A method of sequentially generating a set of components of a multidimensional random variable using a nonparametric pattern recognition algorithm

We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the Rosenblatt–Parzen probability density. A new technique for generating sets of independent components of a multidimensional random variable is propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kompʹûternaâ optika Jg. 45; H. 6; S. 926 - 933
Hauptverfasser: Zenkov, I.V., Lapko, A.V., Lapko, V.A., Kiryushina, E.V., Vokin, V.N., Bakhtina, A.V.
Format: Journal Article
Sprache:Englisch
Russisch
Veröffentlicht: Samara National Research University 01.12.2021
Schlagworte:
ISSN:0134-2452, 2412-6179
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the Rosenblatt–Parzen probability density. A new technique for generating sets of independent components of a multidimensional random variable is proposed. The methodology is based on testing the hypotheses of the independence of combinations of the multidimensional random variable components using a two-alternative nonparametric kernel algorithm for pattern recognition corresponding to the maximum likelihood criterion. Classes correspond to the domains of definition of the probability densities of sets of independent and dependent components of the multidimensional random variable. Nonparametric statistics of the kernel type are used to estimate the probability densities. The choice of the bandwidths of the kernel estimates of the probability densities is made from the condition of the minimum root-mean-square criterion. The sequential procedure for generating a set of independent components begins with the analysis of paired combinations of components of a multidimensional random variable. For each pair of components, the probability of an error in recognizing classes corresponding to the assumptions of independence and dependence of the considered components is estimated. A pair of components with the maximum difference between these errors is determined. If the errors obtained do not differ significantly, then there are no independent components in the considered multivariate random variable. If there is a significant difference in the probability estimates of class recognition errors, a pair of independent components is established. These components are included in a three-component set of a multidimensional random variable. The analysis of their combinations is carried out in the same way, following the above-described procedure. The process of generating the set of independent components is stopped when no reliable difference occurs any more between the probabilities of errors in recognizing situations belonging to the accepted classes. In this case, the previous set of independent components is the desired result. In contrast to the traditional methodology based on the Pearson criterion, the proposed approach allows us to bypass a problem of the decomposition of the range of values of random variables into multidimensional intervals. The method of generating a set of independent components of a multidimensional random variable is illustrated by the results of the analysis of spectral features of remote sensing data of forest tracts using space imagery from the Landsat-8 satellite.
AbstractList We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the Rosenblatt–Parzen probability density. A new technique for generating sets of independent components of a multidimensional random variable is proposed. The methodology is based on testing the hypotheses of the independence of combinations of the multidimensional random variable components using a two-alternative nonparametric kernel algorithm for pattern recognition corresponding to the maximum likelihood criterion. Classes correspond to the domains of definition of the probability densities of sets of independent and dependent components of the multidimensional random variable. Nonparametric statistics of the kernel type are used to estimate the probability densities. The choice of the bandwidths of the kernel estimates of the probability densities is made from the condition of the minimum root-mean-square criterion. The sequential procedure for generating a set of independent components begins with the analysis of paired combinations of components of a multidimensional random variable. For each pair of components, the probability of an error in recognizing classes corresponding to the assumptions of independence and dependence of the considered components is estimated. A pair of components with the maximum difference between these errors is determined. If the errors obtained do not differ significantly, then there are no independent components in the considered multivariate random variable. If there is a significant difference in the probability estimates of class recognition errors, a pair of independent components is established. These components are included in a three-component set of a multidimensional random variable. The analysis of their combinations is carried out in the same way, following the above-described procedure. The process of generating the set of independent components is stopped when no reliable difference occurs any more between the probabilities of errors in recognizing situations belonging to the accepted classes. In this case, the previous set of independent components is the desired result. In contrast to the traditional methodology based on the Pearson criterion, the proposed approach allows us to bypass a problem of the decomposition of the range of values of random variables into multidimensional intervals. The method of generating a set of independent components of a multidimensional random variable is illustrated by the results of the analysis of spectral features of remote sensing data of forest tracts using space imagery from the Landsat-8 satellite.
Author Lapko, A.V.
Lapko, V.A.
Kiryushina, E.V.
Zenkov, I.V.
Bakhtina, A.V.
Vokin, V.N.
Author_xml – sequence: 1
  givenname: I.V.
  surname: Zenkov
  fullname: Zenkov, I.V.
– sequence: 2
  givenname: A.V.
  surname: Lapko
  fullname: Lapko, A.V.
– sequence: 3
  givenname: V.A.
  surname: Lapko
  fullname: Lapko, V.A.
– sequence: 4
  givenname: E.V.
  surname: Kiryushina
  fullname: Kiryushina, E.V.
– sequence: 5
  givenname: V.N.
  surname: Vokin
  fullname: Vokin, V.N.
– sequence: 6
  givenname: A.V.
  surname: Bakhtina
  fullname: Bakhtina, A.V.
BookMark eNo9kctqHDEQRUWwIRPbH5CdfqATvVpSL82Qh8Ewm2QtqqXqtky3NJE0AX9G_jg9HuNVUY97b8H5RK5STkjIZ86-cCus-SoUF53mZuj2h25g4gPZvY-uyI5xqTqhevGR3NX6zBjbRJorviP_7umK7SkHmida8c8JU4uwLC90xoQFWkwzhW3Tzgc-r8ctOrV67oCup6XFEFdMNeYECy2QQl7pXygRxgXpqV7028NHKLBFlejpEVrDkmhBn-cU26alsMy5xPa03pLrCZaKd2_1hvz-_u3X_mf3ePjxsL9_7LxkunWTDbZHHYwNyo-mB9RggA1B9kZqr6X3dhSmRz-GiUsBvBc99krIMHIDQd6Qh4tvyPDsjiWuUF5chuheB7nMDkqLfkGnQA8iKESmR6WAWztabrgRk5kGhWbz4hcvX3KtBad3P87cKyJ35uHOPNz-4DZE8j9sfYmm
Cites_doi 10.1214/aos/1176346329
10.1002/9781118575574
10.22250/isu.2020.63.84-94
10.3103/s8756699011060069
10.1007/s11018-017-1228-x
10.1080/01621459.1985.10477163
10.1007/s11018-021-01873-w
10.1214/aoms/1177704472
10.1214/088342304000000297
10.1080/01621459.1996.10476701
10.3103/s8756699012010050
10.1137/1114019
10.3103/s8756699012040139
10.22250/isu.2020.66.95-103
10.1111/j.2517-6161.1991.tb01857.x
10.18287/2412-6179-2019-43-2-238-244
ContentType Journal Article
CorporateAuthor Reshetnev Siberian State University of Science and Technology
Krasnoyarsk branch of the Federal Research Center for Information and Computational Technologies
Siberian Federal University
Institute of Computational Modelling SB RAS
CorporateAuthor_xml – name: Krasnoyarsk branch of the Federal Research Center for Information and Computational Technologies
– name: Institute of Computational Modelling SB RAS
– name: Reshetnev Siberian State University of Science and Technology
– name: Siberian Federal University
DBID AAYXX
CITATION
DOA
DOI 10.18287/2412-6179-CO-902
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2412-6179
EndPage 933
ExternalDocumentID oai_doaj_org_article_4a692d4ee06b44a188b817172f7f94e7
10_18287_2412_6179_CO_902
GroupedDBID 642
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c306t-f8d85e6d78d4cb75ae6a7a09d35736c63cc8b275ecbdf132a1525e5423db17ad3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749909700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0134-2452
IngestDate Fri Oct 03 12:39:56 EDT 2025
Sat Nov 29 04:46:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
Russian
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f8d85e6d78d4cb75ae6a7a09d35736c63cc8b275ecbdf132a1525e5423db17ad3
OpenAccessLink https://doaj.org/article/4a692d4ee06b44a188b817172f7f94e7
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_4a692d4ee06b44a188b817172f7f94e7
crossref_primary_10_18287_2412_6179_CO_902
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Kompʹûternaâ optika
PublicationYear 2021
Publisher Samara National Research University
Publisher_xml – name: Samara National Research University
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref0
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1214/aos/1176346329
– ident: ref17
  doi: 10.1002/9781118575574
– ident: ref0
  doi: 10.22250/isu.2020.63.84-94
– ident: ref4
– ident: ref5
  doi: 10.3103/s8756699011060069
– ident: ref2
– ident: ref19
  doi: 10.1007/s11018-017-1228-x
– ident: ref15
  doi: 10.1080/01621459.1985.10477163
– ident: ref18
  doi: 10.1007/s11018-021-01873-w
– ident: ref20
– ident: ref8
  doi: 10.1214/aoms/1177704472
– ident: ref14
  doi: 10.1214/088342304000000297
– ident: ref16
  doi: 10.1080/01621459.1996.10476701
– ident: ref6
  doi: 10.3103/s8756699012010050
– ident: ref9
  doi: 10.1137/1114019
– ident: ref3
  doi: 10.3103/s8756699012040139
– ident: ref1
  doi: 10.22250/isu.2020.66.95-103
– ident: ref10
– ident: ref13
  doi: 10.1111/j.2517-6161.1991.tb01857.x
– ident: ref7
  doi: 10.18287/2412-6179-2019-43-2-238-244
– ident: ref12
SSID ssj0002876141
Score 2.243299
Snippet We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 926
SubjectTerms bandwidths selection of the kernel functions
forming a set of independent features
hypothesis testing
information processing
kernel probability density estimate
nonparametric pattern recognition algorithm
optical data processing
pattern recognition
remote sensing data
Title A method of sequentially generating a set of components of a multidimensional random variable using a nonparametric pattern recognition algorithm
URI https://doaj.org/article/4a692d4ee06b44a188b817172f7f94e7
Volume 45
WOSCitedRecordID wos000749909700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2412-6179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876141
  issn: 0134-2452
  databaseCode: DOA
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8sCEZDVNnNgZS0XFgFoGQN0iv1KK2qRqQyV-Bv-YOydU3VgYkzhRdHfW-bO_-46QW0iJBmWeGGQTzbgFnKK1S1iuo1jZyCrha2HensRwKMfj9Hmr1Rdywmp54NpwHa6SNLTcuSDRnKuulFp2AYOEuchT7nwdeSDSLTD14beMAJ7zuhlhxBkeLzZHmijw3oG0FWJxXMr6I5Y2Wyq_SWlLu98nmcEh2W9Wh7RX_9UR2XHFMTloVoq0mYerE_Ldo3XrZ1rmtGZDw0ydzb7oxMtII5eZKnhS4QCkjZcFMibwSlFPIrQo619LclDIV7ac0zXgZqykokiGx_eLskBp8Dl23TJ04aU4C7rhHJUFVbNJuZxW7_NT8jp4eOk_sqa5AjOAEiqWSytjl4BzLDdaxMolSqggtVEsosQkkTFShyJ2RtscIKvCRkkuhtWX1V0BbjwjLfgLd06o4M6AhR1gRcllZADSBTbmXa1h-RgmcZvc_Vo3W9QaGhliD3RFhq7I0BVZf5SBK9rkHu2_GYjy1_4GBEXWBEX2V1Bc_MdHLsleiAQWz125Iq1q-emuya5ZV9PV8sbH2w_ScNmK
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+of+sequentially+generating+a+set+of+components+of+a+multidimensional+random+variable+using+a+nonparametric+pattern+recognition+algorithm&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=I.V.+Zenkov&rft.au=A.V.+Lapko&rft.au=V.A.+Lapko&rft.au=E.V.+Kiryushina&rft.date=2021-12-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=45&rft.issue=6&rft.spage=926&rft.epage=933&rft_id=info:doi/10.18287%2F2412-6179-CO-902&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a692d4ee06b44a188b817172f7f94e7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon