Henry gas solubility optimization: A novel physics-based algorithm

Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic algorithm named Henry gas solubility optimization (HGSO), which mimics the behavior governed by Henry’s law to solve challenging optimization problem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future generation computer systems Ročník 101; s. 646 - 667
Hlavní autoři: Hashim, Fatma A., Houssein, Essam H., Mabrouk, Mai S., Al-Atabany, Walid, Mirjalili, Seyedali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2019
Témata:
ISSN:0167-739X, 1872-7115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic algorithm named Henry gas solubility optimization (HGSO), which mimics the behavior governed by Henry’s law to solve challenging optimization problems. Henry’s law is an essential gas law relating the amount of a given gas that is dissolved to a given type and volume of liquid at a fixed temperature. The HGSO algorithm imitates the huddling behavior of gas to balance exploitation and exploration in the search space and avoid local optima. The performance of HGSO is tested on 47 benchmark functions, CEC’17 test suite, and three real-world optimization problems. The results are compared with seven well-known algorithms; the particle swarm optimization (PSO), gravitational search algorithm (GSA), cuckoo search algorithm (CS), grey wolf optimizer (GWO), whale optimization algorithm (WOA), elephant herding algorithm (EHO) and simulated annealing (SA). Additionally, to assess the pairwise statistical performance of the competitive algorithms, a Wilcoxon rank sum test is conducted. The experimental results revealed that HGSO provides competitive and superior results compared to other algorithms when solving challenging optimization problems. •A novel physics-based metaheuristic algorithm has proposed to simulate the behavior of Henry’s law, which called HGSO.•HGSO algorithm has evaluated on several benchmarks such as 47 benchmark functions, 3 engineering design problems and CEC’17 test suite problems.•The experimental results revealed that HGSO has achieved significant superiority against the other competitive algorithms.
AbstractList Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic algorithm named Henry gas solubility optimization (HGSO), which mimics the behavior governed by Henry’s law to solve challenging optimization problems. Henry’s law is an essential gas law relating the amount of a given gas that is dissolved to a given type and volume of liquid at a fixed temperature. The HGSO algorithm imitates the huddling behavior of gas to balance exploitation and exploration in the search space and avoid local optima. The performance of HGSO is tested on 47 benchmark functions, CEC’17 test suite, and three real-world optimization problems. The results are compared with seven well-known algorithms; the particle swarm optimization (PSO), gravitational search algorithm (GSA), cuckoo search algorithm (CS), grey wolf optimizer (GWO), whale optimization algorithm (WOA), elephant herding algorithm (EHO) and simulated annealing (SA). Additionally, to assess the pairwise statistical performance of the competitive algorithms, a Wilcoxon rank sum test is conducted. The experimental results revealed that HGSO provides competitive and superior results compared to other algorithms when solving challenging optimization problems. •A novel physics-based metaheuristic algorithm has proposed to simulate the behavior of Henry’s law, which called HGSO.•HGSO algorithm has evaluated on several benchmarks such as 47 benchmark functions, 3 engineering design problems and CEC’17 test suite problems.•The experimental results revealed that HGSO has achieved significant superiority against the other competitive algorithms.
Author Mabrouk, Mai S.
Hashim, Fatma A.
Houssein, Essam H.
Al-Atabany, Walid
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Fatma A.
  surname: Hashim
  fullname: Hashim, Fatma A.
  organization: Faculty of Engineering, Helwan University, Egypt
– sequence: 2
  givenname: Essam H.
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Egypt
– sequence: 3
  givenname: Mai S.
  surname: Mabrouk
  fullname: Mabrouk, Mai S.
  organization: Faculty of Engineering, Misr University for Science and Technology, Egypt
– sequence: 4
  givenname: Walid
  surname: Al-Atabany
  fullname: Al-Atabany, Walid
  organization: Faculty of Engineering, Helwan University, Egypt
– sequence: 5
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Institute for Integrated and Intelligent Systems, Griffith University, Nathan, QLD 4111, Australia
BookMark eNqFkLFOwzAURS1UJNrCHzD4BxLsOInjDkilAopUiQUkNst2XlpXaVzZbqXw9aSUiQGmt9xzdd-ZoFHnOkDolpKUElrebdPmEA8e0oxQkRKeElpcoDGteJZwSosRGg8xnnAmPq7QJIQtIYRyRsfoYQmd7_FaBRxce9C2tbHHbh_tzn6qaF03w3PcuSO0eL_pgzUh0SpAjVW7dt7Gze4aXTaqDXDzc6fo_enxbbFMVq_PL4v5KjGMlDFpuBGQZ1VDq8xoLThryoKZjLFC5DlnIKA0mjGjSQmm0qVmNVNVxUkBIlOcTdHs3Gu8C8FDI42N3xOjV7aVlMiTDbmVZxvyZEMSLgcbA5z_gvfe7pTv_8PuzxgMjx0teBmMhc5AbT2YKGtn_y74AoZCfx4
CitedBy_id crossref_primary_10_3390_pr9122276
crossref_primary_10_1016_j_oceaneng_2022_111021
crossref_primary_10_32604_cmc_2023_034025
crossref_primary_10_1007_s11042_024_19437_9
crossref_primary_10_1088_1402_4896_ade378
crossref_primary_10_33187_jmsm_1617412
crossref_primary_10_1007_s00521_022_07916_9
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1016_j_asoc_2021_108126
crossref_primary_10_1016_j_eswa_2024_124262
crossref_primary_10_3233_JIFS_222348
crossref_primary_10_1002_dac_5606
crossref_primary_10_1016_j_eswa_2021_115936
crossref_primary_10_1007_s00521_020_05621_z
crossref_primary_10_1016_j_enconman_2022_116523
crossref_primary_10_1016_j_knosys_2022_108320
crossref_primary_10_1109_ACCESS_2022_3143802
crossref_primary_10_3390_automation6020013
crossref_primary_10_1016_j_asoc_2021_107282
crossref_primary_10_1016_j_eswa_2023_120602
crossref_primary_10_3390_math11204224
crossref_primary_10_1007_s00500_025_10618_8
crossref_primary_10_1007_s40747_022_00852_0
crossref_primary_10_1109_ACCESS_2020_3032851
crossref_primary_10_1007_s00521_021_05991_y
crossref_primary_10_1007_s12652_022_03724_0
crossref_primary_10_1007_s00366_020_01268_5
crossref_primary_10_1007_s11831_025_10304_w
crossref_primary_10_1016_j_future_2022_12_040
crossref_primary_10_1177_00375497231164645
crossref_primary_10_1080_08839514_2020_1712789
crossref_primary_10_1007_s13042_022_01703_7
crossref_primary_10_1016_j_bspc_2023_104634
crossref_primary_10_1016_j_knosys_2025_113548
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1016_j_engappai_2023_106207
crossref_primary_10_1016_j_matcom_2020_09_027
crossref_primary_10_1007_s42600_022_00211_5
crossref_primary_10_1109_JIOT_2023_3303124
crossref_primary_10_1109_ACCESS_2024_3376235
crossref_primary_10_1016_j_engappai_2023_107532
crossref_primary_10_1016_j_engappai_2021_104309
crossref_primary_10_32604_cmc_2022_019867
crossref_primary_10_3390_w14193035
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1007_s00521_021_06580_9
crossref_primary_10_1016_j_iswa_2025_200521
crossref_primary_10_1007_s11831_023_09990_1
crossref_primary_10_1016_j_engappai_2022_105082
crossref_primary_10_1109_ACCESS_2025_3541975
crossref_primary_10_1016_j_advengsoft_2022_103332
crossref_primary_10_1016_j_knosys_2022_109215
crossref_primary_10_1007_s10462_023_10567_4
crossref_primary_10_1080_0305215X_2021_1969560
crossref_primary_10_1016_j_engappai_2022_105069
crossref_primary_10_1007_s11831_025_10281_0
crossref_primary_10_1016_j_aei_2022_101636
crossref_primary_10_1038_s41598_023_31876_2
crossref_primary_10_1007_s11831_023_09902_3
crossref_primary_10_3390_fractalfract9080521
crossref_primary_10_1007_s11220_024_00495_0
crossref_primary_10_1002_eng2_70048
crossref_primary_10_1016_j_engappai_2022_105075
crossref_primary_10_1109_ACCESS_2021_3108097
crossref_primary_10_1177_09544062241240395
crossref_primary_10_1038_s41598_022_23781_x
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_1038_s41598_025_86275_6
crossref_primary_10_1007_s11227_025_07052_w
crossref_primary_10_1038_s41598_025_07328_4
crossref_primary_10_1080_02564602_2020_1843554
crossref_primary_10_1016_j_eswa_2023_120886
crossref_primary_10_1007_s00521_021_06714_z
crossref_primary_10_1016_j_asoc_2021_108387
crossref_primary_10_1007_s00500_020_05057_6
crossref_primary_10_3390_math8101821
crossref_primary_10_1007_s10586_024_04360_3
crossref_primary_10_1016_j_advengsoft_2022_103353
crossref_primary_10_3233_JIFS_221036
crossref_primary_10_3233_JIFS_221039
crossref_primary_10_3233_MGS_220329
crossref_primary_10_1016_j_surfin_2025_106005
crossref_primary_10_1016_j_knosys_2023_110940
crossref_primary_10_1080_15567036_2023_2245771
crossref_primary_10_1007_s12559_025_10443_z
crossref_primary_10_1038_s41598_025_16513_4
crossref_primary_10_1016_j_knosys_2022_108341
crossref_primary_10_1038_s41598_025_86264_9
crossref_primary_10_32604_cmes_2023_025908
crossref_primary_10_1109_ACCESS_2020_2999540
crossref_primary_10_1016_j_knosys_2025_113589
crossref_primary_10_1016_j_displa_2024_102740
crossref_primary_10_1016_j_eswa_2023_121744
crossref_primary_10_3390_sym17091410
crossref_primary_10_32604_cmc_2022_029438
crossref_primary_10_1016_j_cie_2022_108032
crossref_primary_10_1007_s00500_020_04834_7
crossref_primary_10_1016_j_est_2020_101380
crossref_primary_10_1016_j_engappai_2021_104588
crossref_primary_10_1016_j_eswa_2021_115305
crossref_primary_10_3390_en17092209
crossref_primary_10_1016_j_compchemeng_2019_106656
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_1515_mt_2020_0053
crossref_primary_10_7717_peerj_cs_1431
crossref_primary_10_1007_s11042_025_20643_2
crossref_primary_10_1109_ACCESS_2023_3343619
crossref_primary_10_1016_j_eswa_2021_115538
crossref_primary_10_1016_j_eswa_2021_114689
crossref_primary_10_1038_s41598_024_69010_5
crossref_primary_10_1155_2021_2298215
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1515_mt_2020_0049
crossref_primary_10_3390_a17090417
crossref_primary_10_3390_app14188280
crossref_primary_10_3390_math9182230
crossref_primary_10_1109_ACCESS_2020_3012838
crossref_primary_10_1016_j_jnca_2022_103385
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_1002_er_7103
crossref_primary_10_1002_er_8437
crossref_primary_10_3390_math12223464
crossref_primary_10_1016_j_knosys_2022_110032
crossref_primary_10_1049_rpg2_12428
crossref_primary_10_32604_cmc_2023_036865
crossref_primary_10_32604_cmes_2023_029404
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_1007_s10462_021_10026_y
crossref_primary_10_3390_biomimetics8050386
crossref_primary_10_3390_biomimetics8050383
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1080_23311916_2024_2364041
crossref_primary_10_1038_s41598_022_27344_y
crossref_primary_10_1007_s11709_021_0719_7
crossref_primary_10_1007_s41939_024_00502_7
crossref_primary_10_1080_0305215X_2022_2127698
crossref_primary_10_1109_ACCESS_2020_3012606
crossref_primary_10_3390_biomimetics8040332
crossref_primary_10_3233_JIFS_223827
crossref_primary_10_1007_s00521_025_11421_0
crossref_primary_10_1109_ACCESS_2023_3328248
crossref_primary_10_1016_j_epsr_2024_110273
crossref_primary_10_3390_en17071547
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_1016_j_eswa_2023_122638
crossref_primary_10_3390_math10152675
crossref_primary_10_1016_j_energy_2021_122551
crossref_primary_10_1109_ACCESS_2021_3088783
crossref_primary_10_1007_s00500_023_08274_x
crossref_primary_10_3390_biomimetics9030137
crossref_primary_10_1155_2021_7387153
crossref_primary_10_1016_j_jocs_2022_101805
crossref_primary_10_3390_math12152364
crossref_primary_10_1007_s00366_021_01319_5
crossref_primary_10_1007_s00366_020_01233_2
crossref_primary_10_3390_fractalfract6040194
crossref_primary_10_3390_math10091384
crossref_primary_10_1007_s12652_025_04960_w
crossref_primary_10_3390_biomimetics10060388
crossref_primary_10_1016_j_cma_2021_114029
crossref_primary_10_1515_mt_2020_0091
crossref_primary_10_1007_s00500_023_08859_6
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1016_j_advengsoft_2022_103177
crossref_primary_10_1063_5_0227978
crossref_primary_10_1038_s41598_023_31081_1
crossref_primary_10_32604_cmc_2023_034695
crossref_primary_10_1049_rpg2_12699
crossref_primary_10_1007_s00521_024_09928_z
crossref_primary_10_1109_ACCESS_2020_2997783
crossref_primary_10_1108_K_07_2023_1210
crossref_primary_10_1007_s10825_022_01987_6
crossref_primary_10_1038_s41598_024_63328_w
crossref_primary_10_3390_biomimetics10060379
crossref_primary_10_1016_j_knosys_2024_111960
crossref_primary_10_1016_j_eswa_2020_114159
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1007_s11227_023_05331_y
crossref_primary_10_1007_s12065_025_01027_9
crossref_primary_10_1016_j_knosys_2022_109048
crossref_primary_10_1109_ACCESS_2021_3066329
crossref_primary_10_1007_s10462_023_10403_9
crossref_primary_10_3233_JIFS_235607
crossref_primary_10_1007_s00500_024_09796_8
crossref_primary_10_1007_s10586_024_04293_x
crossref_primary_10_1093_comjnl_bxac070
crossref_primary_10_1515_mt_2020_0076
crossref_primary_10_3390_make7010024
crossref_primary_10_1049_rpg2_12475
crossref_primary_10_3390_buildings13071852
crossref_primary_10_1016_j_asoc_2020_106761
crossref_primary_10_3390_app15073671
crossref_primary_10_1007_s42235_022_00316_8
crossref_primary_10_1016_j_knosys_2023_110305
crossref_primary_10_1007_s11356_024_33785_x
crossref_primary_10_1016_j_knosys_2022_110011
crossref_primary_10_1007_s11356_020_11065_8
crossref_primary_10_1016_j_knosys_2025_114273
crossref_primary_10_3390_math10121991
crossref_primary_10_1007_s00500_022_07337_9
crossref_primary_10_1007_s12665_021_09711_6
crossref_primary_10_3390_a17010033
crossref_primary_10_1016_j_advengsoft_2025_103883
crossref_primary_10_1016_j_ins_2023_120077
crossref_primary_10_1038_s41598_024_57098_8
crossref_primary_10_1007_s40819_025_01925_7
crossref_primary_10_1016_j_compbiomed_2022_106239
crossref_primary_10_1080_21681163_2022_2157748
crossref_primary_10_1007_s40430_025_05404_4
crossref_primary_10_1016_j_eswa_2022_116887
crossref_primary_10_1155_2022_2721490
crossref_primary_10_1007_s00366_021_01347_1
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_1109_ACCESS_2022_3223388
crossref_primary_10_1038_s41598_024_55619_z
crossref_primary_10_1007_s00500_023_07974_8
crossref_primary_10_1109_ACCESS_2020_2967399
crossref_primary_10_3390_sym13122388
crossref_primary_10_1016_j_jnca_2025_104217
crossref_primary_10_1016_j_eswa_2021_115253
crossref_primary_10_1007_s40430_022_03911_2
crossref_primary_10_1002_cpe_7245
crossref_primary_10_3390_sym12071146
crossref_primary_10_1016_j_cosrev_2025_100740
crossref_primary_10_3390_math10193466
crossref_primary_10_1371_journal_pone_0263387
crossref_primary_10_3390_biomimetics9020065
crossref_primary_10_1109_ACCESS_2022_3156593
crossref_primary_10_1016_j_asoc_2023_110573
crossref_primary_10_1007_s00500_023_09561_3
crossref_primary_10_1007_s10462_022_10182_9
crossref_primary_10_1016_j_energy_2021_122964
crossref_primary_10_1007_s10489_021_02795_4
crossref_primary_10_1007_s13369_021_06307_x
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1007_s00366_021_01530_4
crossref_primary_10_1016_j_engappai_2022_105521
crossref_primary_10_1016_j_knosys_2021_107555
crossref_primary_10_3390_math10010102
crossref_primary_10_1109_ACCESS_2020_2990137
crossref_primary_10_1016_j_trgeo_2021_100579
crossref_primary_10_1016_j_matcom_2021_08_013
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1007_s10586_024_05011_3
crossref_primary_10_1080_03081079_2024_2339471
crossref_primary_10_1016_j_eswa_2021_116158
crossref_primary_10_1109_ACCESS_2025_3567556
crossref_primary_10_1007_s10489_022_03834_4
crossref_primary_10_1007_s11831_020_09481_7
crossref_primary_10_1016_j_engappai_2020_103731
crossref_primary_10_1007_s12559_022_10099_z
crossref_primary_10_1016_j_apm_2022_11_016
crossref_primary_10_1155_2022_6078986
crossref_primary_10_3390_su152416589
crossref_primary_10_1016_j_asoc_2022_109097
crossref_primary_10_1007_s00521_020_05594_z
crossref_primary_10_1016_j_asoc_2023_110113
crossref_primary_10_1007_s11042_022_13093_7
crossref_primary_10_1080_01969722_2023_2175119
crossref_primary_10_1109_ACCESS_2022_3201147
crossref_primary_10_1155_2022_6627409
crossref_primary_10_1016_j_cie_2020_107050
crossref_primary_10_32604_cmc_2023_030379
crossref_primary_10_3390_su15065431
crossref_primary_10_1016_j_knosys_2022_110192
crossref_primary_10_1109_ACCESS_2021_3108533
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1007_s13762_022_04170_3
crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_1177_00405175221114633
crossref_primary_10_1016_j_bspc_2022_103712
crossref_primary_10_32604_cmes_2024_055171
crossref_primary_10_1038_s41598_022_24343_x
crossref_primary_10_1109_ACCESS_2020_3013617
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1007_s41939_024_00615_z
crossref_primary_10_1109_TCBB_2023_3305429
crossref_primary_10_1186_s40537_025_01125_6
crossref_primary_10_3390_app132212290
crossref_primary_10_3390_sym13122364
crossref_primary_10_1007_s10462_025_11279_7
crossref_primary_10_1016_j_eswa_2021_116355
crossref_primary_10_1016_j_heliyon_2024_e26187
crossref_primary_10_3390_math12142250
crossref_primary_10_3390_biomimetics9060361
crossref_primary_10_1093_jcde_qwac003
crossref_primary_10_1007_s10586_024_04602_4
crossref_primary_10_1002_int_22617
crossref_primary_10_1016_j_jobe_2022_105187
crossref_primary_10_1111_exsy_12843
crossref_primary_10_1016_j_apor_2021_102837
crossref_primary_10_3390_machines9120341
crossref_primary_10_1007_s00500_023_08551_9
crossref_primary_10_1007_s00521_023_08229_1
crossref_primary_10_1016_j_sysarc_2023_102871
crossref_primary_10_1007_s00500_023_09276_5
crossref_primary_10_1016_j_est_2021_103848
crossref_primary_10_1016_j_cose_2025_104393
crossref_primary_10_1155_2020_3490536
crossref_primary_10_1016_j_advengsoft_2022_103402
crossref_primary_10_3139_120_111541
crossref_primary_10_3390_math10030351
crossref_primary_10_1080_0952813X_2022_2104388
crossref_primary_10_1002_cpe_7612
crossref_primary_10_1007_s10115_025_02561_9
crossref_primary_10_1007_s10479_021_04311_w
crossref_primary_10_1016_j_energy_2022_124340
crossref_primary_10_3390_s22186860
crossref_primary_10_1016_j_patcog_2022_108989
crossref_primary_10_1016_j_pnsc_2023_12_004
crossref_primary_10_1186_s40537_025_01274_8
crossref_primary_10_1007_s00500_020_04721_1
crossref_primary_10_3390_math11051231
crossref_primary_10_1109_ACCESS_2021_3101939
crossref_primary_10_1016_j_asej_2025_103615
crossref_primary_10_3390_math12071059
crossref_primary_10_3390_biomimetics8060508
crossref_primary_10_3390_biomimetics8060507
crossref_primary_10_1109_ACCESS_2024_3366495
crossref_primary_10_1007_s40819_021_01061_y
crossref_primary_10_1007_s12065_022_00711_4
crossref_primary_10_1007_s42979_025_03990_7
crossref_primary_10_1016_j_asoc_2024_112036
crossref_primary_10_1109_ACCESS_2022_3177218
crossref_primary_10_1016_j_cma_2023_116307
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_3390_biomimetics10080517
crossref_primary_10_1007_s13369_022_07350_y
crossref_primary_10_1109_ACCESS_2022_3185068
crossref_primary_10_1002_cpe_6303
crossref_primary_10_1007_s00500_021_06710_4
crossref_primary_10_1007_s10489_022_03994_3
crossref_primary_10_1109_ACCESS_2022_3153493
crossref_primary_10_1007_s00500_022_06886_3
crossref_primary_10_1016_j_energy_2022_124360
crossref_primary_10_3139_120_111529
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1016_j_asoc_2023_111042
crossref_primary_10_1016_j_eswa_2021_115079
crossref_primary_10_1016_j_cmpb_2021_106244
crossref_primary_10_1007_s00521_022_07925_8
crossref_primary_10_1080_01969722_2023_2175145
crossref_primary_10_1007_s10586_023_04090_y
crossref_primary_10_1007_s11831_021_09529_2
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_1016_j_eswa_2023_123049
crossref_primary_10_1093_jcde_qwae069
crossref_primary_10_1109_ACCESS_2020_3015206
crossref_primary_10_3390_biomimetics10080504
crossref_primary_10_1007_s10462_020_09911_9
crossref_primary_10_1109_ACCESS_2019_2946664
crossref_primary_10_1007_s10586_025_05170_x
crossref_primary_10_3390_pr11051380
crossref_primary_10_1016_j_eswa_2022_118222
crossref_primary_10_1016_j_seta_2021_101824
crossref_primary_10_1016_j_energy_2022_124363
crossref_primary_10_1016_j_asoc_2024_112019
crossref_primary_10_1109_ACCESS_2022_3205105
crossref_primary_10_1007_s11042_024_20221_y
crossref_primary_10_1007_s00521_019_04611_0
crossref_primary_10_1016_j_apenergy_2022_119166
crossref_primary_10_1371_journal_pone_0242612
crossref_primary_10_1016_j_micpro_2021_104412
crossref_primary_10_57120_yalvac_1257808
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1016_j_knosys_2022_109615
crossref_primary_10_1007_s12559_022_10022_6
crossref_primary_10_1016_j_ijhydene_2025_02_314
crossref_primary_10_1007_s42235_023_00340_2
crossref_primary_10_1007_s42235_023_00386_2
crossref_primary_10_3390_electronics11121919
crossref_primary_10_3389_fgene_2021_793629
crossref_primary_10_1016_j_suscom_2023_100918
crossref_primary_10_1007_s42044_023_00160_x
crossref_primary_10_1016_j_knosys_2021_107348
crossref_primary_10_1016_j_knosys_2022_109849
crossref_primary_10_1007_s00521_024_09879_5
crossref_primary_10_1109_ACCESS_2022_3143035
crossref_primary_10_1016_j_knosys_2022_108517
crossref_primary_10_1007_s12530_023_09485_1
crossref_primary_10_1109_ACCESS_2023_3312567
crossref_primary_10_1109_ACCESS_2020_3024108
crossref_primary_10_3389_fgene_2021_644945
crossref_primary_10_1007_s10462_020_09933_3
crossref_primary_10_1007_s00521_021_06392_x
crossref_primary_10_1007_s42250_023_00798_x
crossref_primary_10_1109_ACCESS_2020_3014309
crossref_primary_10_1007_s10489_022_03743_6
crossref_primary_10_1007_s00500_021_05606_7
crossref_primary_10_1093_jcde_qwac099
crossref_primary_10_1109_ACCESS_2021_3072336
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_1109_ACCESS_2020_2990338
crossref_primary_10_1016_j_isatra_2021_11_008
crossref_primary_10_1038_s41598_025_11129_0
crossref_primary_10_1038_s41598_025_85486_1
crossref_primary_10_1007_s13246_022_01150_2
crossref_primary_10_1007_s10462_020_09944_0
crossref_primary_10_1007_s40815_021_01195_7
crossref_primary_10_1007_s12046_024_02628_3
crossref_primary_10_1007_s00500_021_06229_8
crossref_primary_10_1016_j_aej_2024_08_021
crossref_primary_10_1371_journal_pone_0260232
crossref_primary_10_1038_s41598_024_71581_2
crossref_primary_10_1002_rob_22020
crossref_primary_10_3390_sym13020244
crossref_primary_10_1007_s10489_023_05073_7
crossref_primary_10_1016_j_knosys_2022_108457
crossref_primary_10_1016_j_net_2025_103601
crossref_primary_10_32604_cmc_2024_053189
crossref_primary_10_1007_s00366_020_01258_7
crossref_primary_10_1016_j_heliyon_2024_e25848
crossref_primary_10_1007_s10462_022_10340_z
crossref_primary_10_1016_j_asoc_2022_109847
crossref_primary_10_1016_j_engappai_2020_104105
crossref_primary_10_1016_j_eswa_2022_118383
crossref_primary_10_1016_j_eswa_2020_113364
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1007_s00607_023_01157_x
crossref_primary_10_1007_s10115_021_01641_w
crossref_primary_10_1080_21642583_2025_2469606
crossref_primary_10_1002_dac_5980
crossref_primary_10_1038_s41598_023_42969_3
crossref_primary_10_3390_math10203821
crossref_primary_10_1016_j_eswa_2024_126315
crossref_primary_10_1038_s41598_024_77115_0
crossref_primary_10_1007_s12145_021_00667_6
crossref_primary_10_1002_int_23091
crossref_primary_10_1016_j_ins_2022_07_131
crossref_primary_10_3390_w15030437
crossref_primary_10_3390_math11194200
crossref_primary_10_1007_s10489_021_02811_7
crossref_primary_10_1007_s00521_022_07203_7
crossref_primary_10_1016_j_nucengdes_2025_113899
crossref_primary_10_1016_j_advengsoft_2023_103517
crossref_primary_10_1016_j_swevo_2023_101248
crossref_primary_10_1007_s11042_025_20927_7
crossref_primary_10_1007_s12652_021_03234_5
crossref_primary_10_1109_ACCESS_2025_3562367
crossref_primary_10_3390_biomimetics8060468
crossref_primary_10_1002_ima_22515
crossref_primary_10_1016_j_chaos_2024_115696
crossref_primary_10_1109_TCBB_2021_3127271
crossref_primary_10_1007_s13748_023_00306_9
crossref_primary_10_1038_s41598_025_86757_7
crossref_primary_10_1038_s41598_023_38252_0
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1016_j_engappai_2021_104410
crossref_primary_10_1007_s00202_020_01173_6
crossref_primary_10_1049_rpg2_13004
crossref_primary_10_1007_s42235_023_00387_1
crossref_primary_10_1016_j_eswa_2020_113395
crossref_primary_10_1016_j_eswa_2020_114243
crossref_primary_10_1007_s11831_023_09914_z
crossref_primary_10_1007_s10915_022_01955_z
crossref_primary_10_1007_s12530_023_09517_w
crossref_primary_10_1080_15567036_2024_2404260
crossref_primary_10_1007_s10462_020_09893_8
crossref_primary_10_3390_math11020390
crossref_primary_10_1016_j_eswa_2021_114778
crossref_primary_10_1016_j_rineng_2024_101859
crossref_primary_10_1007_s12065_024_00937_4
crossref_primary_10_1371_journal_pone_0255269
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1109_ACCESS_2021_3067597
crossref_primary_10_1177_09544062221101737
crossref_primary_10_1016_j_cma_2023_115878
crossref_primary_10_3390_computation11010013
crossref_primary_10_1016_j_istruc_2022_04_007
crossref_primary_10_1109_ACCESS_2021_3054053
crossref_primary_10_1016_j_measen_2024_101250
crossref_primary_10_1007_s10957_023_02210_7
crossref_primary_10_3390_biomimetics9110654
crossref_primary_10_3390_en16052409
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_1007_s10462_022_10277_3
crossref_primary_10_3390_biomimetics8060470
crossref_primary_10_1016_j_epsr_2020_106886
crossref_primary_10_1109_TEVC_2022_3170212
crossref_primary_10_1016_j_eswa_2025_126425
crossref_primary_10_1038_s41598_025_99207_1
crossref_primary_10_3390_atmos12060702
crossref_primary_10_1002_suco_202300566
crossref_primary_10_1016_j_jhydrol_2022_129034
crossref_primary_10_3390_biomimetics8010121
crossref_primary_10_1007_s10462_023_10446_y
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1142_S0129183125500780
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_3390_app14209610
crossref_primary_10_1016_j_eswa_2023_122705
crossref_primary_10_3390_app11052042
crossref_primary_10_1109_ACCESS_2020_2968943
crossref_primary_10_1007_s00521_022_08103_6
crossref_primary_10_1016_j_pnucene_2022_104520
crossref_primary_10_1007_s12530_024_09645_x
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_3390_biomimetics8060490
crossref_primary_10_1038_s41598_024_70497_1
crossref_primary_10_3390_sym16111435
crossref_primary_10_28948_ngumuh_1570577
crossref_primary_10_1080_21681163_2021_2024088
crossref_primary_10_3390_math10101626
crossref_primary_10_1007_s00500_021_05841_y
crossref_primary_10_3390_biomimetics8020149
crossref_primary_10_1016_j_eswa_2021_114575
crossref_primary_10_7717_peerj_cs_1557
crossref_primary_10_1016_j_imed_2023_10_001
crossref_primary_10_1093_jcde_qwac113
crossref_primary_10_1007_s10489_020_01893_z
crossref_primary_10_1007_s11269_020_02737_8
crossref_primary_10_1016_j_knosys_2022_110146
crossref_primary_10_1007_s10462_022_10164_x
crossref_primary_10_1016_j_enconman_2023_117831
crossref_primary_10_3233_JIFS_230005
crossref_primary_10_1016_j_eswa_2021_115651
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1177_30504554251319447
crossref_primary_10_1016_j_cma_2022_114616
crossref_primary_10_1109_ACCESS_2020_2993267
crossref_primary_10_3390_math13152499
crossref_primary_10_1007_s42235_022_00185_1
crossref_primary_10_1007_s40998_025_00797_3
crossref_primary_10_3390_app13020906
crossref_primary_10_1007_s13369_020_05228_5
crossref_primary_10_1109_TMC_2022_3213410
crossref_primary_10_1109_ACCESS_2023_3279416
crossref_primary_10_3390_app12199465
crossref_primary_10_1016_j_eswa_2021_115882
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1016_j_eswa_2023_121898
crossref_primary_10_1007_s11227_023_05790_3
crossref_primary_10_3390_e23040491
crossref_primary_10_1016_j_cma_2022_115734
crossref_primary_10_1142_S0217732325500191
crossref_primary_10_1371_journal_pone_0291788
crossref_primary_10_1108_EC_07_2024_0675
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_1016_j_compbiomed_2022_105671
crossref_primary_10_7717_peerj_cs_1760
crossref_primary_10_1007_s00500_022_07410_3
crossref_primary_10_1007_s00366_021_01371_1
crossref_primary_10_1016_j_procs_2025_04_124
crossref_primary_10_1155_2020_6502807
crossref_primary_10_1007_s00500_022_07589_5
crossref_primary_10_1007_s11831_023_09923_y
crossref_primary_10_1007_s00521_020_05296_6
crossref_primary_10_1016_j_jer_2024_05_008
crossref_primary_10_1002_cpe_7264
crossref_primary_10_1186_s40537_024_00902_z
crossref_primary_10_1007_s12065_020_00546_x
crossref_primary_10_3233_JIFS_221348
crossref_primary_10_1002_cpe_7490
crossref_primary_10_1007_s10462_025_11360_1
crossref_primary_10_1038_s41598_024_63908_w
crossref_primary_10_1016_j_egyr_2022_05_231
crossref_primary_10_1016_j_knosys_2020_105889
crossref_primary_10_1016_j_knosys_2023_110454
crossref_primary_10_1515_mt_2024_0216
crossref_primary_10_1007_s00366_020_00994_0
crossref_primary_10_3233_JIFS_222413
crossref_primary_10_1016_j_advengsoft_2024_103665
crossref_primary_10_1089_cmb_2021_0267
crossref_primary_10_3233_WEB_230109A
crossref_primary_10_1016_j_eswa_2024_123958
crossref_primary_10_1016_j_jestch_2021_11_003
crossref_primary_10_1007_s00521_022_08058_8
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_1016_j_matcom_2023_04_020
crossref_primary_10_1109_TIA_2022_3200348
crossref_primary_10_1038_s41598_025_05477_0
crossref_primary_10_3390_math13050717
crossref_primary_10_1016_j_epsr_2023_110051
crossref_primary_10_1016_j_dsp_2021_103349
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1002_suco_202300956
crossref_primary_10_32604_cmc_2023_035911
crossref_primary_10_1016_j_knosys_2021_107405
crossref_primary_10_1007_s42235_023_00437_8
crossref_primary_10_1016_j_eswa_2021_116001
crossref_primary_10_3390_biomimetics8080619
crossref_primary_10_1063_5_0213886
crossref_primary_10_1007_s10462_025_11269_9
crossref_primary_10_3390_biomimetics8080615
crossref_primary_10_1016_j_eswa_2023_120069
crossref_primary_10_1016_j_eswa_2020_113917
crossref_primary_10_1038_s41598_020_71294_2
crossref_primary_10_1093_jcde_qwad044
crossref_primary_10_32604_cmc_2022_024736
crossref_primary_10_3390_pr10122703
crossref_primary_10_1038_s41598_025_89458_3
crossref_primary_10_1109_TNNLS_2021_3109565
crossref_primary_10_1007_s00521_019_04530_0
crossref_primary_10_1016_j_engappai_2023_105969
crossref_primary_10_1007_s00521_020_05475_5
crossref_primary_10_1016_j_aei_2023_102105
crossref_primary_10_1109_ACCESS_2022_3208089
crossref_primary_10_1016_j_eswa_2021_115131
crossref_primary_10_3390_a17080342
crossref_primary_10_1016_j_heliyon_2024_e31629
crossref_primary_10_1016_j_engstruct_2021_113442
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1007_s10586_024_04605_1
crossref_primary_10_1007_s00521_025_11379_z
crossref_primary_10_1016_j_knosys_2024_111725
crossref_primary_10_3390_a17090394
crossref_primary_10_1016_j_eswa_2020_113702
crossref_primary_10_1007_s40435_022_01045_w
crossref_primary_10_1007_s41315_022_00234_2
crossref_primary_10_3233_JIFS_201075
crossref_primary_10_1080_0305215X_2021_1919887
crossref_primary_10_1007_s10586_025_05229_9
crossref_primary_10_1016_j_eswa_2025_129455
crossref_primary_10_1007_s10115_025_02422_5
crossref_primary_10_3390_math10162875
crossref_primary_10_1007_s11831_023_10034_x
crossref_primary_10_1016_j_cie_2021_107250
crossref_primary_10_3390_math10101696
crossref_primary_10_1109_ACCESS_2023_3266991
crossref_primary_10_1016_j_asoc_2025_113143
crossref_primary_10_1007_s13369_021_06513_7
crossref_primary_10_1080_01496395_2025_2537714
crossref_primary_10_1007_s12065_024_00998_5
crossref_primary_10_1109_JLT_2025_3588069
crossref_primary_10_1007_s10586_024_04680_4
crossref_primary_10_1109_ACCESS_2022_3144431
crossref_primary_10_1016_j_cnsns_2025_108809
crossref_primary_10_1016_j_engappai_2024_109370
crossref_primary_10_1002_cpe_7541
crossref_primary_10_1080_19942060_2025_2507753
crossref_primary_10_1016_j_knosys_2021_107603
crossref_primary_10_1016_j_micpro_2021_103854
crossref_primary_10_1007_s00500_025_10611_1
crossref_primary_10_3233_JIFS_230459
crossref_primary_10_1007_s11227_022_04996_1
crossref_primary_10_1007_s10489_024_05930_z
crossref_primary_10_1177_00202940221092038
crossref_primary_10_1007_s11042_023_16890_w
crossref_primary_10_1016_j_knosys_2023_111032
crossref_primary_10_1007_s12597_024_00785_x
crossref_primary_10_1007_s00521_023_09236_y
crossref_primary_10_1016_j_knosys_2024_112409
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_1016_j_chaos_2022_112036
crossref_primary_10_1016_j_cma_2023_116062
crossref_primary_10_1016_j_eswa_2022_116552
crossref_primary_10_1007_s10462_025_11289_5
crossref_primary_10_1016_j_rineng_2025_105705
crossref_primary_10_1080_01969722_2022_2122016
crossref_primary_10_1007_s00366_020_01120_w
crossref_primary_10_1371_journal_pone_0285455
crossref_primary_10_1007_s10489_021_02510_3
crossref_primary_10_7717_peerj_cs_2278
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_3233_IDT_230191
crossref_primary_10_1016_j_engappai_2022_104763
crossref_primary_10_1016_j_knosys_2021_107625
crossref_primary_10_1002_ima_23001
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1016_j_jenvman_2025_124987
crossref_primary_10_1016_j_engappai_2022_105619
crossref_primary_10_1038_s41598_024_79577_8
crossref_primary_10_1109_ACCESS_2020_2982441
crossref_primary_10_1007_s10489_022_03977_4
crossref_primary_10_1016_j_compbiomed_2023_106691
crossref_primary_10_1093_jcde_qwac131
crossref_primary_10_1007_s10586_024_04867_9
crossref_primary_10_1016_j_procs_2024_08_097
crossref_primary_10_1007_s41870_022_01022_8
crossref_primary_10_1016_j_eswa_2021_116235
crossref_primary_10_1186_s40537_024_00895_9
crossref_primary_10_1109_ACCESS_2020_3019048
crossref_primary_10_1007_s00521_023_08695_7
crossref_primary_10_1108_EC_05_2024_0415
crossref_primary_10_3390_sym12111800
crossref_primary_10_3390_computers10110136
crossref_primary_10_1038_s41598_023_36066_8
crossref_primary_10_1007_s10115_023_02054_7
crossref_primary_10_3390_sym13091706
crossref_primary_10_1080_0954898X_2025_2500046
crossref_primary_10_1007_s11227_023_05579_4
crossref_primary_10_1016_j_energy_2022_125530
crossref_primary_10_1007_s10462_025_11118_9
crossref_primary_10_1007_s10586_025_05269_1
crossref_primary_10_1007_s11227_023_05400_2
crossref_primary_10_1007_s12065_025_01052_8
crossref_primary_10_1016_j_jestch_2020_08_011
crossref_primary_10_1016_j_compbiomed_2025_110500
crossref_primary_10_1002_cpe_7971
crossref_primary_10_1186_s40537_025_01066_0
crossref_primary_10_1007_s11227_022_04606_0
crossref_primary_10_1016_j_enconman_2020_113409
crossref_primary_10_1093_jcde_qwaf050
crossref_primary_10_3233_JIFS_221098
crossref_primary_10_3390_drones7070427
crossref_primary_10_3389_fenrg_2022_941705
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_3390_math11153297
crossref_primary_10_1016_j_engappai_2020_103649
crossref_primary_10_1109_TIA_2020_3041808
crossref_primary_10_32604_cmc_2021_019047
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1016_j_ins_2020_06_037
crossref_primary_10_1016_j_engappai_2022_104722
crossref_primary_10_1038_s41598_025_02154_0
crossref_primary_10_1109_ACCESS_2024_3390008
crossref_primary_10_1016_j_asoc_2025_113527
crossref_primary_10_1515_mt_2024_0187
crossref_primary_10_1007_s00366_021_01322_w
crossref_primary_10_3390_math13040675
crossref_primary_10_1515_mt_2024_0188
crossref_primary_10_1016_j_advengsoft_2022_103301
crossref_primary_10_1007_s10489_021_02670_2
crossref_primary_10_1016_j_cma_2023_116200
crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_1007_s10586_025_05201_7
crossref_primary_10_1016_j_cma_2023_116446
crossref_primary_10_1007_s11042_023_16655_5
crossref_primary_10_4018_IJSKD_330150
crossref_primary_10_1109_ACCESS_2020_2968981
crossref_primary_10_1007_s10586_023_04221_5
crossref_primary_10_1007_s11227_023_05851_7
crossref_primary_10_1016_j_prime_2023_100287
crossref_primary_10_3390_app121910057
crossref_primary_10_1007_s11227_022_04883_9
crossref_primary_10_1080_15397734_2025_2531077
crossref_primary_10_3390_bioengineering10070825
crossref_primary_10_1088_1402_4896_ad8e0e
crossref_primary_10_1080_0305215X_2025_2464862
crossref_primary_10_3390_cancers15072146
crossref_primary_10_3139_120_111479
crossref_primary_10_1016_j_engappai_2022_104709
crossref_primary_10_1002_ett_4932
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_3390_math11183960
crossref_primary_10_3390_pr10112254
crossref_primary_10_1109_ACCESS_2020_3037510
crossref_primary_10_1007_s10462_021_10105_0
crossref_primary_10_1007_s10586_024_04901_w
crossref_primary_10_32604_cmes_2024_054334
crossref_primary_10_1016_j_rineng_2025_104215
crossref_primary_10_1109_ACCESS_2023_3287859
crossref_primary_10_1007_s10489_022_03899_1
crossref_primary_10_1016_j_asoc_2020_107061
crossref_primary_10_3390_math11102340
crossref_primary_10_3390_biomimetics9070419
crossref_primary_10_1002_cpe_6607
crossref_primary_10_1016_j_asoc_2021_107328
crossref_primary_10_1109_ACCESS_2020_3013332
crossref_primary_10_1016_j_energy_2024_131163
crossref_primary_10_1002_cpe_7965
crossref_primary_10_1007_s12065_025_01030_0
crossref_primary_10_1007_s00521_022_07715_2
crossref_primary_10_1007_s10462_025_11291_x
crossref_primary_10_1007_s10462_021_10009_z
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1038_s41598_023_49754_2
crossref_primary_10_1016_j_asoc_2020_107052
crossref_primary_10_1002_jnm_3040
crossref_primary_10_1007_s00521_024_10909_5
crossref_primary_10_1007_s11063_022_11068_1
crossref_primary_10_1063_5_0222940
crossref_primary_10_1007_s11831_022_09876_8
crossref_primary_10_1371_journal_pone_0235187
crossref_primary_10_1007_s11831_025_10363_z
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_1007_s00521_021_06634_y
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_1038_s41598_020_71502_z
crossref_primary_10_1016_j_cma_2023_116238
Cites_doi 10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2016.02.038
10.1016/j.ins.2016.03.025
10.1016/j.asoc.2015.07.045
10.1016/j.ijepes.2016.01.028
10.1016/j.swevo.2015.09.007
10.1016/j.cnsns.2016.06.006
10.1016/j.biosystems.2018.09.007
10.1016/j.advengsoft.2018.04.007
10.1504/IJBIC.2016.081335
10.1016/j.ins.2015.06.044
10.1016/S0166-3615(99)00046-9
10.1016/j.jocs.2016.12.010
10.1038/scientificamerican0792-66
10.1109/ACCESS.2019.2904679
10.1016/j.future.2018.05.037
10.1016/j.engappai.2018.04.021
10.1016/j.ins.2013.02.041
10.1016/j.asoc.2015.10.034
10.1080/10643389609388492
10.1126/science.220.4598.671
10.1016/j.compstruc.2016.01.008
10.1016/j.bspc.2018.05.039
10.1109/JAS.2018.7511138
10.3390/app8030329
10.1016/j.asoc.2017.11.043
10.1007/s00500-008-0303-2
10.1109/JAS.2017.7510523
10.1007/s10462-016-9486-6
10.1016/j.advengsoft.2015.11.004
10.1016/j.eswa.2018.06.023
10.1061/(ASCE)0733-9496(1994)120:4(423)
10.1007/s00521-015-1920-1
10.1016/j.engappai.2019.01.001
10.1016/j.asoc.2012.03.068
10.1016/j.jct.2012.02.014
10.1016/j.ins.2009.03.004
10.1016/j.apm.2018.06.036
10.1016/j.advengsoft.2017.07.002
10.1109/4235.585893
10.1016/j.knosys.2015.12.022
10.1016/j.asoc.2015.10.036
10.1016/j.knosys.2018.06.001
10.1007/s00500-016-2045-x
10.1016/j.ins.2018.04.046
10.1016/j.asoc.2019.03.012
10.1016/j.future.2019.02.028
10.1016/j.advengsoft.2017.05.014
10.1016/j.eswa.2011.04.126
10.1016/j.engappai.2016.04.004
10.1016/j.neucom.2016.09.068
10.1016/j.advengsoft.2017.01.004
10.1016/j.swevo.2015.07.002
10.1016/j.asoc.2017.09.035
10.1016/j.jnggs.2018.02.001
10.1016/j.knosys.2015.07.006
10.1109/TSMC.2016.2560128
10.1016/j.asoc.2012.11.026
10.1016/j.advengsoft.2017.03.014
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2019.07.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 667
ExternalDocumentID 10_1016_j_future_2019_07_015
S0167739X19306557
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-f7c9e428f182cbb973f653c233594473e9e6cb33cb06ec8b6b3d3a88705e92a73
ISICitedReferencesCount 852
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501935700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 20:38:47 EST 2025
Sat Nov 29 07:27:08 EST 2025
Fri Feb 23 02:30:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Exploration and exploitation
Henry gas solubility optimization
Metaheuristic
Local optima
Physics-inspired
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-f7c9e428f182cbb973f653c233594473e9e6cb33cb06ec8b6b3d3a88705e92a73
PageCount 22
ParticipantIDs crossref_citationtrail_10_1016_j_future_2019_07_015
crossref_primary_10_1016_j_future_2019_07_015
elsevier_sciencedirect_doi_10_1016_j_future_2019_07_015
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Topal, Altun (b16) 2016; 354
Brown (b71) 2009
Beheshti, Shamsuddin (b6) 2013; 5
Yapici, Cetinkaya (b41) 2019
Abdechiri, Meybodi, Bahrami (b29) 2013; 13
Vommi, Vemula (b65) 2018; 454
Dorigo, Di Caro (b19) 1999
Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b51) 2018; 72
Civicioglu (b31) 2013; 219
Mareda, Gaudard, Romerio (b13) 2017; 4
Hussain, Salleh, Cheng, Shi (b72) 2018
Labbi, Attous, Gabbar, Mahdad, Zidan (b47) 2016; 79
Holland (b22) 1992; 267
Aarts, Korst (b25) 1988
Li, Zhang, Wang, Zhao, Han, Chen (b68) 2017; 2
Ewees, Elaziz, Houssein (b81) 2018; 112
Eberhart, Kennedy (b18) 1995
Patel, Savsani (b28) 2015; 324
Dhiman, Kumar (b36) 2018
Jahani, Chizari (b40) 2018; 62
Akyol, Alatas (b46) 2017; 47
Mirjalili (b15) 2015; 89
Jain, Singh, Rani (b38) 2018
Baykasoğlu, Akpinar (b52) 2017; 56
Coello (b83) 2000; 41
Dhiman, Kumar (b84) 2017; 114
Jaddi, Alvankarian, Abdullah (b50) 2017; 42
Tharwat, Houssein, Ahmed, Hassanien, Gabel (b80) 2017
Hussain, Salleh, Cheng, Shi (b75) 2018
Hussain, Salleh, Cheng, Shi, Naseem (b74) 2018
Muthiah-Nakarajan, Noel (b61) 2016; 38
Zhao, Wang, Zhang (b58) 2019; 91
Amjad, Hussam (b64) 2017; 12
Punnathanam, Kotecha (b54) 2016; 54
Staudinger, Roberts (b69) 1996; 26
Ab Wahab, Nefti-Meziani, Atyabi (b3) 2015; 10
Mirjalili (b55) 2016; 96
Hassanien, Kilany, Houssein, AlQaheri (b79) 2018; 45
Bozorg-Haddad (b7) 2018
Huang (b44) 2016; 27
Salmani, Eshghi (b49) 2017; 2017
Wolpert, Macready (b11) 1997; 1
Lin, Gen (b10) 2009; 13
Rashedi, Nezamabadi-Pour, Saryazdi (b26) 2009; 179
Li, Zhao, Weng, Han (b30) 2016; 92
Zhang, Wang, Yang, Ding, Li, Hu (b63) 2017; 221
Hussien, Hassanien, Houssein (b82) 2017
Mirjalili, Lewis (b8) 2016; 95
Zaldívar, Morales, Rodríguez, Valdivia-G, Cuevas, Pérez-Cisneros (b37) 2018; 174
Kallioras, Lagaros, Avtzis (b39) 2018; 121
BoussaïD, Lepagnot, Siarry (b4) 2013; 237
Olorunda, Engelbrecht (b9) 2008
Dong, Zhou (b12) 2017; 47
Zhang, Xiao, Gao, Pan (b66) 2018; 63
Yang (b5) 2017
Alatas (b27) 2011; 38
Hussien, Houssein, Hassanien (b78) 2017
Kaboli, Selvaraj, Rahim (b62) 2017; 19
Jaderyan, Khotanlou (b43) 2016; 43
Mohebbi, Naderifar, Behbahani, Moshfeghian (b70) 2012; 51
Ismaeel, Elshaarawy, Houssein, Ismail, Hassanien (b14) 2019; 7
Shadravan, Naji, Bardsiri (b42) 2019; 80
N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Tech. Rep.
Mezura-Montes, Coello (b85) 2005
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b34) 2017; 114
Tejani, Savsani, Patel, Mirjalili (b57) 2018
Zhao, Liu, Zhou, Guo, Qi (b17) 2018; 5
Sadollah, Bahreininejad, Eskandar, Hamdi (b77) 2013; 13
Yazdani, Jolai (b32) 2016; 3
Mirjalili (b20) 2016; 27
Moghdani, Salimifard (b67) 2018; 64
Cheng, Wu, Wang (b35) 2018; 8
Simpson, Dandy, Murphy (b1) 1994; 120
Kaveh, Bakhshpoori (b60) 2016; 167
Rechenberg (b23) 1978
Saremi, Mirjalili, Lewis (b33) 2017; 105
Momin, Yang (b73) 2013; 4
Tang, Dong, Jiang, Li, Huang (b45) 2015; 36
Kaveh, Dadras (b56) 2017; 110
Kirkpatrick, Gelatt, Vecchi (b24) 1983; 220
James (b2) 2003
Zhou, Wang, Chen, Zhang, Wu (b48) 2017; 21
Abedinpourshotorban, Shamsuddin, Beheshti, Jawawi (b53) 2016; 26
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b59) 2019; 97
Wang, Deb, Gao, Coelho (b21) 2016; 8
Alatas (10.1016/j.future.2019.07.015_b27) 2011; 38
Mirjalili (10.1016/j.future.2019.07.015_b34) 2017; 114
Kaveh (10.1016/j.future.2019.07.015_b56) 2017; 110
Hussain (10.1016/j.future.2019.07.015_b74) 2018
Hussien (10.1016/j.future.2019.07.015_b78) 2017
Shadravan (10.1016/j.future.2019.07.015_b42) 2019; 80
Sadollah (10.1016/j.future.2019.07.015_b77) 2013; 13
Patel (10.1016/j.future.2019.07.015_b28) 2015; 324
Baykasoğlu (10.1016/j.future.2019.07.015_b52) 2017; 56
Yazdani (10.1016/j.future.2019.07.015_b32) 2016; 3
Jaddi (10.1016/j.future.2019.07.015_b50) 2017; 42
Saremi (10.1016/j.future.2019.07.015_b33) 2017; 105
Eberhart (10.1016/j.future.2019.07.015_b18) 1995
Tejani (10.1016/j.future.2019.07.015_b57) 2018
Bozorg-Haddad (10.1016/j.future.2019.07.015_b7) 2018
Ewees (10.1016/j.future.2019.07.015_b81) 2018; 112
Yang (10.1016/j.future.2019.07.015_b5) 2017
Abdechiri (10.1016/j.future.2019.07.015_b29) 2013; 13
Huang (10.1016/j.future.2019.07.015_b44) 2016; 27
Rashedi (10.1016/j.future.2019.07.015_b26) 2009; 179
Yapici (10.1016/j.future.2019.07.015_b41) 2019
Momin (10.1016/j.future.2019.07.015_b73) 2013; 4
Zhao (10.1016/j.future.2019.07.015_b17) 2018; 5
Akyol (10.1016/j.future.2019.07.015_b46) 2017; 47
Mareda (10.1016/j.future.2019.07.015_b13) 2017; 4
Heidari (10.1016/j.future.2019.07.015_b59) 2019; 97
Li (10.1016/j.future.2019.07.015_b30) 2016; 92
Zhang (10.1016/j.future.2019.07.015_b66) 2018; 63
Ismaeel (10.1016/j.future.2019.07.015_b14) 2019; 7
Staudinger (10.1016/j.future.2019.07.015_b69) 1996; 26
Hussain (10.1016/j.future.2019.07.015_b75) 2018
Cheraghalipour (10.1016/j.future.2019.07.015_b51) 2018; 72
Hussain (10.1016/j.future.2019.07.015_b72) 2018
Kirkpatrick (10.1016/j.future.2019.07.015_b24) 1983; 220
Dong (10.1016/j.future.2019.07.015_b12) 2017; 47
Coello (10.1016/j.future.2019.07.015_b83) 2000; 41
Mirjalili (10.1016/j.future.2019.07.015_b8) 2016; 95
Zaldívar (10.1016/j.future.2019.07.015_b37) 2018; 174
Ab Wahab (10.1016/j.future.2019.07.015_b3) 2015; 10
Lin (10.1016/j.future.2019.07.015_b10) 2009; 13
BoussaïD (10.1016/j.future.2019.07.015_b4) 2013; 237
Cheng (10.1016/j.future.2019.07.015_b35) 2018; 8
Amjad (10.1016/j.future.2019.07.015_b64) 2017; 12
Labbi (10.1016/j.future.2019.07.015_b47) 2016; 79
Hassanien (10.1016/j.future.2019.07.015_b79) 2018; 45
Kallioras (10.1016/j.future.2019.07.015_b39) 2018; 121
Dorigo (10.1016/j.future.2019.07.015_b19) 1999
Mirjalili (10.1016/j.future.2019.07.015_b20) 2016; 27
Abedinpourshotorban (10.1016/j.future.2019.07.015_b53) 2016; 26
Muthiah-Nakarajan (10.1016/j.future.2019.07.015_b61) 2016; 38
Simpson (10.1016/j.future.2019.07.015_b1) 1994; 120
10.1016/j.future.2019.07.015_b76
Mezura-Montes (10.1016/j.future.2019.07.015_b85) 2005
Wang (10.1016/j.future.2019.07.015_b21) 2016; 8
Holland (10.1016/j.future.2019.07.015_b22) 1992; 267
Rechenberg (10.1016/j.future.2019.07.015_b23) 1978
Kaveh (10.1016/j.future.2019.07.015_b60) 2016; 167
Aarts (10.1016/j.future.2019.07.015_b25) 1988
Brown (10.1016/j.future.2019.07.015_b71) 2009
Wolpert (10.1016/j.future.2019.07.015_b11) 1997; 1
Olorunda (10.1016/j.future.2019.07.015_b9) 2008
Jahani (10.1016/j.future.2019.07.015_b40) 2018; 62
Vommi (10.1016/j.future.2019.07.015_b65) 2018; 454
Topal (10.1016/j.future.2019.07.015_b16) 2016; 354
Moghdani (10.1016/j.future.2019.07.015_b67) 2018; 64
Zhao (10.1016/j.future.2019.07.015_b58) 2019; 91
Hussien (10.1016/j.future.2019.07.015_b82) 2017
Zhou (10.1016/j.future.2019.07.015_b48) 2017; 21
Tharwat (10.1016/j.future.2019.07.015_b80) 2017
Li (10.1016/j.future.2019.07.015_b68) 2017; 2
James (10.1016/j.future.2019.07.015_b2) 2003
Dhiman (10.1016/j.future.2019.07.015_b36) 2018
Jaderyan (10.1016/j.future.2019.07.015_b43) 2016; 43
Beheshti (10.1016/j.future.2019.07.015_b6) 2013; 5
Mohebbi (10.1016/j.future.2019.07.015_b70) 2012; 51
Kaboli (10.1016/j.future.2019.07.015_b62) 2017; 19
Mirjalili (10.1016/j.future.2019.07.015_b15) 2015; 89
Jain (10.1016/j.future.2019.07.015_b38) 2018
Tang (10.1016/j.future.2019.07.015_b45) 2015; 36
Punnathanam (10.1016/j.future.2019.07.015_b54) 2016; 54
Civicioglu (10.1016/j.future.2019.07.015_b31) 2013; 219
Salmani (10.1016/j.future.2019.07.015_b49) 2017; 2017
Mirjalili (10.1016/j.future.2019.07.015_b55) 2016; 96
Zhang (10.1016/j.future.2019.07.015_b63) 2017; 221
Dhiman (10.1016/j.future.2019.07.015_b84) 2017; 114
References_xml – volume: 63
  start-page: 464
  year: 2018
  end-page: 490
  ident: b66
  article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Appl. Math. Model.
– volume: 80
  start-page: 20
  year: 2019
  end-page: 34
  ident: b42
  article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 83
  year: 1978
  end-page: 114
  ident: b23
  article-title: Evolutionsstrategien
  publication-title: Simulationsmethoden in der Medizin und Biologie
– year: 1988
  ident: b25
  article-title: Simulated Annealing and Boltzmann Machines
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b59
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 13
  start-page: 157
  year: 2009
  end-page: 168
  ident: b10
  article-title: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation
  publication-title: Soft Comput.
– volume: 62
  start-page: 987
  year: 2018
  end-page: 1002
  ident: b40
  article-title: Tackling global optimization problems with a novel algorithm–mouth brooding fish algorithm
  publication-title: Appl. Soft Comput.
– volume: 324
  start-page: 217
  year: 2015
  end-page: 246
  ident: b28
  article-title: Heat transfer search (hts): a novel optimization algorithm
  publication-title: Inform. Sci.
– volume: 91
  start-page: 601
  year: 2019
  end-page: 610
  ident: b58
  article-title: A novel atom search optimization for dispersion coefficient estimation in groundwater
  publication-title: Future Gener. Comput. Syst.
– volume: 47
  start-page: 1135
  year: 2017
  end-page: 1148
  ident: b12
  article-title: A supervised learning and control method to improve particle swarm optimization algorithms
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
– volume: 54
  start-page: 62
  year: 2016
  end-page: 79
  ident: b54
  article-title: Yin-yang-pair optimization: A novel lightweight optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b22
  article-title: Genetic algorithms
  publication-title: Sci. Amer.
– year: 2019
  ident: b41
  article-title: A new meta-heuristic optimizer: Pathfinder algorithm
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 260
  year: 2017
  end-page: 272
  ident: b13
  article-title: A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling
  publication-title: IEEE/CAA J. Automat. Sinica
– start-page: 1128
  year: 2008
  end-page: 1134
  ident: b9
  article-title: Measuring exploration/exploitation in particle swarms using swarm diversity
  publication-title: Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on
– start-page: 1
  year: 2018
  end-page: 43
  ident: b75
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 8
  start-page: 394
  year: 2016
  end-page: 409
  ident: b21
  article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b24
  article-title: Optimization by simulated annealing
  publication-title: science
– year: 2018
  ident: b36
  article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 112
  start-page: 156
  year: 2018
  end-page: 172
  ident: b81
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 358
  year: 2017
  end-page: 369
  ident: b50
  article-title: Kidney-inspired algorithm for optimization problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 2017
  year: 2017
  ident: b49
  article-title: A metaheuristic algorithm based on chemotherapy science: Csa
  publication-title: J. Optim.
– volume: 12
  start-page: 2018
  year: 2017
  ident: b64
  article-title: Supernova optimizer: A novel natural inspired meta-heuristic
  publication-title: Mod. Appl. Sci.
– volume: 167
  start-page: 69
  year: 2016
  end-page: 85
  ident: b60
  article-title: Water evaporation optimization: a novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
– volume: 237
  start-page: 82
  year: 2013
  end-page: 117
  ident: b4
  article-title: A survey on optimization metaheuristics
  publication-title: Inf. Sci.
– year: 2003
  ident: b2
  article-title: Introduction to Stochastics Search and Optimization
– volume: 26
  start-page: 205
  year: 1996
  end-page: 297
  ident: b69
  article-title: A critical review of henry’s law constants for environmental applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 10
  year: 2015
  ident: b3
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– volume: 221
  start-page: 123
  year: 2017
  end-page: 137
  ident: b63
  article-title: Collective decision optimization algorithm: A new heuristic optimization method
  publication-title: Neurocomputing
– volume: 7
  start-page: 34738
  year: 2019
  end-page: 34752
  ident: b14
  article-title: Enhanced elephant herding optimization for global optimization
  publication-title: IEEE Access
– volume: 174
  start-page: 1
  year: 2018
  end-page: 21
  ident: b37
  article-title: A novel bio-inspired optimization model based on yellow saddle goatfish behavior
  publication-title: Biosystems
– volume: 354
  start-page: 222
  year: 2016
  end-page: 235
  ident: b16
  article-title: A novel meta-heuristic algorithm: Dynamic virtual bats algorithm
  publication-title: Inform. Sci.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b26
  article-title: Gsa: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 120
  start-page: 423
  year: 1994
  end-page: 443
  ident: b1
  article-title: Genetic algorithms compared to other techniques for pipe optimization
  publication-title: J. Water Resour. Plan. Manag.
– volume: 13
  start-page: 2932
  year: 2013
  end-page: 2946
  ident: b29
  article-title: Gases brownian motion optimization: an algorithm for optimization (gbmo)
  publication-title: Appl. Soft Comput.
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: b83
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– start-page: 166
  year: 2017
  end-page: 172
  ident: b78
  article-title: A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection
  publication-title: 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)
– volume: 72
  start-page: 393
  year: 2018
  end-page: 414
  ident: b51
  article-title: Tree growth algorithm (tga): A novel approach for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b56
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b18
  article-title: A new optimizer using particle swarm theory
  publication-title: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on
– volume: 38
  start-page: 13170
  year: 2011
  end-page: 13180
  ident: b27
  article-title: Acroa: artificial chemical reaction optimization algorithm for global optimization
  publication-title: Expert Syst. Appl.
– volume: 121
  start-page: 147
  year: 2018
  end-page: 166
  ident: b39
  article-title: Pity beetle algorithm–a new metaheuristic inspired by the behavior of bark beetles
  publication-title: Adv. Eng. Softw.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b77
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 794
  year: 2018
  end-page: 806
  ident: b17
  article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems
  publication-title: IEEE/CAA J. Automat. Sinica
– volume: 27
  start-page: 31
  year: 2016
  end-page: 67
  ident: b44
  article-title: Artificial infectious disease optimization: A seiqr epidemic dynamic model-based function optimization algorithm
  publication-title: Swarm Evol. Comput.
– volume: 5
  start-page: 1
  year: 2013
  end-page: 35
  ident: b6
  article-title: A review of population-based meta-heuristic algorithms
  publication-title: Int. J. Adv. Soft Comput. Appl
– volume: 92
  start-page: 65
  year: 2016
  end-page: 88
  ident: b30
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Adv. Eng. Softw.
– volume: 21
  start-page: 435
  year: 2017
  end-page: 445
  ident: b48
  article-title: A novel path planning algorithm based on plant growth mechanism
  publication-title: Soft Comput.
– start-page: 315
  year: 2017
  end-page: 320
  ident: b82
  article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities
  publication-title: 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)
– volume: 56
  start-page: 520
  year: 2017
  end-page: 540
  ident: b52
  article-title: Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems–part 1: Unconstrained optimization
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 771
  year: 2016
  end-page: 787
  ident: b61
  article-title: Galactic swarm optimization: A new global optimization metaheuristic inspired by galactic motion
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: b38
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm Evol. Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b11
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b33
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 43
  start-page: 596
  year: 2016
  end-page: 618
  ident: b43
  article-title: Virulence optimization algorithm
  publication-title: Appl. Soft Comput.
– reference: N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Tech. Rep.
– year: 2018
  ident: b74
  article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– year: 2018
  ident: b7
  article-title: Advanced Optimization by Nature-Inspired Algorithms
– volume: 36
  start-page: 670
  year: 2015
  end-page: 698
  ident: b45
  article-title: Itgo: Invasive tumor growth optimization algorithm
  publication-title: Appl. Soft Comput.
– start-page: 1470
  year: 1999
  end-page: 1477
  ident: b19
  article-title: Ant colony optimization: a new meta-heuristic
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol. 2
– year: 2018
  ident: b57
  article-title: An improved heat transfer search algorithm for unconstrained optimization problems
  publication-title: J. Comput. Des. Eng.
– volume: 2
  start-page: 333
  year: 2017
  end-page: 339
  ident: b68
  article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin, China
  publication-title: J. Nat. Gas Geosci.
– start-page: 1
  year: 2018
  end-page: 19
  ident: b72
  article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2017
  end-page: 16
  ident: b80
  article-title: Mogoa algorithm for constrained and unconstrained multi-objective optimization problems
  publication-title: Appl. Intell.
– year: 2017
  ident: b5
  article-title: Nature-inspired algorithms and applied optimization, Vol. 744
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b15
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 26
  start-page: 8
  year: 2016
  end-page: 22
  ident: b53
  article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm
  publication-title: Swarm Evol. Comput.
– volume: 3
  start-page: 24
  year: 2016
  end-page: 36
  ident: b32
  article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm
  publication-title: J. Comput. Des. Eng.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b34
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b8
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b55
  article-title: Sca: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: b73
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: J. Math. Model. Numer. Optim.
– start-page: 652
  year: 2005
  end-page: 662
  ident: b85
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
  publication-title: Mexican International Conference on Artificial Intelligence
– volume: 219
  start-page: 8121
  year: 2013
  end-page: 8144
  ident: b31
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Appl. Math. Comput.
– volume: 45
  start-page: 182
  year: 2018
  end-page: 191
  ident: b79
  article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 329
  year: 2018
  ident: b35
  article-title: Artificial flora (af) optimization algorithm
  publication-title: Appl. Sci.
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b84
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
– volume: 19
  start-page: 31
  year: 2017
  end-page: 42
  ident: b62
  article-title: Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems
  publication-title: J. Comput. Sci.
– volume: 51
  start-page: 8
  year: 2012
  end-page: 11
  ident: b70
  article-title: Determination of henry’s law constant of light hydrocarbon gases at low temperatures
  publication-title: J. Chem. Thermodyn.
– volume: 64
  start-page: 161
  year: 2018
  end-page: 185
  ident: b67
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
– volume: 47
  start-page: 417
  year: 2017
  end-page: 462
  ident: b46
  article-title: Plant intelligence based metaheuristic optimization algorithms
  publication-title: Artif. Intell. Rev.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b20
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– volume: 454
  start-page: 255
  year: 2018
  end-page: 274
  ident: b65
  article-title: A very optimistic method of minimization (vommi) for unconstrained problems
  publication-title: Inform. Sci.
– volume: 79
  start-page: 298
  year: 2016
  end-page: 311
  ident: b47
  article-title: A new rooted tree optimization algorithm for economic dispatch with valve-point effect
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2009
  ident: b71
  article-title: Chemistry: The Central Science
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b8
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 43
  start-page: 596
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b43
  article-title: Virulence optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.038
– start-page: 1
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b75
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– start-page: 1128
  year: 2008
  ident: 10.1016/j.future.2019.07.015_b9
  article-title: Measuring exploration/exploitation in particle swarms using swarm diversity
– start-page: 39
  year: 1995
  ident: 10.1016/j.future.2019.07.015_b18
  article-title: A new optimizer using particle swarm theory
– start-page: 652
  year: 2005
  ident: 10.1016/j.future.2019.07.015_b85
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
– volume: 354
  start-page: 222
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b16
  article-title: A novel meta-heuristic algorithm: Dynamic virtual bats algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.03.025
– volume: 36
  start-page: 670
  year: 2015
  ident: 10.1016/j.future.2019.07.015_b45
  article-title: Itgo: Invasive tumor growth optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.045
– volume: 79
  start-page: 298
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b47
  article-title: A new rooted tree optimization algorithm for economic dispatch with valve-point effect
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.01.028
– volume: 27
  start-page: 31
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b44
  article-title: Artificial infectious disease optimization: A seiqr epidemic dynamic model-based function optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.09.007
– volume: 42
  start-page: 358
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b50
  article-title: Kidney-inspired algorithm for optimization problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.06.006
– volume: 174
  start-page: 1
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b37
  article-title: A novel bio-inspired optimization model based on yellow saddle goatfish behavior
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2018.09.007
– volume: 121
  start-page: 147
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b39
  article-title: Pity beetle algorithm–a new metaheuristic inspired by the behavior of bark beetles
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2018.04.007
– volume: 8
  start-page: 394
  issue: 6
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b21
  article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2016.081335
– volume: 324
  start-page: 217
  year: 2015
  ident: 10.1016/j.future.2019.07.015_b28
  article-title: Heat transfer search (hts): a novel optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.06.044
– start-page: 1
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b80
  article-title: Mogoa algorithm for constrained and unconstrained multi-objective optimization problems
  publication-title: Appl. Intell.
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.future.2019.07.015_b83
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 19
  start-page: 31
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b62
  article-title: Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.12.010
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.future.2019.07.015_b73
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: J. Math. Model. Numer. Optim.
– start-page: 315
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b82
  article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.future.2019.07.015_b22
  article-title: Genetic algorithms
  publication-title: Sci. Amer.
  doi: 10.1038/scientificamerican0792-66
– volume: 7
  start-page: 34738
  year: 2019
  ident: 10.1016/j.future.2019.07.015_b14
  article-title: Enhanced elephant herding optimization for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904679
– volume: 91
  start-page: 601
  year: 2019
  ident: 10.1016/j.future.2019.07.015_b58
  article-title: A novel atom search optimization for dispersion coefficient estimation in groundwater
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.037
– volume: 72
  start-page: 393
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b51
  article-title: Tree growth algorithm (tga): A novel approach for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.021
– volume: 237
  start-page: 82
  year: 2013
  ident: 10.1016/j.future.2019.07.015_b4
  article-title: A survey on optimization metaheuristics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.02.041
– start-page: 1470
  year: 1999
  ident: 10.1016/j.future.2019.07.015_b19
  article-title: Ant colony optimization: a new meta-heuristic
– volume: 38
  start-page: 771
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b61
  article-title: Galactic swarm optimization: A new global optimization metaheuristic inspired by galactic motion
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.034
– volume: 26
  start-page: 205
  issue: 3
  year: 1996
  ident: 10.1016/j.future.2019.07.015_b69
  article-title: A critical review of henry’s law constants for environmental applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389609388492
– year: 2018
  ident: 10.1016/j.future.2019.07.015_b57
  article-title: An improved heat transfer search algorithm for unconstrained optimization problems
  publication-title: J. Comput. Des. Eng.
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.future.2019.07.015_b24
  article-title: Optimization by simulated annealing
  publication-title: science
  doi: 10.1126/science.220.4598.671
– volume: 167
  start-page: 69
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b60
  article-title: Water evaporation optimization: a novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.01.008
– volume: 219
  start-page: 8121
  issue: 15
  year: 2013
  ident: 10.1016/j.future.2019.07.015_b31
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Appl. Math. Comput.
– volume: 45
  start-page: 182
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b79
  article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.05.039
– volume: 5
  start-page: 794
  issue: 4
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b17
  article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems
  publication-title: IEEE/CAA J. Automat. Sinica
  doi: 10.1109/JAS.2018.7511138
– volume: 8
  start-page: 329
  issue: 3
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b35
  article-title: Artificial flora (af) optimization algorithm
  publication-title: Appl. Sci.
  doi: 10.3390/app8030329
– volume: 64
  start-page: 161
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b67
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– volume: 13
  start-page: 157
  issue: 2
  year: 2009
  ident: 10.1016/j.future.2019.07.015_b10
  article-title: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0303-2
– volume: 4
  start-page: 260
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b13
  article-title: A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling
  publication-title: IEEE/CAA J. Automat. Sinica
  doi: 10.1109/JAS.2017.7510523
– start-page: 1
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b72
  article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms
  publication-title: Neural Comput. Appl.
– volume: 47
  start-page: 417
  issue: 4
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b46
  article-title: Plant intelligence based metaheuristic optimization algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9486-6
– year: 1988
  ident: 10.1016/j.future.2019.07.015_b25
– volume: 92
  start-page: 65
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b30
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.11.004
– volume: 112
  start-page: 156
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b81
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.023
– volume: 120
  start-page: 423
  issue: 4
  year: 1994
  ident: 10.1016/j.future.2019.07.015_b1
  article-title: Genetic algorithms compared to other techniques for pipe optimization
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1994)120:4(423)
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b20
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 2017
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b49
  article-title: A metaheuristic algorithm based on chemotherapy science: Csa
  publication-title: J. Optim.
– volume: 12
  start-page: 2018
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b64
  article-title: Supernova optimizer: A novel natural inspired meta-heuristic
  publication-title: Mod. Appl. Sci.
– volume: 80
  start-page: 20
  year: 2019
  ident: 10.1016/j.future.2019.07.015_b42
  article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.001
– volume: 13
  start-page: 2932
  issue: 5
  year: 2013
  ident: 10.1016/j.future.2019.07.015_b29
  article-title: Gases brownian motion optimization: an algorithm for optimization (gbmo)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.03.068
– year: 2018
  ident: 10.1016/j.future.2019.07.015_b74
  article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 51
  start-page: 8
  year: 2012
  ident: 10.1016/j.future.2019.07.015_b70
  article-title: Determination of henry’s law constant of light hydrocarbon gases at low temperatures
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2012.02.014
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.future.2019.07.015_b26
  article-title: Gsa: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– year: 2018
  ident: 10.1016/j.future.2019.07.015_b38
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm Evol. Comput.
– volume: 63
  start-page: 464
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b66
  article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.06.036
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b34
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– year: 2018
  ident: 10.1016/j.future.2019.07.015_b7
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.future.2019.07.015_b11
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b55
  article-title: Sca: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 3
  start-page: 24
  issue: 1
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b32
  article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm
  publication-title: J. Comput. Des. Eng.
– volume: 56
  start-page: 520
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b52
  article-title: Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems–part 1: Unconstrained optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.036
– year: 2009
  ident: 10.1016/j.future.2019.07.015_b71
– start-page: 166
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b78
  article-title: A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection
– start-page: 83
  year: 1978
  ident: 10.1016/j.future.2019.07.015_b23
  article-title: Evolutionsstrategien
– year: 2018
  ident: 10.1016/j.future.2019.07.015_b36
  article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.001
– volume: 21
  start-page: 435
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b48
  article-title: A novel path planning algorithm based on plant growth mechanism
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2045-x
– year: 2017
  ident: 10.1016/j.future.2019.07.015_b5
– volume: 454
  start-page: 255
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b65
  article-title: A very optimistic method of minimization (vommi) for unconstrained problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.04.046
– year: 2019
  ident: 10.1016/j.future.2019.07.015_b41
  article-title: A new meta-heuristic optimizer: Pathfinder algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.012
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.future.2019.07.015_b59
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– year: 2003
  ident: 10.1016/j.future.2019.07.015_b2
– volume: 10
  issue: 5
  year: 2015
  ident: 10.1016/j.future.2019.07.015_b3
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b84
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 38
  start-page: 13170
  issue: 10
  year: 2011
  ident: 10.1016/j.future.2019.07.015_b27
  article-title: Acroa: artificial chemical reaction optimization algorithm for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.126
– volume: 54
  start-page: 62
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b54
  article-title: Yin-yang-pair optimization: A novel lightweight optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.04.004
– volume: 5
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.future.2019.07.015_b6
  article-title: A review of population-based meta-heuristic algorithms
  publication-title: Int. J. Adv. Soft Comput. Appl
– volume: 221
  start-page: 123
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b63
  article-title: Collective decision optimization algorithm: A new heuristic optimization method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.068
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b33
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 26
  start-page: 8
  year: 2016
  ident: 10.1016/j.future.2019.07.015_b53
  article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.07.002
– volume: 62
  start-page: 987
  year: 2018
  ident: 10.1016/j.future.2019.07.015_b40
  article-title: Tackling global optimization problems with a novel algorithm–mouth brooding fish algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.035
– volume: 2
  start-page: 333
  issue: 5–6
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b68
  article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin, China
  publication-title: J. Nat. Gas Geosci.
  doi: 10.1016/j.jnggs.2018.02.001
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.future.2019.07.015_b15
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– ident: 10.1016/j.future.2019.07.015_b76
– volume: 47
  start-page: 1135
  issue: 7
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b12
  article-title: A supervised learning and control method to improve particle swarm optimization algorithms
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
  doi: 10.1109/TSMC.2016.2560128
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.future.2019.07.015_b77
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.future.2019.07.015_b56
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
SSID ssj0001731
Score 2.7041461
Snippet Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 646
SubjectTerms Exploration and exploitation
Henry gas solubility optimization
Local optima
Metaheuristic
Optimization
Physics-inspired
Title Henry gas solubility optimization: A novel physics-based algorithm
URI https://dx.doi.org/10.1016/j.future.2019.07.015
Volume 101
WOSCitedRecordID wos000501935700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJR-4RVk1cRrHewuo1YJghbQL6i2yHWe3S5qsmrTa_RP8ZsaPpF2KeElcoiiOHdfzaWbszsyH0GuiBI94HvghLYgfBTL3hf7DMU_ynEhthAydz5cP9Pg4mc3Yp8HgW5cLsy5pVSVXV-zyv4oanoGwdersX4i7HxQewD0IHa4gdrj-keBN2oF3xhtPf8fEvl57NWiGhUu5tMnoVb1WpTvYaHxtzHKPl2f1ct6eL7Zd1qmpOqKplpVDi3RMEK4MdLPRYs25JWee8nbBvfSgb6lXTeNoNSdNwxfeUd_2kYtlvfpqE4fm3knfkJZ-2nIB2soEAsKGId8-owjYD_Eeu8kz9iwTdDQlhkkXTJHVvwkFhz-wGZ69gnZDWRUbuyNLa61jS-axYwjsmcTFga3MokP4mCnS6ka-WWL7RE9FzwS8WXDJxvQW2gvpmCVDtJe-m8ze97Y9oI7h0k29S8Y0EYO73_q5s7PlwJzeR3fdzgOnFjEP0EBVD9G9jtUDOyX_CL0xAMIAILwBEN4G0CFOsYEPvgEf3MPnMfo8nZy-PfId04Yv4Qe3fkElU7ARLWC3KYVglBTxmMiQkDGLIkoUU7EUhEgxipVMRCxITjjYp9FYsZBT8gQNq7pSTxGOoaOII06jgkVUhbp-v05XTlRQhCIR-4h0S5JJV4Zes6GUWRdveJHZhcz0QmYjmsFC7iO_73Vpy7D85n3arXbmXEnrImYAkF_2fPbPPZ-jOxvsv0DDdrlSL9FtuW7nzfKVQ9J3j-ya_A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Henry+gas+solubility+optimization%3A+A+novel+physics-based+algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Hashim%2C+Fatma+A.&rft.au=Houssein%2C+Essam+H.&rft.au=Mabrouk%2C+Mai+S.&rft.au=Al-Atabany%2C+Walid&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=101&rft.spage=646&rft.epage=667&rft_id=info:doi/10.1016%2Fj.future.2019.07.015&rft.externalDocID=S0167739X19306557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon