Deep unsupervised multi-modal fusion network for detecting driver distraction
•A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for multiple heterogeneous sensors.•Multi-scale feature fusion approach to aggregate multi-modal features.•A data collection system using multivariate s...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 421; pp. 26 - 38 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.01.2021
|
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for multiple heterogeneous sensors.•Multi-scale feature fusion approach to aggregate multi-modal features.•A data collection system using multivariate sensor signal, acoustic signal and visual signal during simulated driving task.
The risk of incurring a road traffic crash has increased year by year. Studies show that lack of attention during driving is one of the major causes of traffic accidents. In this work, in order to detect driver distraction, e.g., phone conversation, eating, texting, we introduce a deep unsupervised multi-modal fusion network, termed UMMFN. It is an end-to-end model composing of three main modules: multi-modal representation learning, multi-scale feature fusion and unsupervised driver distraction detection. The first module is to learn low-dimensional representation of multiple heterogeneous sensors using embedding subnetworks. The goal of multi-scale feature fusion is to learn both the temporal dependency for each modality and spatio dependencies from different modalities. The last module utilizes a ConvLSTM Encoder-Decoder model to perform an unsupervised classification task that is not affected by new types of driver behaviors. During the detection phase, a fine-grained detection decision can be made through calculating reconstruction error of UMMFN as a score for each captured testing data. We empirically compare the proposed approach with several state-of-the-art methods on our own multi-modal dataset for distracted driving behavior. Experimental results show that UMMFN has superior performance over the existing approaches. |
|---|---|
| AbstractList | •A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for multiple heterogeneous sensors.•Multi-scale feature fusion approach to aggregate multi-modal features.•A data collection system using multivariate sensor signal, acoustic signal and visual signal during simulated driving task.
The risk of incurring a road traffic crash has increased year by year. Studies show that lack of attention during driving is one of the major causes of traffic accidents. In this work, in order to detect driver distraction, e.g., phone conversation, eating, texting, we introduce a deep unsupervised multi-modal fusion network, termed UMMFN. It is an end-to-end model composing of three main modules: multi-modal representation learning, multi-scale feature fusion and unsupervised driver distraction detection. The first module is to learn low-dimensional representation of multiple heterogeneous sensors using embedding subnetworks. The goal of multi-scale feature fusion is to learn both the temporal dependency for each modality and spatio dependencies from different modalities. The last module utilizes a ConvLSTM Encoder-Decoder model to perform an unsupervised classification task that is not affected by new types of driver behaviors. During the detection phase, a fine-grained detection decision can be made through calculating reconstruction error of UMMFN as a score for each captured testing data. We empirically compare the proposed approach with several state-of-the-art methods on our own multi-modal dataset for distracted driving behavior. Experimental results show that UMMFN has superior performance over the existing approaches. |
| Author | Chen, Yiqiang Gao, Chenlong Zhang, Yuxin |
| Author_xml | – sequence: 1 givenname: Yuxin surname: Zhang fullname: Zhang, Yuxin email: zhangyuxin@ict.ac.cn organization: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China – sequence: 2 givenname: Yiqiang surname: Chen fullname: Chen, Yiqiang email: yqchen@ict.ac.cn organization: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China – sequence: 3 givenname: Chenlong surname: Gao fullname: Gao, Chenlong email: gaochenlong@ict.ac.cn organization: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China |
| BookMark | eNqFkM1KxDAUhYOM4Dj6Bi76Aq03aZtpXAgy_sKIG12HNrmRjG0yJOmIb2-HceVCVxcOfIdzv1Myc94hIRcUCgqUX24Kh6PyQ8GAQQGiAFYekTltlixvWMNnZA6C1TkrKTshpzFuAOiSMjEnz7eI22x0cdxi2NmIOhvGPtl88LrtMzNG613mMH368JEZHzKNCVWy7j3Twe5wCmxMoZ0i787IsWn7iOc_d0He7u9eV4_5-uXhaXWzzlUJPOVGNJUwwBsFqgJdlzWUTSu4qKqad1osK-RosEPBEbpOdQC8MxqYrgAMmnJBrg69KvgYAxqpbGr3C6YltpcU5F6M3MiDGLkXI0HIScwEV7_gbbBDG77-w64PGE6P7SwGGZVFp1DbMAmR2tu_C74BlxuDzw |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2024_3398654 crossref_primary_10_1109_TITS_2022_3166275 crossref_primary_10_1155_2023_7664577 crossref_primary_10_3390_s23125551 crossref_primary_10_1016_j_engappai_2022_105399 crossref_primary_10_1109_TKDE_2021_3102110 crossref_primary_10_3390_electronics10030342 crossref_primary_10_1016_j_inffus_2022_08_009 crossref_primary_10_1016_j_eswa_2023_119631 crossref_primary_10_1016_j_bspc_2023_104831 crossref_primary_10_1007_s00521_022_07943_6 crossref_primary_10_1016_j_eswa_2022_119157 crossref_primary_10_3390_make4040053 crossref_primary_10_1049_itr2_12560 crossref_primary_10_1016_j_ress_2023_109449 crossref_primary_10_1109_ACCESS_2021_3068343 crossref_primary_10_1109_TITS_2025_3556852 crossref_primary_10_1109_ACCESS_2021_3109815 crossref_primary_10_1109_TITS_2024_3416382 crossref_primary_10_32604_cmc_2022_022553 crossref_primary_10_1016_j_eswa_2022_117877 crossref_primary_10_3390_s24051386 crossref_primary_10_1016_j_engappai_2025_111932 crossref_primary_10_1155_2023_3145483 crossref_primary_10_1109_JSEN_2023_3339727 crossref_primary_10_3390_computation12070131 crossref_primary_10_3390_electronics11020285 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_1109_ACCESS_2022_3188715 crossref_primary_10_1049_itr2_12366 crossref_primary_10_1109_TITS_2023_3320583 crossref_primary_10_1109_TITS_2025_3530143 crossref_primary_10_1016_j_neucom_2025_131281 crossref_primary_10_1016_j_eswa_2023_120707 crossref_primary_10_1111_exsy_13046 crossref_primary_10_1016_j_ssci_2022_105820 crossref_primary_10_1016_j_aap_2024_107497 crossref_primary_10_1109_ACCESS_2021_3073599 crossref_primary_10_1016_j_trc_2023_104212 crossref_primary_10_1109_ACCESS_2024_3489220 crossref_primary_10_1007_s10115_025_02342_4 crossref_primary_10_1109_TITS_2022_3159602 crossref_primary_10_1016_j_cag_2022_09_001 crossref_primary_10_1016_j_compeleceng_2025_110187 crossref_primary_10_1109_JIOT_2023_3243622 crossref_primary_10_1109_TITS_2023_3316203 crossref_primary_10_1016_j_knosys_2022_110179 crossref_primary_10_3390_electronics12224640 |
| Cites_doi | 10.21437/Interspeech.2018-2011 10.14778/2732296.2732301 10.1609/aaai.v33i01.33011409 10.1155/2013/297587 10.1109/IICETA47481.2019.9012979 10.1016/j.comnet.2019.106944 10.1109/MSP.2017.2699039 10.1109/TITS.2014.2324414 10.17077/drivingassessment.1359 10.1007/s11280-018-0548-3 10.1155/2019/4125865 10.1016/j.neucom.2020.05.036 10.1007/978-3-030-21290-2_6 10.1126/science.1127647 10.1109/TMM.2013.2241416 10.1007/s10514-015-9431-6 10.1109/TITS.2010.2049741 10.1109/APSIPA.2016.7820699 10.1109/ACCESS.2018.2881003 10.1155/2017/6057830 10.1109/TITS.2007.895298 10.1016/j.cviu.2016.10.010 10.1109/ACCESS.2018.2888882 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2020.09.023 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 38 |
| ExternalDocumentID | 10_1016_j_neucom_2020_09_023 S0925231220314302 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-f9849f068c0c40d535038a9694456bd974e6efebe96e0bbcb006bfd02d400fef3 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593102100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:16:34 EST 2025 Tue Nov 18 21:16:28 EST 2025 Fri Feb 23 02:45:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-f9849f068c0c40d535038a9694456bd974e6efebe96e0bbcb006bfd02d400fef3 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2020_09_023 crossref_primary_10_1016_j_neucom_2020_09_023 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_09_023 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-15 |
| PublicationDateYYYYMMDD | 2021-01-15 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | M.K. Wali, M. Murugappan, B. Ahmmad, Wavelet packet transform based driver distraction level classification using eeg, Math. Probl. Eng. (2013). W. Lim, D. Jang, T. Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4. Ascone, Lindsey, Varghese (b0025) 2009 Luo, Liu, Gao (b0150) 2017 Duman, Bayram, İnce (b0055) 2020 Shiwu, Linhong, Zhifa, Bingkui, Feiyan, Zhongkai (b0220) 2011 Dehzangi, Sahu, Taherisadr, Galster (b0035) 2018 S. Shuvaev, H. Giaffar, A.A. Koulakov, Representations of sound in deep learning of audio features from music, 2017. arXiv preprint arXiv:1712.02898. Simanek, Kubelka, Reinstein (b0230) 2015; 39 Y. Ikeda, K. Ishibashi, Y. Nakano, K. Watanabe, R. Kawahara, Anomaly detection and interpretation using multimodal autoencoder and sparse optimization, 2018. arXiv preprint arXiv:1812.07136. Li, Jain, Busso (b0130) 2013; 15 G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 504–507. URL Y. Du, C. Raman, A.W. Black, L.P. Morency, M. Eskenazi, Multimodal polynomial fusion for detecting driver distraction, 2018. arXiv preprint arXiv:1810.10565. Sakurada, Yairi (b0195) 2014 Sathyanarayana, Nageswaren, Ghasemzadeh, Jafari, Hansen (b0205) 2008 S. Xingjian, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W.c. Woo, Convolutional lstm network: a machine learning approach for precipitation nowcasting, in: Advances in Neural Information Processing Systems, 2015, pp. 802–810. H.M. Eraqi, Y. Abouelnaga, M.H. Saad, M.N. Moustafa, Driver distraction identification with an ensemble of convolutional neural networks, J. Adv. Transp. (2019). Ngiam, Khosla, Kim, Nam, Lee, Ng (b0180) 2011 Yang, Wu, Zhan, Liu, Jiang (b0315) 2019 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014. arXiv preprint arXiv:1409.1556. H. Wang, A. Meghawat, L. Morency, E.P. Xing, Select-additive learning: Improving cross-individual generalization in multimodal sentiment analysis. CoRR abs/1609.05244, 2016. URL: http://arxiv.org/abs/1609.05244, arXiv:1609.05244. C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 1409–1416. . A.A. Aljarrah, A.H. Ali, Human activity recognition using pca and bilstm recurrent neural networks, in: 2019 2nd International Conference on Engineering Technology and its Applications (IICETA), IEEE, 2019, pp. 156–160. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mobile vision applications, 2017. arXiv preprint arXiv:1704.04861. N. Srivastava, E. Mansimov, R. Salakhutdinov, Unsupervised learning of video representations using lstms. CoRR abs/1502.04681, 2015. URL: http://arxiv.org/abs/1502.04681, arXiv:1502.04681. Aceto, Ciuonzo, Montieri, Pescapé (b0010) 2020; 409 P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G.M. Shroff, Lstm-based encoder-decoder for multi-sensor anomaly detection. CoRR abs/1607.00148, 2016. URL: http://arxiv.org/abs/1607.00148, arXiv:1607.00148. Wulsin, Blanco, Mani, Litt (b0280) 2010 Vukotić, Raymond, Gravier (b0260) 2016 Miyaji, Kawanaka, Oguri (b0165) 2009 Yang, Nguyen, San, Li, Krishnaswamy (b0310) 2015 Kang (b0100) 2013 Liang, Reyes, Lee (b0140) 2007; 8 X. Li, Y. Zhang, J. Zhang, S. Chen, I. Marsic, R.A. Farneth, R.S. Burd, Concurrent activity recognition with multimodal cnn-lstm structure, 2017. arXiv preprint arXiv:1702.01638. Dhupati, Kar, Rajaguru, Routray (b0040) 2010 Tian, Tao, Pouyanfar, Chen, Shyu (b0255) 2019; 22 Ersal, Fuller, Tsimhoni, Stein, Fathy (b0065) 2010; 11 Li, Busso (b0125) 2015; 16 Xu, Chen, Zhao, Li, Bu, Li, Liu, Zhao, Pei, Feng (b0300) 2018 Aceto, Ciuonzo, Montieri, Pescapè (b0005) 2019; 165 He, Zhang, Ren, Sun (b0080) 2016 Nedelkoski, Cardoso, Kao (b0175) 2019 Dong, Hu (b0045) 2012 Sathyanarayana, Boyraz, Purohit, Lubag, Hansen (b0200) 2010 Wang, Ooi, Yang, Zhang, Zhuang (b0275) 2014; 7 An, Cho (b0020) 2015; 2 Xu, Yan, Ricci, Sebe (b0295) 2017; 156 Hansen, Busso, Zheng, Sathyanarayana (b0075) 2017; 34 Zadeh, Chen, Poria, Cambria, Morency (b0320) 2017 Yang, Chang, Hou (b0305) 2010 G. Lechner, M. Fellmann, A. Festl, C. Kaiser, T.E. Kalayci, M. Spitzer, A. Stocker, A lightweight framework for multi-device integration and multi-sensor fusion to explore driver distraction, in: International Conference on Advanced Information Systems Engineering, Springer, 2019, pp. 80–95. N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, 2016. arXiv preprint arXiv:1604.08880. Meyn (b0160) 2008 Zhang, Li, Ji, Yue (b0330) 2016 Kutila, Jokela, Markkula, Rué (b0115) 2007 T. Tanprasert, C. Saiprasert, S. Thajchayapong, Combining unsupervised anomaly detection and neural networks for driver identification, J. Adv. Transp. (2017). C. Craye, F. Karray, Driver distraction detection and recognition using rgb-d sensor. arXiv preprint arXiv:1502.00250, 2015. G. Shiran, D. Weinshall, Multi-modal deep clustering: Unsupervised partitioning of images, 2019. arXiv preprint arXiv:1912.02678. Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0245) 2015 http://arxiv.org/abs/1506.04214, arXiv:1506.04214. Putze, Jarvis, Schultz (b0190) 2010 Xiao, Feng (b0285) 2016 Khamparia, Gupta, Nguyen, Khanna, Pandey, Tiwari (b0105) 2019; 7 J. Krajewski, U. Trutschel, M. Golz, D. Sommer, D. Edwards, Estimating fatigue from predetermined speech samples transmitted by operator communication systems, 2009. Murphy (b0170) 2010; 11 X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, W. Woo, Convolutional LSTM network: a machine learning approach for precipitation nowcasting. CoRR abs/1506.04214, 2015. URL S. Park, M. Kim, S. Lee, Anomaly detection for http using convolutional autoencoders, IEEE Access 2018, pp. 1–1. 10.1016/j.neucom.2020.09.023_b0120 10.1016/j.neucom.2020.09.023_b0240 Dhupati (10.1016/j.neucom.2020.09.023_b0040) 2010 Dehzangi (10.1016/j.neucom.2020.09.023_b0035) 2018 10.1016/j.neucom.2020.09.023_b0085 Wang (10.1016/j.neucom.2020.09.023_b0275) 2014; 7 Li (10.1016/j.neucom.2020.09.023_b0125) 2015; 16 Ngiam (10.1016/j.neucom.2020.09.023_b0180) 2011 Kutila (10.1016/j.neucom.2020.09.023_b0115) 2007 10.1016/j.neucom.2020.09.023_b0325 Murphy (10.1016/j.neucom.2020.09.023_b0170) 2010; 11 Vukotić (10.1016/j.neucom.2020.09.023_b0260) 2016 Yang (10.1016/j.neucom.2020.09.023_b0315) 2019 Tian (10.1016/j.neucom.2020.09.023_b0255) 2019; 22 Wulsin (10.1016/j.neucom.2020.09.023_b0280) 2010 Duman (10.1016/j.neucom.2020.09.023_b0055) 2020 10.1016/j.neucom.2020.09.023_b0155 10.1016/j.neucom.2020.09.023_b0110 10.1016/j.neucom.2020.09.023_b0270 10.1016/j.neucom.2020.09.023_b0030 Yang (10.1016/j.neucom.2020.09.023_b0310) 2015 Meyn (10.1016/j.neucom.2020.09.023_b0160) 2008 Luo (10.1016/j.neucom.2020.09.023_b0150) 2017 Yang (10.1016/j.neucom.2020.09.023_b0305) 2010 Ersal (10.1016/j.neucom.2020.09.023_b0065) 2010; 11 Nedelkoski (10.1016/j.neucom.2020.09.023_b0175) 2019 10.1016/j.neucom.2020.09.023_b0235 Zadeh (10.1016/j.neucom.2020.09.023_b0320) 2017 Aceto (10.1016/j.neucom.2020.09.023_b0005) 2019; 165 Liang (10.1016/j.neucom.2020.09.023_b0140) 2007; 8 Sathyanarayana (10.1016/j.neucom.2020.09.023_b0205) 2008 Sakurada (10.1016/j.neucom.2020.09.023_b0195) 2014 Putze (10.1016/j.neucom.2020.09.023_b0190) 2010 Xiao (10.1016/j.neucom.2020.09.023_b0285) 2016 Aceto (10.1016/j.neucom.2020.09.023_b0010) 2020; 409 10.1016/j.neucom.2020.09.023_b0070 Kang (10.1016/j.neucom.2020.09.023_b0100) 2013 Li (10.1016/j.neucom.2020.09.023_b0130) 2013; 15 Xu (10.1016/j.neucom.2020.09.023_b0295) 2017; 156 An (10.1016/j.neucom.2020.09.023_b0020) 2015; 2 Ascone (10.1016/j.neucom.2020.09.023_b0025) 2009 10.1016/j.neucom.2020.09.023_b0185 10.1016/j.neucom.2020.09.023_b0265 10.1016/j.neucom.2020.09.023_b0060 Simanek (10.1016/j.neucom.2020.09.023_b0230) 2015; 39 10.1016/j.neucom.2020.09.023_b0145 10.1016/j.neucom.2020.09.023_b0225 Shiwu (10.1016/j.neucom.2020.09.023_b0220) 2011 Szegedy (10.1016/j.neucom.2020.09.023_b0245) 2015 He (10.1016/j.neucom.2020.09.023_b0080) 2016 Hansen (10.1016/j.neucom.2020.09.023_b0075) 2017; 34 Khamparia (10.1016/j.neucom.2020.09.023_b0105) 2019; 7 Xu (10.1016/j.neucom.2020.09.023_b0300) 2018 Miyaji (10.1016/j.neucom.2020.09.023_b0165) 2009 Sathyanarayana (10.1016/j.neucom.2020.09.023_b0200) 2010 10.1016/j.neucom.2020.09.023_b0210 Zhang (10.1016/j.neucom.2020.09.023_b0330) 2016 10.1016/j.neucom.2020.09.023_b0050 10.1016/j.neucom.2020.09.023_b0250 10.1016/j.neucom.2020.09.023_b0095 10.1016/j.neucom.2020.09.023_b0215 10.1016/j.neucom.2020.09.023_b0135 10.1016/j.neucom.2020.09.023_b0015 10.1016/j.neucom.2020.09.023_b0090 10.1016/j.neucom.2020.09.023_b0290 Dong (10.1016/j.neucom.2020.09.023_b0045) 2012 |
| References_xml | – volume: 39 start-page: 139 year: 2015 end-page: 154 ident: b0230 article-title: Improving multi-modal data fusion by anomaly detection publication-title: Auton. Robots – volume: 34 start-page: 130 year: 2017 end-page: 142 ident: b0075 article-title: Driver modeling for detection and assessment of driver distraction: examples from the utdrive test bed publication-title: IEEE Signal Process. Mag. – reference: T. Tanprasert, C. Saiprasert, S. Thajchayapong, Combining unsupervised anomaly detection and neural networks for driver identification, J. Adv. Transp. (2017). – start-page: 770 year: 2016 end-page: 778 ident: b0080 article-title: Deep residual learning for image recognition, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 780 year: 2016 end-page: 783 ident: b0330 article-title: A character-level sequence-to-sequence method for subtitle learning publication-title: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) – start-page: 179 year: 2019 end-page: 186 ident: b0175 article-title: Anomaly detection from system tracing data using multimodal deep learning publication-title: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD) – volume: 11 year: 2010 ident: b0170 article-title: Head pose estimation and augmented reality tracking publication-title: IEEE Transact – start-page: 630 year: 2016 end-page: 635 ident: b0285 article-title: Detection of drivers visual attention using smartphone publication-title: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) – start-page: 432 year: 2020 end-page: 442 ident: b0055 article-title: Acoustic anomaly detection using convolutional autoencoders in industrial processes publication-title: 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019) – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014. arXiv preprint arXiv:1409.1556. – volume: 22 start-page: 1325 year: 2019 end-page: 1341 ident: b0255 article-title: Multimodal deep representation learning for video classification publication-title: World Wide Web – reference: H. Wang, A. Meghawat, L. Morency, E.P. Xing, Select-additive learning: Improving cross-individual generalization in multimodal sentiment analysis. CoRR abs/1609.05244, 2016. URL: http://arxiv.org/abs/1609.05244, arXiv:1609.05244. – reference: S. Xingjian, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W.c. Woo, Convolutional lstm network: a machine learning approach for precipitation nowcasting, in: Advances in Neural Information Processing Systems, 2015, pp. 802–810. – reference: G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 504–507. URL: – reference: C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 1409–1416. – start-page: 2191 year: 2018 end-page: 2196 ident: b0035 article-title: Multi-modal system to detect on-the-road driver distraction publication-title: 2018 21st International Conference on Intelligent Transportation Systems (ITSC) – volume: 7 start-page: 649 year: 2014 end-page: 660 ident: b0275 article-title: Effective multi-modal retrieval based on stacked auto-encoders publication-title: Proc. VLDB Endowment – reference: N. Srivastava, E. Mansimov, R. Salakhutdinov, Unsupervised learning of video representations using lstms. CoRR abs/1502.04681, 2015. URL: http://arxiv.org/abs/1502.04681, arXiv:1502.04681. – year: 2007 ident: b0115 article-title: Driver distraction detection with a camera vision system publication-title: 2007 IEEE International Conference on Image Processing – volume: 11 start-page: 692 year: 2010 end-page: 701 ident: b0065 article-title: Model-based analysis and classification of driver distraction under secondary tasks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 15 start-page: 1213 year: 2013 end-page: 1225 ident: b0130 article-title: Modeling of driver behavior in real world scenarios using multiple noninvasive sensors publication-title: IEEE Trans. Multimedia – year: 2012 ident: b0045 article-title: Driver Inattention Monitoring System for Intelligent Vehicles – reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mobile vision applications, 2017. arXiv preprint arXiv:1704.04861. – volume: 16 start-page: 51 year: 2015 end-page: 65 ident: b0125 article-title: Predicting perceived visual and cognitive distractions of drivers with multimodal features publication-title: IEEE Trans. Intell. Transp. Syst. – reference: W. Lim, D. Jang, T. Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4. – start-page: 1 year: 2009 end-page: 6 ident: b0165 article-title: Driver’s cognitive distraction detection using physiological features by the adaboost publication-title: 2009 12th International IEEE conference on intelligent transportation systems – reference: S. Park, M. Kim, S. Lee, Anomaly detection for http using convolutional autoencoders, IEEE Access 2018, pp. 1–1. – volume: 165 year: 2019 ident: b0005 article-title: Mimetic: mobile encrypted traffic classification using multimodal deep learning publication-title: Comput. Netw. – reference: G. Lechner, M. Fellmann, A. Festl, C. Kaiser, T.E. Kalayci, M. Spitzer, A. Stocker, A lightweight framework for multi-device integration and multi-sensor fusion to explore driver distraction, in: International Conference on Advanced Information Systems Engineering, Springer, 2019, pp. 80–95. – start-page: 343 year: 2016 end-page: 346 ident: b0260 article-title: Bidirectional joint representation learning with symmetrical deep neural networks for multimodal and crossmodal applications publication-title: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval – reference: C. Craye, F. Karray, Driver distraction detection and recognition using rgb-d sensor. arXiv preprint arXiv:1502.00250, 2015. – start-page: 917 year: 2010 end-page: 921 ident: b0040 article-title: A novel drowsiness detection scheme based on speech analysis with validation using simultaneous eeg recordings publication-title: 2010 IEEE International Conference on Automation Science and Engineering – volume: 156 start-page: 117 year: 2017 end-page: 127 ident: b0295 article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion publication-title: Comput. Vis. Image Underst. – volume: 2 year: 2015 ident: b0020 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – reference: H.M. Eraqi, Y. Abouelnaga, M.H. Saad, M.N. Moustafa, Driver distraction identification with an ensemble of convolutional neural networks, J. Adv. Transp. (2019). – reference: S. Shuvaev, H. Giaffar, A.A. Koulakov, Representations of sound in deep learning of audio features from music, 2017. arXiv preprint arXiv:1712.02898. – reference: J. Krajewski, U. Trutschel, M. Golz, D. Sommer, D. Edwards, Estimating fatigue from predetermined speech samples transmitted by operator communication systems, 2009. – start-page: 1103 year: 2017 end-page: 1114 ident: b0320 article-title: Tensor fusion network for multimodal sentiment analysis publication-title: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing – start-page: 1 year: 2015 end-page: 9 ident: b0245 article-title: Going deeper with convolutions, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: G. Shiran, D. Weinshall, Multi-modal deep clustering: Unsupervised partitioning of images, 2019. arXiv preprint arXiv:1912.02678. – reference: X. Li, Y. Zhang, J. Zhang, S. Chen, I. Marsic, R.A. Farneth, R.S. Burd, Concurrent activity recognition with multimodal cnn-lstm structure, 2017. arXiv preprint arXiv:1702.01638. – start-page: 1236 year: 2010 end-page: 1241 ident: b0200 article-title: Driver adaptive and context aware active safety systems using can-bus signals publication-title: 2010 IEEE Intelligent Vehicles Symposium – start-page: 3748 year: 2010 end-page: 3751 ident: b0190 article-title: Multimodal recognition of cognitive workload for multitasking in the car publication-title: 2010 20th International Conference on Pattern Recognition – start-page: 4 year: 2014 ident: b0195 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction, in publication-title: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis – year: 2015 ident: b0310 article-title: Deep convolutional neural networks on multichannel time series for human activity recognition, in publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence – year: 2008 ident: b0160 article-title: Control Techniques for Complex Networks – start-page: 733 year: 2011 end-page: 737 ident: b0220 article-title: An active driver fatigue identification technique using multiple physiological features publication-title: 2011 International Conference on Mechatronic Science – start-page: 439 year: 2017 end-page: 444 ident: b0150 article-title: Remembering history with convolutional lstm for anomaly detection publication-title: 2017 IEEE International Conference on Multimedia and Expo (ICME) – reference: M.K. Wali, M. Murugappan, B. Ahmmad, Wavelet packet transform based driver distraction level classification using eeg, Math. Probl. Eng. (2013). – start-page: 5652 year: 2019 end-page: 5659 ident: b0315 article-title: Deep robust unsupervised multi-modal network publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – reference: Y. Ikeda, K. Ishibashi, Y. Nakano, K. Watanabe, R. Kawahara, Anomaly detection and interpretation using multimodal autoencoder and sparse optimization, 2018. arXiv preprint arXiv:1812.07136. – reference: X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, W. Woo, Convolutional LSTM network: a machine learning approach for precipitation nowcasting. CoRR abs/1506.04214, 2015. URL: – volume: 409 start-page: 306 year: 2020 end-page: 315 ident: b0010 article-title: Toward effective mobile encrypted traffic classification through deep learning publication-title: Neurocomputing – start-page: 616 year: 2013 end-page: 623 ident: b0100 article-title: Various approaches for driver and driving behavior monitoring: a review publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – year: 2009 ident: b0025 article-title: An examination of driver distraction as recorded in nhtsa databases publication-title: Traffic Saf. Facts Res. Note – reference: . – reference: A.A. Aljarrah, A.H. Ali, Human activity recognition using pca and bilstm recurrent neural networks, in: 2019 2nd International Conference on Engineering Technology and its Applications (IICETA), IEEE, 2019, pp. 156–160. – start-page: 120 year: 2008 end-page: 125 ident: b0205 article-title: Body sensor networks for driver distraction identification publication-title: 2008 IEEE International Conference on Vehicular Electronics and Safety – start-page: 108 year: 2010 end-page: 113 ident: b0305 article-title: Driver distraction detection for vehicular monitoring publication-title: IECON 2010–36th Annual Conference on IEEE Industrial Electronics Society – reference: N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, 2016. arXiv preprint arXiv:1604.08880. – reference: http://arxiv.org/abs/1506.04214, arXiv:1506.04214. – reference: Y. Du, C. Raman, A.W. Black, L.P. Morency, M. Eskenazi, Multimodal polynomial fusion for detecting driver distraction, 2018. arXiv preprint arXiv:1810.10565. – start-page: 689 year: 2011 end-page: 696 ident: b0180 article-title: Multimodal deep learning – start-page: 187 year: 2018 end-page: 196 ident: b0300 article-title: Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications publication-title: Proceedings of the 2018 World Wide Web Conference, International World Wide Web Conferences Steering Committee – volume: 8 start-page: 340 year: 2007 end-page: 350 ident: b0140 article-title: Real-time detection of driver cognitive distraction using support vector machines publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 436 year: 2010 end-page: 441 ident: b0280 article-title: Semi-supervised anomaly detection for eeg waveforms using deep belief nets publication-title: 2010 Ninth International Conference on Machine Learning and Applications – reference: P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G.M. Shroff, Lstm-based encoder-decoder for multi-sensor anomaly detection. CoRR abs/1607.00148, 2016. URL: http://arxiv.org/abs/1607.00148, arXiv:1607.00148. – volume: 7 start-page: 7717 year: 2019 end-page: 7727 ident: b0105 article-title: Sound classification using convolutional neural network and tensor deep stacking network publication-title: IEEE Access – ident: 10.1016/j.neucom.2020.09.023_b0050 doi: 10.21437/Interspeech.2018-2011 – ident: 10.1016/j.neucom.2020.09.023_b0225 – start-page: 2191 year: 2018 ident: 10.1016/j.neucom.2020.09.023_b0035 article-title: Multi-modal system to detect on-the-road driver distraction – start-page: 436 year: 2010 ident: 10.1016/j.neucom.2020.09.023_b0280 article-title: Semi-supervised anomaly detection for eeg waveforms using deep belief nets – ident: 10.1016/j.neucom.2020.09.023_b0090 – volume: 7 start-page: 649 year: 2014 ident: 10.1016/j.neucom.2020.09.023_b0275 article-title: Effective multi-modal retrieval based on stacked auto-encoders publication-title: Proc. VLDB Endowment doi: 10.14778/2732296.2732301 – ident: 10.1016/j.neucom.2020.09.023_b0070 – start-page: 616 year: 2013 ident: 10.1016/j.neucom.2020.09.023_b0100 article-title: Various approaches for driver and driving behavior monitoring: a review – ident: 10.1016/j.neucom.2020.09.023_b0325 doi: 10.1609/aaai.v33i01.33011409 – ident: 10.1016/j.neucom.2020.09.023_b0215 – ident: 10.1016/j.neucom.2020.09.023_b0240 – volume: 11 year: 2010 ident: 10.1016/j.neucom.2020.09.023_b0170 article-title: Head pose estimation and augmented reality tracking publication-title: IEEE Transact – start-page: 4 year: 2014 ident: 10.1016/j.neucom.2020.09.023_b0195 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction, in – ident: 10.1016/j.neucom.2020.09.023_b0265 doi: 10.1155/2013/297587 – ident: 10.1016/j.neucom.2020.09.023_b0135 – ident: 10.1016/j.neucom.2020.09.023_b0015 doi: 10.1109/IICETA47481.2019.9012979 – volume: 165 year: 2019 ident: 10.1016/j.neucom.2020.09.023_b0005 article-title: Mimetic: mobile encrypted traffic classification using multimodal deep learning publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.106944 – start-page: 179 year: 2019 ident: 10.1016/j.neucom.2020.09.023_b0175 article-title: Anomaly detection from system tracing data using multimodal deep learning – start-page: 689 year: 2011 ident: 10.1016/j.neucom.2020.09.023_b0180 – volume: 34 start-page: 130 year: 2017 ident: 10.1016/j.neucom.2020.09.023_b0075 article-title: Driver modeling for detection and assessment of driver distraction: examples from the utdrive test bed publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2699039 – start-page: 1103 year: 2017 ident: 10.1016/j.neucom.2020.09.023_b0320 article-title: Tensor fusion network for multimodal sentiment analysis – ident: 10.1016/j.neucom.2020.09.023_b0235 – ident: 10.1016/j.neucom.2020.09.023_b0210 – year: 2009 ident: 10.1016/j.neucom.2020.09.023_b0025 article-title: An examination of driver distraction as recorded in nhtsa databases publication-title: Traffic Saf. Facts Res. Note – volume: 16 start-page: 51 year: 2015 ident: 10.1016/j.neucom.2020.09.023_b0125 article-title: Predicting perceived visual and cognitive distractions of drivers with multimodal features publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2324414 – ident: 10.1016/j.neucom.2020.09.023_b0110 doi: 10.17077/drivingassessment.1359 – start-page: 432 year: 2020 ident: 10.1016/j.neucom.2020.09.023_b0055 article-title: Acoustic anomaly detection using convolutional autoencoders in industrial processes – start-page: 780 year: 2016 ident: 10.1016/j.neucom.2020.09.023_b0330 article-title: A character-level sequence-to-sequence method for subtitle learning – start-page: 343 year: 2016 ident: 10.1016/j.neucom.2020.09.023_b0260 article-title: Bidirectional joint representation learning with symmetrical deep neural networks for multimodal and crossmodal applications – start-page: 187 year: 2018 ident: 10.1016/j.neucom.2020.09.023_b0300 article-title: Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications – volume: 22 start-page: 1325 year: 2019 ident: 10.1016/j.neucom.2020.09.023_b0255 article-title: Multimodal deep representation learning for video classification publication-title: World Wide Web doi: 10.1007/s11280-018-0548-3 – start-page: 120 year: 2008 ident: 10.1016/j.neucom.2020.09.023_b0205 article-title: Body sensor networks for driver distraction identification – ident: 10.1016/j.neucom.2020.09.023_b0060 doi: 10.1155/2019/4125865 – volume: 409 start-page: 306 year: 2020 ident: 10.1016/j.neucom.2020.09.023_b0010 article-title: Toward effective mobile encrypted traffic classification through deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.036 – ident: 10.1016/j.neucom.2020.09.023_b0290 – ident: 10.1016/j.neucom.2020.09.023_b0120 doi: 10.1007/978-3-030-21290-2_6 – start-page: 439 year: 2017 ident: 10.1016/j.neucom.2020.09.023_b0150 article-title: Remembering history with convolutional lstm for anomaly detection – ident: 10.1016/j.neucom.2020.09.023_b0085 doi: 10.1126/science.1127647 – ident: 10.1016/j.neucom.2020.09.023_b0030 – year: 2007 ident: 10.1016/j.neucom.2020.09.023_b0115 article-title: Driver distraction detection with a camera vision system – year: 2015 ident: 10.1016/j.neucom.2020.09.023_b0310 article-title: Deep convolutional neural networks on multichannel time series for human activity recognition, in – volume: 2 year: 2015 ident: 10.1016/j.neucom.2020.09.023_b0020 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – start-page: 630 year: 2016 ident: 10.1016/j.neucom.2020.09.023_b0285 article-title: Detection of drivers visual attention using smartphone – ident: 10.1016/j.neucom.2020.09.023_b0095 – volume: 15 start-page: 1213 year: 2013 ident: 10.1016/j.neucom.2020.09.023_b0130 article-title: Modeling of driver behavior in real world scenarios using multiple noninvasive sensors publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2013.2241416 – start-page: 1 year: 2015 ident: 10.1016/j.neucom.2020.09.023_b0245 article-title: Going deeper with convolutions, in – start-page: 3748 year: 2010 ident: 10.1016/j.neucom.2020.09.023_b0190 article-title: Multimodal recognition of cognitive workload for multitasking in the car – volume: 39 start-page: 139 year: 2015 ident: 10.1016/j.neucom.2020.09.023_b0230 article-title: Improving multi-modal data fusion by anomaly detection publication-title: Auton. Robots doi: 10.1007/s10514-015-9431-6 – volume: 11 start-page: 692 year: 2010 ident: 10.1016/j.neucom.2020.09.023_b0065 article-title: Model-based analysis and classification of driver distraction under secondary tasks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2010.2049741 – start-page: 770 year: 2016 ident: 10.1016/j.neucom.2020.09.023_b0080 article-title: Deep residual learning for image recognition, in – ident: 10.1016/j.neucom.2020.09.023_b0145 doi: 10.1109/APSIPA.2016.7820699 – start-page: 1 year: 2009 ident: 10.1016/j.neucom.2020.09.023_b0165 article-title: Driver’s cognitive distraction detection using physiological features by the adaboost – ident: 10.1016/j.neucom.2020.09.023_b0270 – start-page: 108 year: 2010 ident: 10.1016/j.neucom.2020.09.023_b0305 article-title: Driver distraction detection for vehicular monitoring – year: 2008 ident: 10.1016/j.neucom.2020.09.023_b0160 – start-page: 5652 year: 2019 ident: 10.1016/j.neucom.2020.09.023_b0315 article-title: Deep robust unsupervised multi-modal network – ident: 10.1016/j.neucom.2020.09.023_b0185 doi: 10.1109/ACCESS.2018.2881003 – ident: 10.1016/j.neucom.2020.09.023_b0250 doi: 10.1155/2017/6057830 – volume: 8 start-page: 340 year: 2007 ident: 10.1016/j.neucom.2020.09.023_b0140 article-title: Real-time detection of driver cognitive distraction using support vector machines publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2007.895298 – volume: 156 start-page: 117 year: 2017 ident: 10.1016/j.neucom.2020.09.023_b0295 article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2016.10.010 – start-page: 1236 year: 2010 ident: 10.1016/j.neucom.2020.09.023_b0200 article-title: Driver adaptive and context aware active safety systems using can-bus signals – start-page: 733 year: 2011 ident: 10.1016/j.neucom.2020.09.023_b0220 article-title: An active driver fatigue identification technique using multiple physiological features – year: 2012 ident: 10.1016/j.neucom.2020.09.023_b0045 – start-page: 917 year: 2010 ident: 10.1016/j.neucom.2020.09.023_b0040 article-title: A novel drowsiness detection scheme based on speech analysis with validation using simultaneous eeg recordings – volume: 7 start-page: 7717 year: 2019 ident: 10.1016/j.neucom.2020.09.023_b0105 article-title: Sound classification using convolutional neural network and tensor deep stacking network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888882 – ident: 10.1016/j.neucom.2020.09.023_b0155 |
| SSID | ssj0017129 |
| Score | 2.537007 |
| Snippet | •A state-of-the-art, unsupervised, end-to-end method to detect driver distraction.•Different network architectures to perform embedding subnetworks for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 26 |
| Title | Deep unsupervised multi-modal fusion network for detecting driver distraction |
| URI | https://dx.doi.org/10.1016/j.neucom.2020.09.023 |
| Volume | 421 |
| WOSCitedRecordID | wos000593102100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLe2lsMuwNimMcbkw27Ik5vmwz5WjAkmUXFgUjlF8UemIki7tkH98_de7HjhQzAOXKzKaew079fnn5_fByFf4wg4uFKCFQk0mOKNFcVgwETB9aAsBKy5qik2kY3HYjKRZ95tbNmUE8iqSqzXcv6iooY-EDaGzj5D3GFQ6IDPIHRoQezQ_pfgv1s7P6irZT1HNbAEQtk4DbLrmcFgxRrNYweV8_5unAyNxYMENBmYBXpp4KHNauECHrrctcnjoZsqEN6-MLrGNAsGMRXsCcECfVGvpwF5hz4I5GL6B_D4O3j9FM5SC1evZr7bmyAitD8wF4TZ2hKjhAFRvKVWYxf53CrGtLPEunwu95S3syNcfqtsjZ48MBNvctC6gOTbubLvrGHBs7B1WrvM3Sg5jpJzmcMor0k_yhIpeqQ_Ojma_AynTdkgcjkZ_c9oQywbP8D7T_MwhenQkvNtsun3E3TkcPCWvLLVDtlqa3VQr7rfkVOEBe3CgnZgQR0sqIcFBVjQAAvqYEE7sHhPfv04Oj88Zr6UBtOwJ1yxUopYljwVmuuYm2SIWYAKmcoYCLQysKm0qS3hDy1Ty5XSqIxVaXhkQMeXthx-IL1qVtmPhGaxFlpJw1WqYqC_yg5hS5oB1bOJtqnZJcP27eTa55nHcidX-WOy2SUs3DV3eVae-H7Wvvjcc0XHAXNA06N3fnrmTHvkzT_Mfya91aK2-2RD36ymy8UXD6W_uXaPuA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+unsupervised+multi-modal+fusion+network+for+detecting+driver+distraction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Yuxin&rft.au=Chen%2C+Yiqiang&rft.au=Gao%2C+Chenlong&rft.date=2021-01-15&rft.issn=0925-2312&rft.volume=421&rft.spage=26&rft.epage=38&rft_id=info:doi/10.1016%2Fj.neucom.2020.09.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_09_023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |