Deep unsupervised multi-modal fusion network for detecting driver distraction

•A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for multiple heterogeneous sensors.•Multi-scale feature fusion approach to aggregate multi-modal features.•A data collection system using multivariate s...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 421; pp. 26 - 38
Main Authors: Zhang, Yuxin, Chen, Yiqiang, Gao, Chenlong
Format: Journal Article
Language:English
Published: Elsevier B.V 15.01.2021
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for multiple heterogeneous sensors.•Multi-scale feature fusion approach to aggregate multi-modal features.•A data collection system using multivariate sensor signal, acoustic signal and visual signal during simulated driving task. The risk of incurring a road traffic crash has increased year by year. Studies show that lack of attention during driving is one of the major causes of traffic accidents. In this work, in order to detect driver distraction, e.g., phone conversation, eating, texting, we introduce a deep unsupervised multi-modal fusion network, termed UMMFN. It is an end-to-end model composing of three main modules: multi-modal representation learning, multi-scale feature fusion and unsupervised driver distraction detection. The first module is to learn low-dimensional representation of multiple heterogeneous sensors using embedding subnetworks. The goal of multi-scale feature fusion is to learn both the temporal dependency for each modality and spatio dependencies from different modalities. The last module utilizes a ConvLSTM Encoder-Decoder model to perform an unsupervised classification task that is not affected by new types of driver behaviors. During the detection phase, a fine-grained detection decision can be made through calculating reconstruction error of UMMFN as a score for each captured testing data. We empirically compare the proposed approach with several state-of-the-art methods on our own multi-modal dataset for distracted driving behavior. Experimental results show that UMMFN has superior performance over the existing approaches.
AbstractList •A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for multiple heterogeneous sensors.•Multi-scale feature fusion approach to aggregate multi-modal features.•A data collection system using multivariate sensor signal, acoustic signal and visual signal during simulated driving task. The risk of incurring a road traffic crash has increased year by year. Studies show that lack of attention during driving is one of the major causes of traffic accidents. In this work, in order to detect driver distraction, e.g., phone conversation, eating, texting, we introduce a deep unsupervised multi-modal fusion network, termed UMMFN. It is an end-to-end model composing of three main modules: multi-modal representation learning, multi-scale feature fusion and unsupervised driver distraction detection. The first module is to learn low-dimensional representation of multiple heterogeneous sensors using embedding subnetworks. The goal of multi-scale feature fusion is to learn both the temporal dependency for each modality and spatio dependencies from different modalities. The last module utilizes a ConvLSTM Encoder-Decoder model to perform an unsupervised classification task that is not affected by new types of driver behaviors. During the detection phase, a fine-grained detection decision can be made through calculating reconstruction error of UMMFN as a score for each captured testing data. We empirically compare the proposed approach with several state-of-the-art methods on our own multi-modal dataset for distracted driving behavior. Experimental results show that UMMFN has superior performance over the existing approaches.
Author Chen, Yiqiang
Gao, Chenlong
Zhang, Yuxin
Author_xml – sequence: 1
  givenname: Yuxin
  surname: Zhang
  fullname: Zhang, Yuxin
  email: zhangyuxin@ict.ac.cn
  organization: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China
– sequence: 2
  givenname: Yiqiang
  surname: Chen
  fullname: Chen, Yiqiang
  email: yqchen@ict.ac.cn
  organization: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China
– sequence: 3
  givenname: Chenlong
  surname: Gao
  fullname: Gao, Chenlong
  email: gaochenlong@ict.ac.cn
  organization: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China
BookMark eNqFkM1KxDAUhYOM4Dj6Bi76Aq03aZtpXAgy_sKIG12HNrmRjG0yJOmIb2-HceVCVxcOfIdzv1Myc94hIRcUCgqUX24Kh6PyQ8GAQQGiAFYekTltlixvWMNnZA6C1TkrKTshpzFuAOiSMjEnz7eI22x0cdxi2NmIOhvGPtl88LrtMzNG613mMH368JEZHzKNCVWy7j3Twe5wCmxMoZ0i787IsWn7iOc_d0He7u9eV4_5-uXhaXWzzlUJPOVGNJUwwBsFqgJdlzWUTSu4qKqad1osK-RosEPBEbpOdQC8MxqYrgAMmnJBrg69KvgYAxqpbGr3C6YltpcU5F6M3MiDGLkXI0HIScwEV7_gbbBDG77-w64PGE6P7SwGGZVFp1DbMAmR2tu_C74BlxuDzw
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3398654
crossref_primary_10_1109_TITS_2022_3166275
crossref_primary_10_1155_2023_7664577
crossref_primary_10_3390_s23125551
crossref_primary_10_1016_j_engappai_2022_105399
crossref_primary_10_1109_TKDE_2021_3102110
crossref_primary_10_3390_electronics10030342
crossref_primary_10_1016_j_inffus_2022_08_009
crossref_primary_10_1016_j_eswa_2023_119631
crossref_primary_10_1016_j_bspc_2023_104831
crossref_primary_10_1007_s00521_022_07943_6
crossref_primary_10_1016_j_eswa_2022_119157
crossref_primary_10_3390_make4040053
crossref_primary_10_1049_itr2_12560
crossref_primary_10_1016_j_ress_2023_109449
crossref_primary_10_1109_ACCESS_2021_3068343
crossref_primary_10_1109_TITS_2025_3556852
crossref_primary_10_1109_ACCESS_2021_3109815
crossref_primary_10_1109_TITS_2024_3416382
crossref_primary_10_32604_cmc_2022_022553
crossref_primary_10_1016_j_eswa_2022_117877
crossref_primary_10_3390_s24051386
crossref_primary_10_1016_j_engappai_2025_111932
crossref_primary_10_1155_2023_3145483
crossref_primary_10_1109_JSEN_2023_3339727
crossref_primary_10_3390_computation12070131
crossref_primary_10_3390_electronics11020285
crossref_primary_10_1109_ACCESS_2023_3243854
crossref_primary_10_1109_ACCESS_2022_3188715
crossref_primary_10_1049_itr2_12366
crossref_primary_10_1109_TITS_2023_3320583
crossref_primary_10_1109_TITS_2025_3530143
crossref_primary_10_1016_j_neucom_2025_131281
crossref_primary_10_1016_j_eswa_2023_120707
crossref_primary_10_1111_exsy_13046
crossref_primary_10_1016_j_ssci_2022_105820
crossref_primary_10_1016_j_aap_2024_107497
crossref_primary_10_1109_ACCESS_2021_3073599
crossref_primary_10_1016_j_trc_2023_104212
crossref_primary_10_1109_ACCESS_2024_3489220
crossref_primary_10_1007_s10115_025_02342_4
crossref_primary_10_1109_TITS_2022_3159602
crossref_primary_10_1016_j_cag_2022_09_001
crossref_primary_10_1016_j_compeleceng_2025_110187
crossref_primary_10_1109_JIOT_2023_3243622
crossref_primary_10_1109_TITS_2023_3316203
crossref_primary_10_1016_j_knosys_2022_110179
crossref_primary_10_3390_electronics12224640
Cites_doi 10.21437/Interspeech.2018-2011
10.14778/2732296.2732301
10.1609/aaai.v33i01.33011409
10.1155/2013/297587
10.1109/IICETA47481.2019.9012979
10.1016/j.comnet.2019.106944
10.1109/MSP.2017.2699039
10.1109/TITS.2014.2324414
10.17077/drivingassessment.1359
10.1007/s11280-018-0548-3
10.1155/2019/4125865
10.1016/j.neucom.2020.05.036
10.1007/978-3-030-21290-2_6
10.1126/science.1127647
10.1109/TMM.2013.2241416
10.1007/s10514-015-9431-6
10.1109/TITS.2010.2049741
10.1109/APSIPA.2016.7820699
10.1109/ACCESS.2018.2881003
10.1155/2017/6057830
10.1109/TITS.2007.895298
10.1016/j.cviu.2016.10.010
10.1109/ACCESS.2018.2888882
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.09.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 38
ExternalDocumentID 10_1016_j_neucom_2020_09_023
S0925231220314302
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-f9849f068c0c40d535038a9694456bd974e6efebe96e0bbcb006bfd02d400fef3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593102100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:16:34 EST 2025
Tue Nov 18 21:16:28 EST 2025
Fri Feb 23 02:45:57 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-f9849f068c0c40d535038a9694456bd974e6efebe96e0bbcb006bfd02d400fef3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_09_023
crossref_primary_10_1016_j_neucom_2020_09_023
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_09_023
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M.K. Wali, M. Murugappan, B. Ahmmad, Wavelet packet transform based driver distraction level classification using eeg, Math. Probl. Eng. (2013).
W. Lim, D. Jang, T. Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4.
Ascone, Lindsey, Varghese (b0025) 2009
Luo, Liu, Gao (b0150) 2017
Duman, Bayram, İnce (b0055) 2020
Shiwu, Linhong, Zhifa, Bingkui, Feiyan, Zhongkai (b0220) 2011
Dehzangi, Sahu, Taherisadr, Galster (b0035) 2018
S. Shuvaev, H. Giaffar, A.A. Koulakov, Representations of sound in deep learning of audio features from music, 2017. arXiv preprint arXiv:1712.02898.
Simanek, Kubelka, Reinstein (b0230) 2015; 39
Y. Ikeda, K. Ishibashi, Y. Nakano, K. Watanabe, R. Kawahara, Anomaly detection and interpretation using multimodal autoencoder and sparse optimization, 2018. arXiv preprint arXiv:1812.07136.
Li, Jain, Busso (b0130) 2013; 15
G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 504–507. URL
Y. Du, C. Raman, A.W. Black, L.P. Morency, M. Eskenazi, Multimodal polynomial fusion for detecting driver distraction, 2018. arXiv preprint arXiv:1810.10565.
Sakurada, Yairi (b0195) 2014
Sathyanarayana, Nageswaren, Ghasemzadeh, Jafari, Hansen (b0205) 2008
S. Xingjian, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W.c. Woo, Convolutional lstm network: a machine learning approach for precipitation nowcasting, in: Advances in Neural Information Processing Systems, 2015, pp. 802–810.
H.M. Eraqi, Y. Abouelnaga, M.H. Saad, M.N. Moustafa, Driver distraction identification with an ensemble of convolutional neural networks, J. Adv. Transp. (2019).
Ngiam, Khosla, Kim, Nam, Lee, Ng (b0180) 2011
Yang, Wu, Zhan, Liu, Jiang (b0315) 2019
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014. arXiv preprint arXiv:1409.1556.
H. Wang, A. Meghawat, L. Morency, E.P. Xing, Select-additive learning: Improving cross-individual generalization in multimodal sentiment analysis. CoRR abs/1609.05244, 2016. URL: http://arxiv.org/abs/1609.05244, arXiv:1609.05244.
C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 1409–1416.
.
A.A. Aljarrah, A.H. Ali, Human activity recognition using pca and bilstm recurrent neural networks, in: 2019 2nd International Conference on Engineering Technology and its Applications (IICETA), IEEE, 2019, pp. 156–160.
A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mobile vision applications, 2017. arXiv preprint arXiv:1704.04861.
N. Srivastava, E. Mansimov, R. Salakhutdinov, Unsupervised learning of video representations using lstms. CoRR abs/1502.04681, 2015. URL: http://arxiv.org/abs/1502.04681, arXiv:1502.04681.
Aceto, Ciuonzo, Montieri, Pescapé (b0010) 2020; 409
P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G.M. Shroff, Lstm-based encoder-decoder for multi-sensor anomaly detection. CoRR abs/1607.00148, 2016. URL: http://arxiv.org/abs/1607.00148, arXiv:1607.00148.
Wulsin, Blanco, Mani, Litt (b0280) 2010
Vukotić, Raymond, Gravier (b0260) 2016
Miyaji, Kawanaka, Oguri (b0165) 2009
Yang, Nguyen, San, Li, Krishnaswamy (b0310) 2015
Kang (b0100) 2013
Liang, Reyes, Lee (b0140) 2007; 8
X. Li, Y. Zhang, J. Zhang, S. Chen, I. Marsic, R.A. Farneth, R.S. Burd, Concurrent activity recognition with multimodal cnn-lstm structure, 2017. arXiv preprint arXiv:1702.01638.
Dhupati, Kar, Rajaguru, Routray (b0040) 2010
Tian, Tao, Pouyanfar, Chen, Shyu (b0255) 2019; 22
Ersal, Fuller, Tsimhoni, Stein, Fathy (b0065) 2010; 11
Li, Busso (b0125) 2015; 16
Xu, Chen, Zhao, Li, Bu, Li, Liu, Zhao, Pei, Feng (b0300) 2018
Aceto, Ciuonzo, Montieri, Pescapè (b0005) 2019; 165
He, Zhang, Ren, Sun (b0080) 2016
Nedelkoski, Cardoso, Kao (b0175) 2019
Dong, Hu (b0045) 2012
Sathyanarayana, Boyraz, Purohit, Lubag, Hansen (b0200) 2010
Wang, Ooi, Yang, Zhang, Zhuang (b0275) 2014; 7
An, Cho (b0020) 2015; 2
Xu, Yan, Ricci, Sebe (b0295) 2017; 156
Hansen, Busso, Zheng, Sathyanarayana (b0075) 2017; 34
Zadeh, Chen, Poria, Cambria, Morency (b0320) 2017
Yang, Chang, Hou (b0305) 2010
G. Lechner, M. Fellmann, A. Festl, C. Kaiser, T.E. Kalayci, M. Spitzer, A. Stocker, A lightweight framework for multi-device integration and multi-sensor fusion to explore driver distraction, in: International Conference on Advanced Information Systems Engineering, Springer, 2019, pp. 80–95.
N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, 2016. arXiv preprint arXiv:1604.08880.
Meyn (b0160) 2008
Zhang, Li, Ji, Yue (b0330) 2016
Kutila, Jokela, Markkula, Rué (b0115) 2007
T. Tanprasert, C. Saiprasert, S. Thajchayapong, Combining unsupervised anomaly detection and neural networks for driver identification, J. Adv. Transp. (2017).
C. Craye, F. Karray, Driver distraction detection and recognition using rgb-d sensor. arXiv preprint arXiv:1502.00250, 2015.
G. Shiran, D. Weinshall, Multi-modal deep clustering: Unsupervised partitioning of images, 2019. arXiv preprint arXiv:1912.02678.
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0245) 2015
http://arxiv.org/abs/1506.04214, arXiv:1506.04214.
Putze, Jarvis, Schultz (b0190) 2010
Xiao, Feng (b0285) 2016
Khamparia, Gupta, Nguyen, Khanna, Pandey, Tiwari (b0105) 2019; 7
J. Krajewski, U. Trutschel, M. Golz, D. Sommer, D. Edwards, Estimating fatigue from predetermined speech samples transmitted by operator communication systems, 2009.
Murphy (b0170) 2010; 11
X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, W. Woo, Convolutional LSTM network: a machine learning approach for precipitation nowcasting. CoRR abs/1506.04214, 2015. URL
S. Park, M. Kim, S. Lee, Anomaly detection for http using convolutional autoencoders, IEEE Access 2018, pp. 1–1.
10.1016/j.neucom.2020.09.023_b0120
10.1016/j.neucom.2020.09.023_b0240
Dhupati (10.1016/j.neucom.2020.09.023_b0040) 2010
Dehzangi (10.1016/j.neucom.2020.09.023_b0035) 2018
10.1016/j.neucom.2020.09.023_b0085
Wang (10.1016/j.neucom.2020.09.023_b0275) 2014; 7
Li (10.1016/j.neucom.2020.09.023_b0125) 2015; 16
Ngiam (10.1016/j.neucom.2020.09.023_b0180) 2011
Kutila (10.1016/j.neucom.2020.09.023_b0115) 2007
10.1016/j.neucom.2020.09.023_b0325
Murphy (10.1016/j.neucom.2020.09.023_b0170) 2010; 11
Vukotić (10.1016/j.neucom.2020.09.023_b0260) 2016
Yang (10.1016/j.neucom.2020.09.023_b0315) 2019
Tian (10.1016/j.neucom.2020.09.023_b0255) 2019; 22
Wulsin (10.1016/j.neucom.2020.09.023_b0280) 2010
Duman (10.1016/j.neucom.2020.09.023_b0055) 2020
10.1016/j.neucom.2020.09.023_b0155
10.1016/j.neucom.2020.09.023_b0110
10.1016/j.neucom.2020.09.023_b0270
10.1016/j.neucom.2020.09.023_b0030
Yang (10.1016/j.neucom.2020.09.023_b0310) 2015
Meyn (10.1016/j.neucom.2020.09.023_b0160) 2008
Luo (10.1016/j.neucom.2020.09.023_b0150) 2017
Yang (10.1016/j.neucom.2020.09.023_b0305) 2010
Ersal (10.1016/j.neucom.2020.09.023_b0065) 2010; 11
Nedelkoski (10.1016/j.neucom.2020.09.023_b0175) 2019
10.1016/j.neucom.2020.09.023_b0235
Zadeh (10.1016/j.neucom.2020.09.023_b0320) 2017
Aceto (10.1016/j.neucom.2020.09.023_b0005) 2019; 165
Liang (10.1016/j.neucom.2020.09.023_b0140) 2007; 8
Sathyanarayana (10.1016/j.neucom.2020.09.023_b0205) 2008
Sakurada (10.1016/j.neucom.2020.09.023_b0195) 2014
Putze (10.1016/j.neucom.2020.09.023_b0190) 2010
Xiao (10.1016/j.neucom.2020.09.023_b0285) 2016
Aceto (10.1016/j.neucom.2020.09.023_b0010) 2020; 409
10.1016/j.neucom.2020.09.023_b0070
Kang (10.1016/j.neucom.2020.09.023_b0100) 2013
Li (10.1016/j.neucom.2020.09.023_b0130) 2013; 15
Xu (10.1016/j.neucom.2020.09.023_b0295) 2017; 156
An (10.1016/j.neucom.2020.09.023_b0020) 2015; 2
Ascone (10.1016/j.neucom.2020.09.023_b0025) 2009
10.1016/j.neucom.2020.09.023_b0185
10.1016/j.neucom.2020.09.023_b0265
10.1016/j.neucom.2020.09.023_b0060
Simanek (10.1016/j.neucom.2020.09.023_b0230) 2015; 39
10.1016/j.neucom.2020.09.023_b0145
10.1016/j.neucom.2020.09.023_b0225
Shiwu (10.1016/j.neucom.2020.09.023_b0220) 2011
Szegedy (10.1016/j.neucom.2020.09.023_b0245) 2015
He (10.1016/j.neucom.2020.09.023_b0080) 2016
Hansen (10.1016/j.neucom.2020.09.023_b0075) 2017; 34
Khamparia (10.1016/j.neucom.2020.09.023_b0105) 2019; 7
Xu (10.1016/j.neucom.2020.09.023_b0300) 2018
Miyaji (10.1016/j.neucom.2020.09.023_b0165) 2009
Sathyanarayana (10.1016/j.neucom.2020.09.023_b0200) 2010
10.1016/j.neucom.2020.09.023_b0210
Zhang (10.1016/j.neucom.2020.09.023_b0330) 2016
10.1016/j.neucom.2020.09.023_b0050
10.1016/j.neucom.2020.09.023_b0250
10.1016/j.neucom.2020.09.023_b0095
10.1016/j.neucom.2020.09.023_b0215
10.1016/j.neucom.2020.09.023_b0135
10.1016/j.neucom.2020.09.023_b0015
10.1016/j.neucom.2020.09.023_b0090
10.1016/j.neucom.2020.09.023_b0290
Dong (10.1016/j.neucom.2020.09.023_b0045) 2012
References_xml – volume: 39
  start-page: 139
  year: 2015
  end-page: 154
  ident: b0230
  article-title: Improving multi-modal data fusion by anomaly detection
  publication-title: Auton. Robots
– volume: 34
  start-page: 130
  year: 2017
  end-page: 142
  ident: b0075
  article-title: Driver modeling for detection and assessment of driver distraction: examples from the utdrive test bed
  publication-title: IEEE Signal Process. Mag.
– reference: T. Tanprasert, C. Saiprasert, S. Thajchayapong, Combining unsupervised anomaly detection and neural networks for driver identification, J. Adv. Transp. (2017).
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0080
  article-title: Deep residual learning for image recognition, in
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 780
  year: 2016
  end-page: 783
  ident: b0330
  article-title: A character-level sequence-to-sequence method for subtitle learning
  publication-title: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN)
– start-page: 179
  year: 2019
  end-page: 186
  ident: b0175
  article-title: Anomaly detection from system tracing data using multimodal deep learning
  publication-title: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD)
– volume: 11
  year: 2010
  ident: b0170
  article-title: Head pose estimation and augmented reality tracking
  publication-title: IEEE Transact
– start-page: 630
  year: 2016
  end-page: 635
  ident: b0285
  article-title: Detection of drivers visual attention using smartphone
  publication-title: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)
– start-page: 432
  year: 2020
  end-page: 442
  ident: b0055
  article-title: Acoustic anomaly detection using convolutional autoencoders in industrial processes
  publication-title: 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019)
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014. arXiv preprint arXiv:1409.1556.
– volume: 22
  start-page: 1325
  year: 2019
  end-page: 1341
  ident: b0255
  article-title: Multimodal deep representation learning for video classification
  publication-title: World Wide Web
– reference: H. Wang, A. Meghawat, L. Morency, E.P. Xing, Select-additive learning: Improving cross-individual generalization in multimodal sentiment analysis. CoRR abs/1609.05244, 2016. URL: http://arxiv.org/abs/1609.05244, arXiv:1609.05244.
– reference: S. Xingjian, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W.c. Woo, Convolutional lstm network: a machine learning approach for precipitation nowcasting, in: Advances in Neural Information Processing Systems, 2015, pp. 802–810.
– reference: G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 504–507. URL:
– reference: C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 1409–1416.
– start-page: 2191
  year: 2018
  end-page: 2196
  ident: b0035
  article-title: Multi-modal system to detect on-the-road driver distraction
  publication-title: 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
– volume: 7
  start-page: 649
  year: 2014
  end-page: 660
  ident: b0275
  article-title: Effective multi-modal retrieval based on stacked auto-encoders
  publication-title: Proc. VLDB Endowment
– reference: N. Srivastava, E. Mansimov, R. Salakhutdinov, Unsupervised learning of video representations using lstms. CoRR abs/1502.04681, 2015. URL: http://arxiv.org/abs/1502.04681, arXiv:1502.04681.
– year: 2007
  ident: b0115
  article-title: Driver distraction detection with a camera vision system
  publication-title: 2007 IEEE International Conference on Image Processing
– volume: 11
  start-page: 692
  year: 2010
  end-page: 701
  ident: b0065
  article-title: Model-based analysis and classification of driver distraction under secondary tasks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 15
  start-page: 1213
  year: 2013
  end-page: 1225
  ident: b0130
  article-title: Modeling of driver behavior in real world scenarios using multiple noninvasive sensors
  publication-title: IEEE Trans. Multimedia
– year: 2012
  ident: b0045
  article-title: Driver Inattention Monitoring System for Intelligent Vehicles
– reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mobile vision applications, 2017. arXiv preprint arXiv:1704.04861.
– volume: 16
  start-page: 51
  year: 2015
  end-page: 65
  ident: b0125
  article-title: Predicting perceived visual and cognitive distractions of drivers with multimodal features
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: W. Lim, D. Jang, T. Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4.
– start-page: 1
  year: 2009
  end-page: 6
  ident: b0165
  article-title: Driver’s cognitive distraction detection using physiological features by the adaboost
  publication-title: 2009 12th International IEEE conference on intelligent transportation systems
– reference: S. Park, M. Kim, S. Lee, Anomaly detection for http using convolutional autoencoders, IEEE Access 2018, pp. 1–1.
– volume: 165
  year: 2019
  ident: b0005
  article-title: Mimetic: mobile encrypted traffic classification using multimodal deep learning
  publication-title: Comput. Netw.
– reference: G. Lechner, M. Fellmann, A. Festl, C. Kaiser, T.E. Kalayci, M. Spitzer, A. Stocker, A lightweight framework for multi-device integration and multi-sensor fusion to explore driver distraction, in: International Conference on Advanced Information Systems Engineering, Springer, 2019, pp. 80–95.
– start-page: 343
  year: 2016
  end-page: 346
  ident: b0260
  article-title: Bidirectional joint representation learning with symmetrical deep neural networks for multimodal and crossmodal applications
  publication-title: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval
– reference: C. Craye, F. Karray, Driver distraction detection and recognition using rgb-d sensor. arXiv preprint arXiv:1502.00250, 2015.
– start-page: 917
  year: 2010
  end-page: 921
  ident: b0040
  article-title: A novel drowsiness detection scheme based on speech analysis with validation using simultaneous eeg recordings
  publication-title: 2010 IEEE International Conference on Automation Science and Engineering
– volume: 156
  start-page: 117
  year: 2017
  end-page: 127
  ident: b0295
  article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion
  publication-title: Comput. Vis. Image Underst.
– volume: 2
  year: 2015
  ident: b0020
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– reference: H.M. Eraqi, Y. Abouelnaga, M.H. Saad, M.N. Moustafa, Driver distraction identification with an ensemble of convolutional neural networks, J. Adv. Transp. (2019).
– reference: S. Shuvaev, H. Giaffar, A.A. Koulakov, Representations of sound in deep learning of audio features from music, 2017. arXiv preprint arXiv:1712.02898.
– reference: J. Krajewski, U. Trutschel, M. Golz, D. Sommer, D. Edwards, Estimating fatigue from predetermined speech samples transmitted by operator communication systems, 2009.
– start-page: 1103
  year: 2017
  end-page: 1114
  ident: b0320
  article-title: Tensor fusion network for multimodal sentiment analysis
  publication-title: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0245
  article-title: Going deeper with convolutions, in
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: G. Shiran, D. Weinshall, Multi-modal deep clustering: Unsupervised partitioning of images, 2019. arXiv preprint arXiv:1912.02678.
– reference: X. Li, Y. Zhang, J. Zhang, S. Chen, I. Marsic, R.A. Farneth, R.S. Burd, Concurrent activity recognition with multimodal cnn-lstm structure, 2017. arXiv preprint arXiv:1702.01638.
– start-page: 1236
  year: 2010
  end-page: 1241
  ident: b0200
  article-title: Driver adaptive and context aware active safety systems using can-bus signals
  publication-title: 2010 IEEE Intelligent Vehicles Symposium
– start-page: 3748
  year: 2010
  end-page: 3751
  ident: b0190
  article-title: Multimodal recognition of cognitive workload for multitasking in the car
  publication-title: 2010 20th International Conference on Pattern Recognition
– start-page: 4
  year: 2014
  ident: b0195
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction, in
  publication-title: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis
– year: 2015
  ident: b0310
  article-title: Deep convolutional neural networks on multichannel time series for human activity recognition, in
  publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence
– year: 2008
  ident: b0160
  article-title: Control Techniques for Complex Networks
– start-page: 733
  year: 2011
  end-page: 737
  ident: b0220
  article-title: An active driver fatigue identification technique using multiple physiological features
  publication-title: 2011 International Conference on Mechatronic Science
– start-page: 439
  year: 2017
  end-page: 444
  ident: b0150
  article-title: Remembering history with convolutional lstm for anomaly detection
  publication-title: 2017 IEEE International Conference on Multimedia and Expo (ICME)
– reference: M.K. Wali, M. Murugappan, B. Ahmmad, Wavelet packet transform based driver distraction level classification using eeg, Math. Probl. Eng. (2013).
– start-page: 5652
  year: 2019
  end-page: 5659
  ident: b0315
  article-title: Deep robust unsupervised multi-modal network
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– reference: Y. Ikeda, K. Ishibashi, Y. Nakano, K. Watanabe, R. Kawahara, Anomaly detection and interpretation using multimodal autoencoder and sparse optimization, 2018. arXiv preprint arXiv:1812.07136.
– reference: X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, W. Woo, Convolutional LSTM network: a machine learning approach for precipitation nowcasting. CoRR abs/1506.04214, 2015. URL:
– volume: 409
  start-page: 306
  year: 2020
  end-page: 315
  ident: b0010
  article-title: Toward effective mobile encrypted traffic classification through deep learning
  publication-title: Neurocomputing
– start-page: 616
  year: 2013
  end-page: 623
  ident: b0100
  article-title: Various approaches for driver and driving behavior monitoring: a review
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– year: 2009
  ident: b0025
  article-title: An examination of driver distraction as recorded in nhtsa databases
  publication-title: Traffic Saf. Facts Res. Note
– reference: .
– reference: A.A. Aljarrah, A.H. Ali, Human activity recognition using pca and bilstm recurrent neural networks, in: 2019 2nd International Conference on Engineering Technology and its Applications (IICETA), IEEE, 2019, pp. 156–160.
– start-page: 120
  year: 2008
  end-page: 125
  ident: b0205
  article-title: Body sensor networks for driver distraction identification
  publication-title: 2008 IEEE International Conference on Vehicular Electronics and Safety
– start-page: 108
  year: 2010
  end-page: 113
  ident: b0305
  article-title: Driver distraction detection for vehicular monitoring
  publication-title: IECON 2010–36th Annual Conference on IEEE Industrial Electronics Society
– reference: N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, 2016. arXiv preprint arXiv:1604.08880.
– reference: http://arxiv.org/abs/1506.04214, arXiv:1506.04214.
– reference: Y. Du, C. Raman, A.W. Black, L.P. Morency, M. Eskenazi, Multimodal polynomial fusion for detecting driver distraction, 2018. arXiv preprint arXiv:1810.10565.
– start-page: 689
  year: 2011
  end-page: 696
  ident: b0180
  article-title: Multimodal deep learning
– start-page: 187
  year: 2018
  end-page: 196
  ident: b0300
  article-title: Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications
  publication-title: Proceedings of the 2018 World Wide Web Conference, International World Wide Web Conferences Steering Committee
– volume: 8
  start-page: 340
  year: 2007
  end-page: 350
  ident: b0140
  article-title: Real-time detection of driver cognitive distraction using support vector machines
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 436
  year: 2010
  end-page: 441
  ident: b0280
  article-title: Semi-supervised anomaly detection for eeg waveforms using deep belief nets
  publication-title: 2010 Ninth International Conference on Machine Learning and Applications
– reference: P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G.M. Shroff, Lstm-based encoder-decoder for multi-sensor anomaly detection. CoRR abs/1607.00148, 2016. URL: http://arxiv.org/abs/1607.00148, arXiv:1607.00148.
– volume: 7
  start-page: 7717
  year: 2019
  end-page: 7727
  ident: b0105
  article-title: Sound classification using convolutional neural network and tensor deep stacking network
  publication-title: IEEE Access
– ident: 10.1016/j.neucom.2020.09.023_b0050
  doi: 10.21437/Interspeech.2018-2011
– ident: 10.1016/j.neucom.2020.09.023_b0225
– start-page: 2191
  year: 2018
  ident: 10.1016/j.neucom.2020.09.023_b0035
  article-title: Multi-modal system to detect on-the-road driver distraction
– start-page: 436
  year: 2010
  ident: 10.1016/j.neucom.2020.09.023_b0280
  article-title: Semi-supervised anomaly detection for eeg waveforms using deep belief nets
– ident: 10.1016/j.neucom.2020.09.023_b0090
– volume: 7
  start-page: 649
  year: 2014
  ident: 10.1016/j.neucom.2020.09.023_b0275
  article-title: Effective multi-modal retrieval based on stacked auto-encoders
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/2732296.2732301
– ident: 10.1016/j.neucom.2020.09.023_b0070
– start-page: 616
  year: 2013
  ident: 10.1016/j.neucom.2020.09.023_b0100
  article-title: Various approaches for driver and driving behavior monitoring: a review
– ident: 10.1016/j.neucom.2020.09.023_b0325
  doi: 10.1609/aaai.v33i01.33011409
– ident: 10.1016/j.neucom.2020.09.023_b0215
– ident: 10.1016/j.neucom.2020.09.023_b0240
– volume: 11
  year: 2010
  ident: 10.1016/j.neucom.2020.09.023_b0170
  article-title: Head pose estimation and augmented reality tracking
  publication-title: IEEE Transact
– start-page: 4
  year: 2014
  ident: 10.1016/j.neucom.2020.09.023_b0195
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction, in
– ident: 10.1016/j.neucom.2020.09.023_b0265
  doi: 10.1155/2013/297587
– ident: 10.1016/j.neucom.2020.09.023_b0135
– ident: 10.1016/j.neucom.2020.09.023_b0015
  doi: 10.1109/IICETA47481.2019.9012979
– volume: 165
  year: 2019
  ident: 10.1016/j.neucom.2020.09.023_b0005
  article-title: Mimetic: mobile encrypted traffic classification using multimodal deep learning
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.106944
– start-page: 179
  year: 2019
  ident: 10.1016/j.neucom.2020.09.023_b0175
  article-title: Anomaly detection from system tracing data using multimodal deep learning
– start-page: 689
  year: 2011
  ident: 10.1016/j.neucom.2020.09.023_b0180
– volume: 34
  start-page: 130
  year: 2017
  ident: 10.1016/j.neucom.2020.09.023_b0075
  article-title: Driver modeling for detection and assessment of driver distraction: examples from the utdrive test bed
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2699039
– start-page: 1103
  year: 2017
  ident: 10.1016/j.neucom.2020.09.023_b0320
  article-title: Tensor fusion network for multimodal sentiment analysis
– ident: 10.1016/j.neucom.2020.09.023_b0235
– ident: 10.1016/j.neucom.2020.09.023_b0210
– year: 2009
  ident: 10.1016/j.neucom.2020.09.023_b0025
  article-title: An examination of driver distraction as recorded in nhtsa databases
  publication-title: Traffic Saf. Facts Res. Note
– volume: 16
  start-page: 51
  year: 2015
  ident: 10.1016/j.neucom.2020.09.023_b0125
  article-title: Predicting perceived visual and cognitive distractions of drivers with multimodal features
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2324414
– ident: 10.1016/j.neucom.2020.09.023_b0110
  doi: 10.17077/drivingassessment.1359
– start-page: 432
  year: 2020
  ident: 10.1016/j.neucom.2020.09.023_b0055
  article-title: Acoustic anomaly detection using convolutional autoencoders in industrial processes
– start-page: 780
  year: 2016
  ident: 10.1016/j.neucom.2020.09.023_b0330
  article-title: A character-level sequence-to-sequence method for subtitle learning
– start-page: 343
  year: 2016
  ident: 10.1016/j.neucom.2020.09.023_b0260
  article-title: Bidirectional joint representation learning with symmetrical deep neural networks for multimodal and crossmodal applications
– start-page: 187
  year: 2018
  ident: 10.1016/j.neucom.2020.09.023_b0300
  article-title: Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications
– volume: 22
  start-page: 1325
  year: 2019
  ident: 10.1016/j.neucom.2020.09.023_b0255
  article-title: Multimodal deep representation learning for video classification
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0548-3
– start-page: 120
  year: 2008
  ident: 10.1016/j.neucom.2020.09.023_b0205
  article-title: Body sensor networks for driver distraction identification
– ident: 10.1016/j.neucom.2020.09.023_b0060
  doi: 10.1155/2019/4125865
– volume: 409
  start-page: 306
  year: 2020
  ident: 10.1016/j.neucom.2020.09.023_b0010
  article-title: Toward effective mobile encrypted traffic classification through deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.036
– ident: 10.1016/j.neucom.2020.09.023_b0290
– ident: 10.1016/j.neucom.2020.09.023_b0120
  doi: 10.1007/978-3-030-21290-2_6
– start-page: 439
  year: 2017
  ident: 10.1016/j.neucom.2020.09.023_b0150
  article-title: Remembering history with convolutional lstm for anomaly detection
– ident: 10.1016/j.neucom.2020.09.023_b0085
  doi: 10.1126/science.1127647
– ident: 10.1016/j.neucom.2020.09.023_b0030
– year: 2007
  ident: 10.1016/j.neucom.2020.09.023_b0115
  article-title: Driver distraction detection with a camera vision system
– year: 2015
  ident: 10.1016/j.neucom.2020.09.023_b0310
  article-title: Deep convolutional neural networks on multichannel time series for human activity recognition, in
– volume: 2
  year: 2015
  ident: 10.1016/j.neucom.2020.09.023_b0020
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– start-page: 630
  year: 2016
  ident: 10.1016/j.neucom.2020.09.023_b0285
  article-title: Detection of drivers visual attention using smartphone
– ident: 10.1016/j.neucom.2020.09.023_b0095
– volume: 15
  start-page: 1213
  year: 2013
  ident: 10.1016/j.neucom.2020.09.023_b0130
  article-title: Modeling of driver behavior in real world scenarios using multiple noninvasive sensors
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2013.2241416
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2020.09.023_b0245
  article-title: Going deeper with convolutions, in
– start-page: 3748
  year: 2010
  ident: 10.1016/j.neucom.2020.09.023_b0190
  article-title: Multimodal recognition of cognitive workload for multitasking in the car
– volume: 39
  start-page: 139
  year: 2015
  ident: 10.1016/j.neucom.2020.09.023_b0230
  article-title: Improving multi-modal data fusion by anomaly detection
  publication-title: Auton. Robots
  doi: 10.1007/s10514-015-9431-6
– volume: 11
  start-page: 692
  year: 2010
  ident: 10.1016/j.neucom.2020.09.023_b0065
  article-title: Model-based analysis and classification of driver distraction under secondary tasks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2010.2049741
– start-page: 770
  year: 2016
  ident: 10.1016/j.neucom.2020.09.023_b0080
  article-title: Deep residual learning for image recognition, in
– ident: 10.1016/j.neucom.2020.09.023_b0145
  doi: 10.1109/APSIPA.2016.7820699
– start-page: 1
  year: 2009
  ident: 10.1016/j.neucom.2020.09.023_b0165
  article-title: Driver’s cognitive distraction detection using physiological features by the adaboost
– ident: 10.1016/j.neucom.2020.09.023_b0270
– start-page: 108
  year: 2010
  ident: 10.1016/j.neucom.2020.09.023_b0305
  article-title: Driver distraction detection for vehicular monitoring
– year: 2008
  ident: 10.1016/j.neucom.2020.09.023_b0160
– start-page: 5652
  year: 2019
  ident: 10.1016/j.neucom.2020.09.023_b0315
  article-title: Deep robust unsupervised multi-modal network
– ident: 10.1016/j.neucom.2020.09.023_b0185
  doi: 10.1109/ACCESS.2018.2881003
– ident: 10.1016/j.neucom.2020.09.023_b0250
  doi: 10.1155/2017/6057830
– volume: 8
  start-page: 340
  year: 2007
  ident: 10.1016/j.neucom.2020.09.023_b0140
  article-title: Real-time detection of driver cognitive distraction using support vector machines
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2007.895298
– volume: 156
  start-page: 117
  year: 2017
  ident: 10.1016/j.neucom.2020.09.023_b0295
  article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.10.010
– start-page: 1236
  year: 2010
  ident: 10.1016/j.neucom.2020.09.023_b0200
  article-title: Driver adaptive and context aware active safety systems using can-bus signals
– start-page: 733
  year: 2011
  ident: 10.1016/j.neucom.2020.09.023_b0220
  article-title: An active driver fatigue identification technique using multiple physiological features
– year: 2012
  ident: 10.1016/j.neucom.2020.09.023_b0045
– start-page: 917
  year: 2010
  ident: 10.1016/j.neucom.2020.09.023_b0040
  article-title: A novel drowsiness detection scheme based on speech analysis with validation using simultaneous eeg recordings
– volume: 7
  start-page: 7717
  year: 2019
  ident: 10.1016/j.neucom.2020.09.023_b0105
  article-title: Sound classification using convolutional neural network and tensor deep stacking network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888882
– ident: 10.1016/j.neucom.2020.09.023_b0155
SSID ssj0017129
Score 2.537007
Snippet •A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 26
Title Deep unsupervised multi-modal fusion network for detecting driver distraction
URI https://dx.doi.org/10.1016/j.neucom.2020.09.023
Volume 421
WOSCitedRecordID wos000593102100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLe2lsMuwNimMcbkw27Ik5vmwz5WjAkmUXFgUjlF8UemIki7tkH98_de7HjhQzAOXKzKaew079fnn5_fByFf4wg4uFKCFQk0mOKNFcVgwETB9aAsBKy5qik2kY3HYjKRZ95tbNmUE8iqSqzXcv6iooY-EDaGzj5D3GFQ6IDPIHRoQezQ_pfgv1s7P6irZT1HNbAEQtk4DbLrmcFgxRrNYweV8_5unAyNxYMENBmYBXpp4KHNauECHrrctcnjoZsqEN6-MLrGNAsGMRXsCcECfVGvpwF5hz4I5GL6B_D4O3j9FM5SC1evZr7bmyAitD8wF4TZ2hKjhAFRvKVWYxf53CrGtLPEunwu95S3syNcfqtsjZ48MBNvctC6gOTbubLvrGHBs7B1WrvM3Sg5jpJzmcMor0k_yhIpeqQ_Ojma_AynTdkgcjkZ_c9oQywbP8D7T_MwhenQkvNtsun3E3TkcPCWvLLVDtlqa3VQr7rfkVOEBe3CgnZgQR0sqIcFBVjQAAvqYEE7sHhPfv04Oj88Zr6UBtOwJ1yxUopYljwVmuuYm2SIWYAKmcoYCLQysKm0qS3hDy1Ty5XSqIxVaXhkQMeXthx-IL1qVtmPhGaxFlpJw1WqYqC_yg5hS5oB1bOJtqnZJcP27eTa55nHcidX-WOy2SUs3DV3eVae-H7Wvvjcc0XHAXNA06N3fnrmTHvkzT_Mfya91aK2-2RD36ymy8UXD6W_uXaPuA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+unsupervised+multi-modal+fusion+network+for+detecting+driver+distraction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Yuxin&rft.au=Chen%2C+Yiqiang&rft.au=Gao%2C+Chenlong&rft.date=2021-01-15&rft.issn=0925-2312&rft.volume=421&rft.spage=26&rft.epage=38&rft_id=info:doi/10.1016%2Fj.neucom.2020.09.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_09_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon