Deep unsupervised multi-modal fusion network for detecting driver distraction
•A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for multiple heterogeneous sensors.•Multi-scale feature fusion approach to aggregate multi-modal features.•A data collection system using multivariate s...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 421; s. 26 - 38 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.01.2021
|
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!