pedestrian re-ID based on feature consistency and contrast enhancement
  publication-title: Displays
  doi: 10.1016/j.displa.2023.102467
– volume: 25
  start-page: 4323
  year: 2023
  ident: 10.1016/j.displa.2024.102717_b15
  article-title: Hybrid contrastive learning for unsupervised person re-identification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2022.3174414
– ident: 10.1016/j.displa.2024.102717_b31
  doi: 10.1007/978-3-030-58536-5_6
– ident: 10.1016/j.displa.2024.102717_b37
  doi: 10.1007/978-3-030-58621-8_5
– ident: 10.1016/j.displa.2024.102717_b17
  doi: 10.1109/CVPR52688.2022.01553
– year: 2017
  ident: 10.1016/j.displa.2024.102717_b26
– volume: 78
  year: 2023
  ident: 10.1016/j.displa.2024.102717_b4
  article-title: PMA-Net: A parallelly mixed attention network for person re-identification
  publication-title: Displays
  doi: 10.1016/j.displa.2023.102437
– volume: 31
  start-page: 3606
  year: 2022
  ident: 10.1016/j.displa.2024.102717_b14
  article-title: Cluster-guided asymmetric contrastive learning for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3173163
– volume: 31
  start-page: 3334
  year: 2022
  ident: 10.1016/j.displa.2024.102717_b12
  article-title: Hybrid dynamic contrast and probability distillation for unsupervised person re-id
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3169693
– ident: 10.1016/j.displa.2024.102717_b34
  doi: 10.1007/978-3-030-58571-6_35
– ident: 10.1016/j.displa.2024.102717_b22
  doi: 10.1109/CVPR.2018.00110
– ident: 10.1016/j.displa.2024.102717_b29
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.displa.2024.102717_b30
  doi: 10.1007/978-3-030-58586-0_29
– ident: 10.1016/j.displa.2024.102717_b9
  doi: 10.1109/ICCV.2017.405
– volume: vol. 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.displa.2024.102717_b20
  article-title: Some methods for classification and analysis of multivariate observations
– ident: 10.1016/j.displa.2024.102717_b25
  doi: 10.1109/CVPR42600.2020.01099
– ident: 10.1016/j.displa.2024.102717_b6
– ident: 10.1016/j.displa.2024.102717_b18
  doi: 10.1109/ICCV.2019.00621
– volume: 33
  start-page: 5908
  issue: 10
  year: 2023
  ident: 10.1016/j.displa.2024.102717_b13
  article-title: Dual clustering co-teaching with consistent sample mining for unsupervised person re-identification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2023.3261898
– ident: 10.1016/j.displa.2024.102717_b1
  doi: 10.1007/978-3-030-01225-0_30
– ident: 10.1016/j.displa.2024.102717_b39
  doi: 10.1109/ICCV48922.2021.01469
– ident: 10.1016/j.displa.2024.102717_b8
  doi: 10.1109/ICCV.2015.133
– volume: 33
  start-page: 11309
  year: 2020
  ident: 10.1016/j.displa.2024.102717_b7
  article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 2723
  issue: 8
  year: 2020
  ident: 10.1016/j.displa.2024.102717_b32
  article-title: Learning to adapt invariance in memory for person re-identification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.displa.2024.102717_b42
  doi: 10.1109/CVPR.2017.389
– volume: 32
  start-page: 29
  year: 2022
  ident: 10.1016/j.displa.2024.102717_b38
  article-title: Rethinking sampling strategies for unsupervised person re-identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3224325
– ident: 10.1016/j.displa.2024.102717_b28
  doi: 10.1109/CVPR42600.2020.00975
– start-page: 87
  year: 2020
  ident: 10.1016/j.displa.2024.102717_b23
  article-title: Joint disentangling and adaptation for cross-domain person re-identification
– volume: 161
  year: 2023
  ident: 10.1016/j.displa.2024.102717_b24
  article-title: Swin MAE: Masked autoencoders for small datasets
  publication-title: Comput. Biol. Med.
– ident: 10.1016/j.displa.2024.102717_b41
  doi: 10.1109/CVPR.2009.5206848
– ident: 10.1016/j.displa.2024.102717_b2
  doi: 10.1109/ICCV.2019.00380
– ident: 10.1016/j.displa.2024.102717_b21
  doi: 10.1109/CVPR.2018.00541
– ident: 10.1016/j.displa.2024.102717_b33
  doi: 10.1007/978-3-030-58598-3_38
– ident: 10.1016/j.displa.2024.102717_b40
  doi: 10.1109/CVPR.2018.00016
– ident: 10.1016/j.displa.2024.102717_b5
  doi: 10.1109/ICCV.2019.00032
SSID ssj0002472
Score 2.4011636
Snippet Unsupervised person re-identification (Re-ID) methods have made significant progress by exploiting contrastive learning from unlabeled data. However, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102717
SubjectTerms Contrastive learning
Diversity features
Masked autoencoder
Pseudo label
Unsupervised re-ID
Title Instance-aware diversity feature generation for unsupervised person re-identification
URI https://dx.doi.org/10.1016/j.displa.2024.102717
Volume 83
WOSCitedRecordID wos001236351000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7387
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002472
  issn: 0141-9382
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKdoecgHbsirJE7t5FhBgXKoOLTS3iInnqBUVRJtNrT8-44f8QYW8ZK4RJE3jjeeT57Po88zhLxGr6IFj4GZ-kYsraBmKgLBtFQJaHRQmShtsQl5epqtVvlnf_ZksOUEZNtm19d5_19NjW1obHN09i_MHV6KDXiPRscrmh2vf2T4E0v4KmDqyqi6dBBe1GCTeJqiybDeagzHdhh7s2IMyD17S8DfrIE12uuItqbzHPZdM_SX6lsg4yHmvGpUdwVN4MbdOLXOHu1cW9uD95lGDWQlBR_GDjfnX-ZxiCQNmlUfHNs5IOPjlTHLuasvtAS3xmYSST33ftYvwq6azc567kILF0ttv2xpxjXJJqQ77_lDpmwjVIvNYEYXi1RH3iZ7Ce6HogXZOzo5Xn0KLjpJbVWv8O-mM5VW-Lc71s85y4yHnD0g9_0Ggh45wz8kt6B9RO7N0ko-JuffQ4AGCFAPAbqFAEUI0DkEqIMA3YHAE3L-_vjs7Ufmy2ewCveBG1arWIhKxzrmouJlHiV1zdWh1MggU0ggT0uh8DdkoLWq0CpZqSrNayl5oiBK-VOyaLsWnhEaaW1CJQK7oWc9LHGTkygV4_tkHYkI9gmfJqiofG55U-LksphEhBeFm9bCTGvhpnWfsNCrd7lVfvO8nOa-8PzQ8b4C4fLLngf_3PM5ubsF-wuy2KxHeEnuVF83zbB-5XF1AynKjkw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instance-aware+diversity+feature+generation+for+unsupervised+person+re-identification&rft.jtitle=Displays&rft.au=Zhang%2C+Xiaowei&rft.au=Dou%2C+Xiao&rft.au=Zhao%2C+Xinpeng&rft.au=Li%2C+Guocong&rft.date=2024-07-01&rft.pub=Elsevier+B.V&rft.issn=0141-9382&rft.eissn=1872-7387&rft.volume=83&rft_id=info:doi/10.1016%2Fj.displa.2024.102717&rft.externalDocID=S0141938224000817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-9382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-9382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-9382&client=summon