Geometric visualization of clusters obtained from fuzzy clustering algorithms
Fuzzy-clustering methods, such as fuzzy k-means and expectation maximization, allow an object to be assigned to multiple clusters with different degrees of membership. However, the memberships that result from fuzzy-clustering algorithms are difficult to be analyzed and visualized. The memberships,...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 39; H. 8; S. 1415 - 1429 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.08.2006
|
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Fuzzy-clustering methods, such as fuzzy
k-means and expectation maximization, allow an object to be assigned to multiple clusters with different degrees of membership. However, the memberships that result from fuzzy-clustering algorithms are difficult to be analyzed and visualized. The memberships, usually converted to 0–1 values, are visualized using parallel coordinates or different color shades. In this paper, we propose a new approach to visualize fuzzy-clustered data. The scheme is based on a geometric visualization, and works by grouping the objects with similar cluster memberships towards the vertices of a hyper-tetrahedron. The proposed method shows clear advantages over the existing methods, demonstrating its capabilities for viewing and navigating inter-cluster relationships in a spatial manner. |
|---|---|
| ISSN: | 0031-3203 1873-5142 |
| DOI: | 10.1016/j.patcog.2006.02.006 |