A method of sequentially generating a set of components of a multidimensional random variable using a nonparametric pattern recognition algorithm
We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the Rosenblatt–Parzen probability density. A new technique for generating sets of independent components of a multidimensional random variable is propo...
Gespeichert in:
| Veröffentlicht in: | Kompʹûternaâ optika Jg. 45; H. 6; S. 926 - 933 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch Russisch |
| Veröffentlicht: |
Samara National Research University
01.12.2021
|
| Schlagworte: | |
| ISSN: | 0134-2452, 2412-6179 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the Rosenblatt–Parzen probability density. A new technique for generating sets of independent components of a multidimensional random variable is proposed. The methodology is based on testing the hypotheses of the independence of combinations of the multidimensional random variable components using a two-alternative nonparametric kernel algorithm for pattern recognition corresponding to the maximum likelihood criterion. Classes correspond to the domains of definition of the probability densities of sets of independent and dependent components of the multidimensional random variable. Nonparametric statistics of the kernel type are used to estimate the probability densities. The choice of the bandwidths of the kernel estimates of the probability densities is made from the condition of the minimum root-mean-square criterion. The sequential procedure for generating a set of independent components begins with the analysis of paired combinations of components of a multidimensional random variable. For each pair of components, the probability of an error in recognizing classes corresponding to the assumptions of independence and dependence of the considered components is estimated. A pair of components with the maximum difference between these errors is determined. If the errors obtained do not differ significantly, then there are no independent components in the considered multivariate random variable. If there is a significant difference in the probability estimates of class recognition errors, a pair of independent components is established. These components are included in a three-component set of a multidimensional random variable. The analysis of their combinations is carried out in the same way, following the above-described procedure. The process of generating the set of independent components is stopped when no reliable difference occurs any more between the probabilities of errors in recognizing situations belonging to the accepted classes. In this case, the previous set of independent components is the desired result. In contrast to the traditional methodology based on the Pearson criterion, the proposed approach allows us to bypass a problem of the decomposition of the range of values of random variables into multidimensional intervals. The method of generating a set of independent components of a multidimensional random variable is illustrated by the results of the analysis of spectral features of remote sensing data of forest tracts using space imagery from the Landsat-8 satellite. |
|---|---|
| AbstractList | We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the Rosenblatt–Parzen probability density. A new technique for generating sets of independent components of a multidimensional random variable is proposed. The methodology is based on testing the hypotheses of the independence of combinations of the multidimensional random variable components using a two-alternative nonparametric kernel algorithm for pattern recognition corresponding to the maximum likelihood criterion. Classes correspond to the domains of definition of the probability densities of sets of independent and dependent components of the multidimensional random variable. Nonparametric statistics of the kernel type are used to estimate the probability densities. The choice of the bandwidths of the kernel estimates of the probability densities is made from the condition of the minimum root-mean-square criterion. The sequential procedure for generating a set of independent components begins with the analysis of paired combinations of components of a multidimensional random variable. For each pair of components, the probability of an error in recognizing classes corresponding to the assumptions of independence and dependence of the considered components is estimated. A pair of components with the maximum difference between these errors is determined. If the errors obtained do not differ significantly, then there are no independent components in the considered multivariate random variable. If there is a significant difference in the probability estimates of class recognition errors, a pair of independent components is established. These components are included in a three-component set of a multidimensional random variable. The analysis of their combinations is carried out in the same way, following the above-described procedure. The process of generating the set of independent components is stopped when no reliable difference occurs any more between the probabilities of errors in recognizing situations belonging to the accepted classes. In this case, the previous set of independent components is the desired result. In contrast to the traditional methodology based on the Pearson criterion, the proposed approach allows us to bypass a problem of the decomposition of the range of values of random variables into multidimensional intervals. The method of generating a set of independent components of a multidimensional random variable is illustrated by the results of the analysis of spectral features of remote sensing data of forest tracts using space imagery from the Landsat-8 satellite. |
| Author | Lapko, A.V. Lapko, V.A. Kiryushina, E.V. Zenkov, I.V. Bakhtina, A.V. Vokin, V.N. |
| Author_xml | – sequence: 1 givenname: I.V. surname: Zenkov fullname: Zenkov, I.V. – sequence: 2 givenname: A.V. surname: Lapko fullname: Lapko, A.V. – sequence: 3 givenname: V.A. surname: Lapko fullname: Lapko, V.A. – sequence: 4 givenname: E.V. surname: Kiryushina fullname: Kiryushina, E.V. – sequence: 5 givenname: V.N. surname: Vokin fullname: Vokin, V.N. – sequence: 6 givenname: A.V. surname: Bakhtina fullname: Bakhtina, A.V. |
| BookMark | eNo9kctqHDEQRUWwIRPbH5CdfqATvVpSL82Qh8Ewm2QtqqXqtky3NJE0AX9G_jg9HuNVUY97b8H5RK5STkjIZ86-cCus-SoUF53mZuj2h25g4gPZvY-uyI5xqTqhevGR3NX6zBjbRJorviP_7umK7SkHmida8c8JU4uwLC90xoQFWkwzhW3Tzgc-r8ctOrV67oCup6XFEFdMNeYECy2QQl7pXygRxgXpqV7028NHKLBFlejpEVrDkmhBn-cU26alsMy5xPa03pLrCZaKd2_1hvz-_u3X_mf3ePjxsL9_7LxkunWTDbZHHYwNyo-mB9RggA1B9kZqr6X3dhSmRz-GiUsBvBc99krIMHIDQd6Qh4tvyPDsjiWuUF5chuheB7nMDkqLfkGnQA8iKESmR6WAWztabrgRk5kGhWbz4hcvX3KtBad3P87cKyJ35uHOPNz-4DZE8j9sfYmm |
| Cites_doi | 10.1214/aos/1176346329 10.1002/9781118575574 10.22250/isu.2020.63.84-94 10.3103/s8756699011060069 10.1007/s11018-017-1228-x 10.1080/01621459.1985.10477163 10.1007/s11018-021-01873-w 10.1214/aoms/1177704472 10.1214/088342304000000297 10.1080/01621459.1996.10476701 10.3103/s8756699012010050 10.1137/1114019 10.3103/s8756699012040139 10.22250/isu.2020.66.95-103 10.1111/j.2517-6161.1991.tb01857.x 10.18287/2412-6179-2019-43-2-238-244 |
| ContentType | Journal Article |
| CorporateAuthor | Reshetnev Siberian State University of Science and Technology Krasnoyarsk branch of the Federal Research Center for Information and Computational Technologies Siberian Federal University Institute of Computational Modelling SB RAS |
| CorporateAuthor_xml | – name: Krasnoyarsk branch of the Federal Research Center for Information and Computational Technologies – name: Institute of Computational Modelling SB RAS – name: Reshetnev Siberian State University of Science and Technology – name: Siberian Federal University |
| DBID | AAYXX CITATION DOA |
| DOI | 10.18287/2412-6179-CO-902 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2412-6179 |
| EndPage | 933 |
| ExternalDocumentID | oai_doaj_org_article_4a692d4ee06b44a188b817172f7f94e7 10_18287_2412_6179_CO_902 |
| GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c306t-f8d85e6d78d4cb75ae6a7a09d35736c63cc8b275ecbdf132a1525e5423db17ad3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749909700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0134-2452 |
| IngestDate | Fri Oct 03 12:39:56 EDT 2025 Sat Nov 29 04:46:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English Russian |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-f8d85e6d78d4cb75ae6a7a09d35736c63cc8b275ecbdf132a1525e5423db17ad3 |
| OpenAccessLink | https://doaj.org/article/4a692d4ee06b44a188b817172f7f94e7 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4a692d4ee06b44a188b817172f7f94e7 crossref_primary_10_18287_2412_6179_CO_902 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Kompʹûternaâ optika |
| PublicationYear | 2021 |
| Publisher | Samara National Research University |
| Publisher_xml | – name: Samara National Research University |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref0 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1214/aos/1176346329 – ident: ref17 doi: 10.1002/9781118575574 – ident: ref0 doi: 10.22250/isu.2020.63.84-94 – ident: ref4 – ident: ref5 doi: 10.3103/s8756699011060069 – ident: ref2 – ident: ref19 doi: 10.1007/s11018-017-1228-x – ident: ref15 doi: 10.1080/01621459.1985.10477163 – ident: ref18 doi: 10.1007/s11018-021-01873-w – ident: ref20 – ident: ref8 doi: 10.1214/aoms/1177704472 – ident: ref14 doi: 10.1214/088342304000000297 – ident: ref16 doi: 10.1080/01621459.1996.10476701 – ident: ref6 doi: 10.3103/s8756699012010050 – ident: ref9 doi: 10.1137/1114019 – ident: ref3 doi: 10.3103/s8756699012040139 – ident: ref1 doi: 10.22250/isu.2020.66.95-103 – ident: ref10 – ident: ref13 doi: 10.1111/j.2517-6161.1991.tb01857.x – ident: ref7 doi: 10.18287/2412-6179-2019-43-2-238-244 – ident: ref12 |
| SSID | ssj0002876141 |
| Score | 2.243299 |
| Snippet | We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 926 |
| SubjectTerms | bandwidths selection of the kernel functions forming a set of independent features hypothesis testing information processing kernel probability density estimate nonparametric pattern recognition algorithm optical data processing pattern recognition remote sensing data |
| Title | A method of sequentially generating a set of components of a multidimensional random variable using a nonparametric pattern recognition algorithm |
| URI | https://doaj.org/article/4a692d4ee06b44a188b817172f7f94e7 |
| Volume | 45 |
| WOSCitedRecordID | wos000749909700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2412-6179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876141 issn: 0134-2452 databaseCode: DOA dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8sCEZDVNnNgZS0XFgFoGQN0iv1KK2qRqQyV-Bv-YOydU3VgYkzhRdHfW-bO_-46QW0iJBmWeGGQTzbgFnKK1S1iuo1jZyCrha2HensRwKMfj9Hmr1Rdywmp54NpwHa6SNLTcuSDRnKuulFp2AYOEuchT7nwdeSDSLTD14beMAJ7zuhlhxBkeLzZHmijw3oG0FWJxXMr6I5Y2Wyq_SWlLu98nmcEh2W9Wh7RX_9UR2XHFMTloVoq0mYerE_Ldo3XrZ1rmtGZDw0ydzb7oxMtII5eZKnhS4QCkjZcFMibwSlFPIrQo619LclDIV7ac0zXgZqykokiGx_eLskBp8Dl23TJ04aU4C7rhHJUFVbNJuZxW7_NT8jp4eOk_sqa5AjOAEiqWSytjl4BzLDdaxMolSqggtVEsosQkkTFShyJ2RtscIKvCRkkuhtWX1V0BbjwjLfgLd06o4M6AhR1gRcllZADSBTbmXa1h-RgmcZvc_Vo3W9QaGhliD3RFhq7I0BVZf5SBK9rkHu2_GYjy1_4GBEXWBEX2V1Bc_MdHLsleiAQWz125Iq1q-emuya5ZV9PV8sbH2w_ScNmK |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+of+sequentially+generating+a+set+of+components+of+a+multidimensional+random+variable+using+a+nonparametric+pattern+recognition+algorithm&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=I.V.+Zenkov&rft.au=A.V.+Lapko&rft.au=V.A.+Lapko&rft.au=E.V.+Kiryushina&rft.date=2021-12-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=45&rft.issue=6&rft.spage=926&rft.epage=933&rft_id=info:doi/10.18287%2F2412-6179-CO-902&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a692d4ee06b44a188b817172f7f94e7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |