Henry gas solubility optimization: A novel physics-based algorithm
Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic algorithm named Henry gas solubility optimization (HGSO), which mimics the behavior governed by Henry’s law to solve challenging optimization problem...
Uloženo v:
| Vydáno v: | Future generation computer systems Ročník 101; s. 646 - 667 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2019
|
| Témata: | |
| ISSN: | 0167-739X, 1872-7115 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic algorithm named Henry gas solubility optimization (HGSO), which mimics the behavior governed by Henry’s law to solve challenging optimization problems. Henry’s law is an essential gas law relating the amount of a given gas that is dissolved to a given type and volume of liquid at a fixed temperature. The HGSO algorithm imitates the huddling behavior of gas to balance exploitation and exploration in the search space and avoid local optima. The performance of HGSO is tested on 47 benchmark functions, CEC’17 test suite, and three real-world optimization problems. The results are compared with seven well-known algorithms; the particle swarm optimization (PSO), gravitational search algorithm (GSA), cuckoo search algorithm (CS), grey wolf optimizer (GWO), whale optimization algorithm (WOA), elephant herding algorithm (EHO) and simulated annealing (SA). Additionally, to assess the pairwise statistical performance of the competitive algorithms, a Wilcoxon rank sum test is conducted. The experimental results revealed that HGSO provides competitive and superior results compared to other algorithms when solving challenging optimization problems.
•A novel physics-based metaheuristic algorithm has proposed to simulate the behavior of Henry’s law, which called HGSO.•HGSO algorithm has evaluated on several benchmarks such as 47 benchmark functions, 3 engineering design problems and CEC’17 test suite problems.•The experimental results revealed that HGSO has achieved significant superiority against the other competitive algorithms. |
|---|---|
| AbstractList | Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic algorithm named Henry gas solubility optimization (HGSO), which mimics the behavior governed by Henry’s law to solve challenging optimization problems. Henry’s law is an essential gas law relating the amount of a given gas that is dissolved to a given type and volume of liquid at a fixed temperature. The HGSO algorithm imitates the huddling behavior of gas to balance exploitation and exploration in the search space and avoid local optima. The performance of HGSO is tested on 47 benchmark functions, CEC’17 test suite, and three real-world optimization problems. The results are compared with seven well-known algorithms; the particle swarm optimization (PSO), gravitational search algorithm (GSA), cuckoo search algorithm (CS), grey wolf optimizer (GWO), whale optimization algorithm (WOA), elephant herding algorithm (EHO) and simulated annealing (SA). Additionally, to assess the pairwise statistical performance of the competitive algorithms, a Wilcoxon rank sum test is conducted. The experimental results revealed that HGSO provides competitive and superior results compared to other algorithms when solving challenging optimization problems.
•A novel physics-based metaheuristic algorithm has proposed to simulate the behavior of Henry’s law, which called HGSO.•HGSO algorithm has evaluated on several benchmarks such as 47 benchmark functions, 3 engineering design problems and CEC’17 test suite problems.•The experimental results revealed that HGSO has achieved significant superiority against the other competitive algorithms. |
| Author | Mabrouk, Mai S. Hashim, Fatma A. Houssein, Essam H. Al-Atabany, Walid Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Fatma A. surname: Hashim fullname: Hashim, Fatma A. organization: Faculty of Engineering, Helwan University, Egypt – sequence: 2 givenname: Essam H. surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Egypt – sequence: 3 givenname: Mai S. surname: Mabrouk fullname: Mabrouk, Mai S. organization: Faculty of Engineering, Misr University for Science and Technology, Egypt – sequence: 4 givenname: Walid surname: Al-Atabany fullname: Al-Atabany, Walid organization: Faculty of Engineering, Helwan University, Egypt – sequence: 5 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali organization: Institute for Integrated and Intelligent Systems, Griffith University, Nathan, QLD 4111, Australia |
| BookMark | eNqFkLFOwzAURS1UJNrCHzD4BxLsOInjDkilAopUiQUkNst2XlpXaVzZbqXw9aSUiQGmt9xzdd-ZoFHnOkDolpKUElrebdPmEA8e0oxQkRKeElpcoDGteJZwSosRGg8xnnAmPq7QJIQtIYRyRsfoYQmd7_FaBRxce9C2tbHHbh_tzn6qaF03w3PcuSO0eL_pgzUh0SpAjVW7dt7Gze4aXTaqDXDzc6fo_enxbbFMVq_PL4v5KjGMlDFpuBGQZ1VDq8xoLThryoKZjLFC5DlnIKA0mjGjSQmm0qVmNVNVxUkBIlOcTdHs3Gu8C8FDI42N3xOjV7aVlMiTDbmVZxvyZEMSLgcbA5z_gvfe7pTv_8PuzxgMjx0teBmMhc5AbT2YKGtn_y74AoZCfx4 |
| CitedBy_id | crossref_primary_10_3390_pr9122276 crossref_primary_10_1016_j_oceaneng_2022_111021 crossref_primary_10_32604_cmc_2023_034025 crossref_primary_10_1007_s11042_024_19437_9 crossref_primary_10_1088_1402_4896_ade378 crossref_primary_10_33187_jmsm_1617412 crossref_primary_10_1007_s00521_022_07916_9 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_1016_j_asoc_2021_108126 crossref_primary_10_1016_j_eswa_2024_124262 crossref_primary_10_3233_JIFS_222348 crossref_primary_10_1002_dac_5606 crossref_primary_10_1016_j_eswa_2021_115936 crossref_primary_10_1007_s00521_020_05621_z crossref_primary_10_1016_j_enconman_2022_116523 crossref_primary_10_1016_j_knosys_2022_108320 crossref_primary_10_1109_ACCESS_2022_3143802 crossref_primary_10_3390_automation6020013 crossref_primary_10_1016_j_asoc_2021_107282 crossref_primary_10_1016_j_eswa_2023_120602 crossref_primary_10_3390_math11204224 crossref_primary_10_1007_s00500_025_10618_8 crossref_primary_10_1007_s40747_022_00852_0 crossref_primary_10_1109_ACCESS_2020_3032851 crossref_primary_10_1007_s00521_021_05991_y crossref_primary_10_1007_s12652_022_03724_0 crossref_primary_10_1007_s00366_020_01268_5 crossref_primary_10_1007_s11831_025_10304_w crossref_primary_10_1016_j_future_2022_12_040 crossref_primary_10_1177_00375497231164645 crossref_primary_10_1080_08839514_2020_1712789 crossref_primary_10_1007_s13042_022_01703_7 crossref_primary_10_1016_j_bspc_2023_104634 crossref_primary_10_1016_j_knosys_2025_113548 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_1016_j_engappai_2023_106207 crossref_primary_10_1016_j_matcom_2020_09_027 crossref_primary_10_1007_s42600_022_00211_5 crossref_primary_10_1109_JIOT_2023_3303124 crossref_primary_10_1109_ACCESS_2024_3376235 crossref_primary_10_1016_j_engappai_2023_107532 crossref_primary_10_1016_j_engappai_2021_104309 crossref_primary_10_32604_cmc_2022_019867 crossref_primary_10_3390_w14193035 crossref_primary_10_1016_j_cie_2021_107904 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_1007_s00521_021_06580_9 crossref_primary_10_1016_j_iswa_2025_200521 crossref_primary_10_1007_s11831_023_09990_1 crossref_primary_10_1016_j_engappai_2022_105082 crossref_primary_10_1109_ACCESS_2025_3541975 crossref_primary_10_1016_j_advengsoft_2022_103332 crossref_primary_10_1016_j_knosys_2022_109215 crossref_primary_10_1007_s10462_023_10567_4 crossref_primary_10_1080_0305215X_2021_1969560 crossref_primary_10_1016_j_engappai_2022_105069 crossref_primary_10_1007_s11831_025_10281_0 crossref_primary_10_1016_j_aei_2022_101636 crossref_primary_10_1038_s41598_023_31876_2 crossref_primary_10_1007_s11831_023_09902_3 crossref_primary_10_3390_fractalfract9080521 crossref_primary_10_1007_s11220_024_00495_0 crossref_primary_10_1002_eng2_70048 crossref_primary_10_1016_j_engappai_2022_105075 crossref_primary_10_1109_ACCESS_2021_3108097 crossref_primary_10_1177_09544062241240395 crossref_primary_10_1038_s41598_022_23781_x crossref_primary_10_1007_s00521_021_06747_4 crossref_primary_10_1038_s41598_025_86275_6 crossref_primary_10_1007_s11227_025_07052_w crossref_primary_10_1038_s41598_025_07328_4 crossref_primary_10_1080_02564602_2020_1843554 crossref_primary_10_1016_j_eswa_2023_120886 crossref_primary_10_1007_s00521_021_06714_z crossref_primary_10_1016_j_asoc_2021_108387 crossref_primary_10_1007_s00500_020_05057_6 crossref_primary_10_3390_math8101821 crossref_primary_10_1007_s10586_024_04360_3 crossref_primary_10_1016_j_advengsoft_2022_103353 crossref_primary_10_3233_JIFS_221036 crossref_primary_10_3233_JIFS_221039 crossref_primary_10_3233_MGS_220329 crossref_primary_10_1016_j_surfin_2025_106005 crossref_primary_10_1016_j_knosys_2023_110940 crossref_primary_10_1080_15567036_2023_2245771 crossref_primary_10_1007_s12559_025_10443_z crossref_primary_10_1038_s41598_025_16513_4 crossref_primary_10_1016_j_knosys_2022_108341 crossref_primary_10_1038_s41598_025_86264_9 crossref_primary_10_32604_cmes_2023_025908 crossref_primary_10_1109_ACCESS_2020_2999540 crossref_primary_10_1016_j_knosys_2025_113589 crossref_primary_10_1016_j_displa_2024_102740 crossref_primary_10_1016_j_eswa_2023_121744 crossref_primary_10_3390_sym17091410 crossref_primary_10_32604_cmc_2022_029438 crossref_primary_10_1016_j_cie_2022_108032 crossref_primary_10_1007_s00500_020_04834_7 crossref_primary_10_1016_j_est_2020_101380 crossref_primary_10_1016_j_engappai_2021_104588 crossref_primary_10_1016_j_eswa_2021_115305 crossref_primary_10_3390_en17092209 crossref_primary_10_1016_j_compchemeng_2019_106656 crossref_primary_10_1109_ACCESS_2024_3365700 crossref_primary_10_1515_mt_2020_0053 crossref_primary_10_7717_peerj_cs_1431 crossref_primary_10_1007_s11042_025_20643_2 crossref_primary_10_1109_ACCESS_2023_3343619 crossref_primary_10_1016_j_eswa_2021_115538 crossref_primary_10_1016_j_eswa_2021_114689 crossref_primary_10_1038_s41598_024_69010_5 crossref_primary_10_1155_2021_2298215 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1515_mt_2020_0049 crossref_primary_10_3390_a17090417 crossref_primary_10_3390_app14188280 crossref_primary_10_3390_math9182230 crossref_primary_10_1109_ACCESS_2020_3012838 crossref_primary_10_1016_j_jnca_2022_103385 crossref_primary_10_1007_s10586_024_04601_5 crossref_primary_10_1002_er_7103 crossref_primary_10_1002_er_8437 crossref_primary_10_3390_math12223464 crossref_primary_10_1016_j_knosys_2022_110032 crossref_primary_10_1049_rpg2_12428 crossref_primary_10_32604_cmc_2023_036865 crossref_primary_10_32604_cmes_2023_029404 crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_1007_s10462_021_10026_y crossref_primary_10_3390_biomimetics8050386 crossref_primary_10_3390_biomimetics8050383 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1080_23311916_2024_2364041 crossref_primary_10_1038_s41598_022_27344_y crossref_primary_10_1007_s11709_021_0719_7 crossref_primary_10_1007_s41939_024_00502_7 crossref_primary_10_1080_0305215X_2022_2127698 crossref_primary_10_1109_ACCESS_2020_3012606 crossref_primary_10_3390_biomimetics8040332 crossref_primary_10_3233_JIFS_223827 crossref_primary_10_1007_s00521_025_11421_0 crossref_primary_10_1109_ACCESS_2023_3328248 crossref_primary_10_1016_j_epsr_2024_110273 crossref_primary_10_3390_en17071547 crossref_primary_10_1016_j_compbiomed_2022_106404 crossref_primary_10_1016_j_eswa_2023_122638 crossref_primary_10_3390_math10152675 crossref_primary_10_1016_j_energy_2021_122551 crossref_primary_10_1109_ACCESS_2021_3088783 crossref_primary_10_1007_s00500_023_08274_x crossref_primary_10_3390_biomimetics9030137 crossref_primary_10_1155_2021_7387153 crossref_primary_10_1016_j_jocs_2022_101805 crossref_primary_10_3390_math12152364 crossref_primary_10_1007_s00366_021_01319_5 crossref_primary_10_1007_s00366_020_01233_2 crossref_primary_10_3390_fractalfract6040194 crossref_primary_10_3390_math10091384 crossref_primary_10_1007_s12652_025_04960_w crossref_primary_10_3390_biomimetics10060388 crossref_primary_10_1016_j_cma_2021_114029 crossref_primary_10_1515_mt_2020_0091 crossref_primary_10_1007_s00500_023_08859_6 crossref_primary_10_1007_s11227_023_05618_0 crossref_primary_10_1016_j_advengsoft_2022_103177 crossref_primary_10_1063_5_0227978 crossref_primary_10_1038_s41598_023_31081_1 crossref_primary_10_32604_cmc_2023_034695 crossref_primary_10_1049_rpg2_12699 crossref_primary_10_1007_s00521_024_09928_z crossref_primary_10_1109_ACCESS_2020_2997783 crossref_primary_10_1108_K_07_2023_1210 crossref_primary_10_1007_s10825_022_01987_6 crossref_primary_10_1038_s41598_024_63328_w crossref_primary_10_3390_biomimetics10060379 crossref_primary_10_1016_j_knosys_2024_111960 crossref_primary_10_1016_j_eswa_2020_114159 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_1007_s11227_023_05331_y crossref_primary_10_1007_s12065_025_01027_9 crossref_primary_10_1016_j_knosys_2022_109048 crossref_primary_10_1109_ACCESS_2021_3066329 crossref_primary_10_1007_s10462_023_10403_9 crossref_primary_10_3233_JIFS_235607 crossref_primary_10_1007_s00500_024_09796_8 crossref_primary_10_1007_s10586_024_04293_x crossref_primary_10_1093_comjnl_bxac070 crossref_primary_10_1515_mt_2020_0076 crossref_primary_10_3390_make7010024 crossref_primary_10_1049_rpg2_12475 crossref_primary_10_3390_buildings13071852 crossref_primary_10_1016_j_asoc_2020_106761 crossref_primary_10_3390_app15073671 crossref_primary_10_1007_s42235_022_00316_8 crossref_primary_10_1016_j_knosys_2023_110305 crossref_primary_10_1007_s11356_024_33785_x crossref_primary_10_1016_j_knosys_2022_110011 crossref_primary_10_1007_s11356_020_11065_8 crossref_primary_10_1016_j_knosys_2025_114273 crossref_primary_10_3390_math10121991 crossref_primary_10_1007_s00500_022_07337_9 crossref_primary_10_1007_s12665_021_09711_6 crossref_primary_10_3390_a17010033 crossref_primary_10_1016_j_advengsoft_2025_103883 crossref_primary_10_1016_j_ins_2023_120077 crossref_primary_10_1038_s41598_024_57098_8 crossref_primary_10_1007_s40819_025_01925_7 crossref_primary_10_1016_j_compbiomed_2022_106239 crossref_primary_10_1080_21681163_2022_2157748 crossref_primary_10_1007_s40430_025_05404_4 crossref_primary_10_1016_j_eswa_2022_116887 crossref_primary_10_1155_2022_2721490 crossref_primary_10_1007_s00366_021_01347_1 crossref_primary_10_1016_j_asoc_2023_110319 crossref_primary_10_1109_ACCESS_2022_3223388 crossref_primary_10_1038_s41598_024_55619_z crossref_primary_10_1007_s00500_023_07974_8 crossref_primary_10_1109_ACCESS_2020_2967399 crossref_primary_10_3390_sym13122388 crossref_primary_10_1016_j_jnca_2025_104217 crossref_primary_10_1016_j_eswa_2021_115253 crossref_primary_10_1007_s40430_022_03911_2 crossref_primary_10_1002_cpe_7245 crossref_primary_10_3390_sym12071146 crossref_primary_10_1016_j_cosrev_2025_100740 crossref_primary_10_3390_math10193466 crossref_primary_10_1371_journal_pone_0263387 crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_1109_ACCESS_2022_3156593 crossref_primary_10_1016_j_asoc_2023_110573 crossref_primary_10_1007_s00500_023_09561_3 crossref_primary_10_1007_s10462_022_10182_9 crossref_primary_10_1016_j_energy_2021_122964 crossref_primary_10_1007_s10489_021_02795_4 crossref_primary_10_1007_s13369_021_06307_x crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1007_s00366_021_01530_4 crossref_primary_10_1016_j_engappai_2022_105521 crossref_primary_10_1016_j_knosys_2021_107555 crossref_primary_10_3390_math10010102 crossref_primary_10_1109_ACCESS_2020_2990137 crossref_primary_10_1016_j_trgeo_2021_100579 crossref_primary_10_1016_j_matcom_2021_08_013 crossref_primary_10_3390_diagnostics13081422 crossref_primary_10_1007_s10586_024_05011_3 crossref_primary_10_1080_03081079_2024_2339471 crossref_primary_10_1016_j_eswa_2021_116158 crossref_primary_10_1109_ACCESS_2025_3567556 crossref_primary_10_1007_s10489_022_03834_4 crossref_primary_10_1007_s11831_020_09481_7 crossref_primary_10_1016_j_engappai_2020_103731 crossref_primary_10_1007_s12559_022_10099_z crossref_primary_10_1016_j_apm_2022_11_016 crossref_primary_10_1155_2022_6078986 crossref_primary_10_3390_su152416589 crossref_primary_10_1016_j_asoc_2022_109097 crossref_primary_10_1007_s00521_020_05594_z crossref_primary_10_1016_j_asoc_2023_110113 crossref_primary_10_1007_s11042_022_13093_7 crossref_primary_10_1080_01969722_2023_2175119 crossref_primary_10_1109_ACCESS_2022_3201147 crossref_primary_10_1155_2022_6627409 crossref_primary_10_1016_j_cie_2020_107050 crossref_primary_10_32604_cmc_2023_030379 crossref_primary_10_3390_su15065431 crossref_primary_10_1016_j_knosys_2022_110192 crossref_primary_10_1109_ACCESS_2021_3108533 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1007_s13762_022_04170_3 crossref_primary_10_1016_j_eswa_2024_124882 crossref_primary_10_1177_00405175221114633 crossref_primary_10_1016_j_bspc_2022_103712 crossref_primary_10_32604_cmes_2024_055171 crossref_primary_10_1038_s41598_022_24343_x crossref_primary_10_1109_ACCESS_2020_3013617 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1007_s41939_024_00615_z crossref_primary_10_1109_TCBB_2023_3305429 crossref_primary_10_1186_s40537_025_01125_6 crossref_primary_10_3390_app132212290 crossref_primary_10_3390_sym13122364 crossref_primary_10_1007_s10462_025_11279_7 crossref_primary_10_1016_j_eswa_2021_116355 crossref_primary_10_1016_j_heliyon_2024_e26187 crossref_primary_10_3390_math12142250 crossref_primary_10_3390_biomimetics9060361 crossref_primary_10_1093_jcde_qwac003 crossref_primary_10_1007_s10586_024_04602_4 crossref_primary_10_1002_int_22617 crossref_primary_10_1016_j_jobe_2022_105187 crossref_primary_10_1111_exsy_12843 crossref_primary_10_1016_j_apor_2021_102837 crossref_primary_10_3390_machines9120341 crossref_primary_10_1007_s00500_023_08551_9 crossref_primary_10_1007_s00521_023_08229_1 crossref_primary_10_1016_j_sysarc_2023_102871 crossref_primary_10_1007_s00500_023_09276_5 crossref_primary_10_1016_j_est_2021_103848 crossref_primary_10_1016_j_cose_2025_104393 crossref_primary_10_1155_2020_3490536 crossref_primary_10_1016_j_advengsoft_2022_103402 crossref_primary_10_3139_120_111541 crossref_primary_10_3390_math10030351 crossref_primary_10_1080_0952813X_2022_2104388 crossref_primary_10_1002_cpe_7612 crossref_primary_10_1007_s10115_025_02561_9 crossref_primary_10_1007_s10479_021_04311_w crossref_primary_10_1016_j_energy_2022_124340 crossref_primary_10_3390_s22186860 crossref_primary_10_1016_j_patcog_2022_108989 crossref_primary_10_1016_j_pnsc_2023_12_004 crossref_primary_10_1186_s40537_025_01274_8 crossref_primary_10_1007_s00500_020_04721_1 crossref_primary_10_3390_math11051231 crossref_primary_10_1109_ACCESS_2021_3101939 crossref_primary_10_1016_j_asej_2025_103615 crossref_primary_10_3390_math12071059 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_3390_biomimetics8060507 crossref_primary_10_1109_ACCESS_2024_3366495 crossref_primary_10_1007_s40819_021_01061_y crossref_primary_10_1007_s12065_022_00711_4 crossref_primary_10_1007_s42979_025_03990_7 crossref_primary_10_1016_j_asoc_2024_112036 crossref_primary_10_1109_ACCESS_2022_3177218 crossref_primary_10_1016_j_cma_2023_116307 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_3390_biomimetics10080517 crossref_primary_10_1007_s13369_022_07350_y crossref_primary_10_1109_ACCESS_2022_3185068 crossref_primary_10_1002_cpe_6303 crossref_primary_10_1007_s00500_021_06710_4 crossref_primary_10_1007_s10489_022_03994_3 crossref_primary_10_1109_ACCESS_2022_3153493 crossref_primary_10_1007_s00500_022_06886_3 crossref_primary_10_1016_j_energy_2022_124360 crossref_primary_10_3139_120_111529 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1016_j_asoc_2023_111042 crossref_primary_10_1016_j_eswa_2021_115079 crossref_primary_10_1016_j_cmpb_2021_106244 crossref_primary_10_1007_s00521_022_07925_8 crossref_primary_10_1080_01969722_2023_2175145 crossref_primary_10_1007_s10586_023_04090_y crossref_primary_10_1007_s11831_021_09529_2 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_1016_j_eswa_2023_123049 crossref_primary_10_1093_jcde_qwae069 crossref_primary_10_1109_ACCESS_2020_3015206 crossref_primary_10_3390_biomimetics10080504 crossref_primary_10_1007_s10462_020_09911_9 crossref_primary_10_1109_ACCESS_2019_2946664 crossref_primary_10_1007_s10586_025_05170_x crossref_primary_10_3390_pr11051380 crossref_primary_10_1016_j_eswa_2022_118222 crossref_primary_10_1016_j_seta_2021_101824 crossref_primary_10_1016_j_energy_2022_124363 crossref_primary_10_1016_j_asoc_2024_112019 crossref_primary_10_1109_ACCESS_2022_3205105 crossref_primary_10_1007_s11042_024_20221_y crossref_primary_10_1007_s00521_019_04611_0 crossref_primary_10_1016_j_apenergy_2022_119166 crossref_primary_10_1371_journal_pone_0242612 crossref_primary_10_1016_j_micpro_2021_104412 crossref_primary_10_57120_yalvac_1257808 crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_1016_j_knosys_2022_109615 crossref_primary_10_1007_s12559_022_10022_6 crossref_primary_10_1016_j_ijhydene_2025_02_314 crossref_primary_10_1007_s42235_023_00340_2 crossref_primary_10_1007_s42235_023_00386_2 crossref_primary_10_3390_electronics11121919 crossref_primary_10_3389_fgene_2021_793629 crossref_primary_10_1016_j_suscom_2023_100918 crossref_primary_10_1007_s42044_023_00160_x crossref_primary_10_1016_j_knosys_2021_107348 crossref_primary_10_1016_j_knosys_2022_109849 crossref_primary_10_1007_s00521_024_09879_5 crossref_primary_10_1109_ACCESS_2022_3143035 crossref_primary_10_1016_j_knosys_2022_108517 crossref_primary_10_1007_s12530_023_09485_1 crossref_primary_10_1109_ACCESS_2023_3312567 crossref_primary_10_1109_ACCESS_2020_3024108 crossref_primary_10_3389_fgene_2021_644945 crossref_primary_10_1007_s10462_020_09933_3 crossref_primary_10_1007_s00521_021_06392_x crossref_primary_10_1007_s42250_023_00798_x crossref_primary_10_1109_ACCESS_2020_3014309 crossref_primary_10_1007_s10489_022_03743_6 crossref_primary_10_1007_s00500_021_05606_7 crossref_primary_10_1093_jcde_qwac099 crossref_primary_10_1109_ACCESS_2021_3072336 crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_1109_ACCESS_2020_2990338 crossref_primary_10_1016_j_isatra_2021_11_008 crossref_primary_10_1038_s41598_025_11129_0 crossref_primary_10_1038_s41598_025_85486_1 crossref_primary_10_1007_s13246_022_01150_2 crossref_primary_10_1007_s10462_020_09944_0 crossref_primary_10_1007_s40815_021_01195_7 crossref_primary_10_1007_s12046_024_02628_3 crossref_primary_10_1007_s00500_021_06229_8 crossref_primary_10_1016_j_aej_2024_08_021 crossref_primary_10_1371_journal_pone_0260232 crossref_primary_10_1038_s41598_024_71581_2 crossref_primary_10_1002_rob_22020 crossref_primary_10_3390_sym13020244 crossref_primary_10_1007_s10489_023_05073_7 crossref_primary_10_1016_j_knosys_2022_108457 crossref_primary_10_1016_j_net_2025_103601 crossref_primary_10_32604_cmc_2024_053189 crossref_primary_10_1007_s00366_020_01258_7 crossref_primary_10_1016_j_heliyon_2024_e25848 crossref_primary_10_1007_s10462_022_10340_z crossref_primary_10_1016_j_asoc_2022_109847 crossref_primary_10_1016_j_engappai_2020_104105 crossref_primary_10_1016_j_eswa_2022_118383 crossref_primary_10_1016_j_eswa_2020_113364 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1007_s00607_023_01157_x crossref_primary_10_1007_s10115_021_01641_w crossref_primary_10_1080_21642583_2025_2469606 crossref_primary_10_1002_dac_5980 crossref_primary_10_1038_s41598_023_42969_3 crossref_primary_10_3390_math10203821 crossref_primary_10_1016_j_eswa_2024_126315 crossref_primary_10_1038_s41598_024_77115_0 crossref_primary_10_1007_s12145_021_00667_6 crossref_primary_10_1002_int_23091 crossref_primary_10_1016_j_ins_2022_07_131 crossref_primary_10_3390_w15030437 crossref_primary_10_3390_math11194200 crossref_primary_10_1007_s10489_021_02811_7 crossref_primary_10_1007_s00521_022_07203_7 crossref_primary_10_1016_j_nucengdes_2025_113899 crossref_primary_10_1016_j_advengsoft_2023_103517 crossref_primary_10_1016_j_swevo_2023_101248 crossref_primary_10_1007_s11042_025_20927_7 crossref_primary_10_1007_s12652_021_03234_5 crossref_primary_10_1109_ACCESS_2025_3562367 crossref_primary_10_3390_biomimetics8060468 crossref_primary_10_1002_ima_22515 crossref_primary_10_1016_j_chaos_2024_115696 crossref_primary_10_1109_TCBB_2021_3127271 crossref_primary_10_1007_s13748_023_00306_9 crossref_primary_10_1038_s41598_025_86757_7 crossref_primary_10_1038_s41598_023_38252_0 crossref_primary_10_1007_s00366_021_01591_5 crossref_primary_10_1016_j_engappai_2021_104410 crossref_primary_10_1007_s00202_020_01173_6 crossref_primary_10_1049_rpg2_13004 crossref_primary_10_1007_s42235_023_00387_1 crossref_primary_10_1016_j_eswa_2020_113395 crossref_primary_10_1016_j_eswa_2020_114243 crossref_primary_10_1007_s11831_023_09914_z crossref_primary_10_1007_s10915_022_01955_z crossref_primary_10_1007_s12530_023_09517_w crossref_primary_10_1080_15567036_2024_2404260 crossref_primary_10_1007_s10462_020_09893_8 crossref_primary_10_3390_math11020390 crossref_primary_10_1016_j_eswa_2021_114778 crossref_primary_10_1016_j_rineng_2024_101859 crossref_primary_10_1007_s12065_024_00937_4 crossref_primary_10_1371_journal_pone_0255269 crossref_primary_10_1016_j_swevo_2021_100868 crossref_primary_10_1109_ACCESS_2021_3067597 crossref_primary_10_1177_09544062221101737 crossref_primary_10_1016_j_cma_2023_115878 crossref_primary_10_3390_computation11010013 crossref_primary_10_1016_j_istruc_2022_04_007 crossref_primary_10_1109_ACCESS_2021_3054053 crossref_primary_10_1016_j_measen_2024_101250 crossref_primary_10_1007_s10957_023_02210_7 crossref_primary_10_3390_biomimetics9110654 crossref_primary_10_3390_en16052409 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_1007_s10462_022_10277_3 crossref_primary_10_3390_biomimetics8060470 crossref_primary_10_1016_j_epsr_2020_106886 crossref_primary_10_1109_TEVC_2022_3170212 crossref_primary_10_1016_j_eswa_2025_126425 crossref_primary_10_1038_s41598_025_99207_1 crossref_primary_10_3390_atmos12060702 crossref_primary_10_1002_suco_202300566 crossref_primary_10_1016_j_jhydrol_2022_129034 crossref_primary_10_3390_biomimetics8010121 crossref_primary_10_1007_s10462_023_10446_y crossref_primary_10_1016_j_bspc_2023_105423 crossref_primary_10_1142_S0129183125500780 crossref_primary_10_1016_j_eswa_2022_119015 crossref_primary_10_3390_app14209610 crossref_primary_10_1016_j_eswa_2023_122705 crossref_primary_10_3390_app11052042 crossref_primary_10_1109_ACCESS_2020_2968943 crossref_primary_10_1007_s00521_022_08103_6 crossref_primary_10_1016_j_pnucene_2022_104520 crossref_primary_10_1007_s12530_024_09645_x crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_3390_biomimetics8060490 crossref_primary_10_1038_s41598_024_70497_1 crossref_primary_10_3390_sym16111435 crossref_primary_10_28948_ngumuh_1570577 crossref_primary_10_1080_21681163_2021_2024088 crossref_primary_10_3390_math10101626 crossref_primary_10_1007_s00500_021_05841_y crossref_primary_10_3390_biomimetics8020149 crossref_primary_10_1016_j_eswa_2021_114575 crossref_primary_10_7717_peerj_cs_1557 crossref_primary_10_1016_j_imed_2023_10_001 crossref_primary_10_1093_jcde_qwac113 crossref_primary_10_1007_s10489_020_01893_z crossref_primary_10_1007_s11269_020_02737_8 crossref_primary_10_1016_j_knosys_2022_110146 crossref_primary_10_1007_s10462_022_10164_x crossref_primary_10_1016_j_enconman_2023_117831 crossref_primary_10_3233_JIFS_230005 crossref_primary_10_1016_j_eswa_2021_115651 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1177_30504554251319447 crossref_primary_10_1016_j_cma_2022_114616 crossref_primary_10_1109_ACCESS_2020_2993267 crossref_primary_10_3390_math13152499 crossref_primary_10_1007_s42235_022_00185_1 crossref_primary_10_1007_s40998_025_00797_3 crossref_primary_10_3390_app13020906 crossref_primary_10_1007_s13369_020_05228_5 crossref_primary_10_1109_TMC_2022_3213410 crossref_primary_10_1109_ACCESS_2023_3279416 crossref_primary_10_3390_app12199465 crossref_primary_10_1016_j_eswa_2021_115882 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_1016_j_eswa_2023_121898 crossref_primary_10_1007_s11227_023_05790_3 crossref_primary_10_3390_e23040491 crossref_primary_10_1016_j_cma_2022_115734 crossref_primary_10_1142_S0217732325500191 crossref_primary_10_1371_journal_pone_0291788 crossref_primary_10_1108_EC_07_2024_0675 crossref_primary_10_7717_peerj_cs_1526 crossref_primary_10_1016_j_compbiomed_2022_105671 crossref_primary_10_7717_peerj_cs_1760 crossref_primary_10_1007_s00500_022_07410_3 crossref_primary_10_1007_s00366_021_01371_1 crossref_primary_10_1016_j_procs_2025_04_124 crossref_primary_10_1155_2020_6502807 crossref_primary_10_1007_s00500_022_07589_5 crossref_primary_10_1007_s11831_023_09923_y crossref_primary_10_1007_s00521_020_05296_6 crossref_primary_10_1016_j_jer_2024_05_008 crossref_primary_10_1002_cpe_7264 crossref_primary_10_1186_s40537_024_00902_z crossref_primary_10_1007_s12065_020_00546_x crossref_primary_10_3233_JIFS_221348 crossref_primary_10_1002_cpe_7490 crossref_primary_10_1007_s10462_025_11360_1 crossref_primary_10_1038_s41598_024_63908_w crossref_primary_10_1016_j_egyr_2022_05_231 crossref_primary_10_1016_j_knosys_2020_105889 crossref_primary_10_1016_j_knosys_2023_110454 crossref_primary_10_1515_mt_2024_0216 crossref_primary_10_1007_s00366_020_00994_0 crossref_primary_10_3233_JIFS_222413 crossref_primary_10_1016_j_advengsoft_2024_103665 crossref_primary_10_1089_cmb_2021_0267 crossref_primary_10_3233_WEB_230109A crossref_primary_10_1016_j_eswa_2024_123958 crossref_primary_10_1016_j_jestch_2021_11_003 crossref_primary_10_1007_s00521_022_08058_8 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_1016_j_matcom_2023_04_020 crossref_primary_10_1109_TIA_2022_3200348 crossref_primary_10_1038_s41598_025_05477_0 crossref_primary_10_3390_math13050717 crossref_primary_10_1016_j_epsr_2023_110051 crossref_primary_10_1016_j_dsp_2021_103349 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1002_suco_202300956 crossref_primary_10_32604_cmc_2023_035911 crossref_primary_10_1016_j_knosys_2021_107405 crossref_primary_10_1007_s42235_023_00437_8 crossref_primary_10_1016_j_eswa_2021_116001 crossref_primary_10_3390_biomimetics8080619 crossref_primary_10_1063_5_0213886 crossref_primary_10_1007_s10462_025_11269_9 crossref_primary_10_3390_biomimetics8080615 crossref_primary_10_1016_j_eswa_2023_120069 crossref_primary_10_1016_j_eswa_2020_113917 crossref_primary_10_1038_s41598_020_71294_2 crossref_primary_10_1093_jcde_qwad044 crossref_primary_10_32604_cmc_2022_024736 crossref_primary_10_3390_pr10122703 crossref_primary_10_1038_s41598_025_89458_3 crossref_primary_10_1109_TNNLS_2021_3109565 crossref_primary_10_1007_s00521_019_04530_0 crossref_primary_10_1016_j_engappai_2023_105969 crossref_primary_10_1007_s00521_020_05475_5 crossref_primary_10_1016_j_aei_2023_102105 crossref_primary_10_1109_ACCESS_2022_3208089 crossref_primary_10_1016_j_eswa_2021_115131 crossref_primary_10_3390_a17080342 crossref_primary_10_1016_j_heliyon_2024_e31629 crossref_primary_10_1016_j_engstruct_2021_113442 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1007_s10586_024_04605_1 crossref_primary_10_1007_s00521_025_11379_z crossref_primary_10_1016_j_knosys_2024_111725 crossref_primary_10_3390_a17090394 crossref_primary_10_1016_j_eswa_2020_113702 crossref_primary_10_1007_s40435_022_01045_w crossref_primary_10_1007_s41315_022_00234_2 crossref_primary_10_3233_JIFS_201075 crossref_primary_10_1080_0305215X_2021_1919887 crossref_primary_10_1007_s10586_025_05229_9 crossref_primary_10_1016_j_eswa_2025_129455 crossref_primary_10_1007_s10115_025_02422_5 crossref_primary_10_3390_math10162875 crossref_primary_10_1007_s11831_023_10034_x crossref_primary_10_1016_j_cie_2021_107250 crossref_primary_10_3390_math10101696 crossref_primary_10_1109_ACCESS_2023_3266991 crossref_primary_10_1016_j_asoc_2025_113143 crossref_primary_10_1007_s13369_021_06513_7 crossref_primary_10_1080_01496395_2025_2537714 crossref_primary_10_1007_s12065_024_00998_5 crossref_primary_10_1109_JLT_2025_3588069 crossref_primary_10_1007_s10586_024_04680_4 crossref_primary_10_1109_ACCESS_2022_3144431 crossref_primary_10_1016_j_cnsns_2025_108809 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_1002_cpe_7541 crossref_primary_10_1080_19942060_2025_2507753 crossref_primary_10_1016_j_knosys_2021_107603 crossref_primary_10_1016_j_micpro_2021_103854 crossref_primary_10_1007_s00500_025_10611_1 crossref_primary_10_3233_JIFS_230459 crossref_primary_10_1007_s11227_022_04996_1 crossref_primary_10_1007_s10489_024_05930_z crossref_primary_10_1177_00202940221092038 crossref_primary_10_1007_s11042_023_16890_w crossref_primary_10_1016_j_knosys_2023_111032 crossref_primary_10_1007_s12597_024_00785_x crossref_primary_10_1007_s00521_023_09236_y crossref_primary_10_1016_j_knosys_2024_112409 crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_1016_j_chaos_2022_112036 crossref_primary_10_1016_j_cma_2023_116062 crossref_primary_10_1016_j_eswa_2022_116552 crossref_primary_10_1007_s10462_025_11289_5 crossref_primary_10_1016_j_rineng_2025_105705 crossref_primary_10_1080_01969722_2022_2122016 crossref_primary_10_1007_s00366_020_01120_w crossref_primary_10_1371_journal_pone_0285455 crossref_primary_10_1007_s10489_021_02510_3 crossref_primary_10_7717_peerj_cs_2278 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_3233_IDT_230191 crossref_primary_10_1016_j_engappai_2022_104763 crossref_primary_10_1016_j_knosys_2021_107625 crossref_primary_10_1002_ima_23001 crossref_primary_10_1016_j_chaos_2023_113672 crossref_primary_10_1016_j_jenvman_2025_124987 crossref_primary_10_1016_j_engappai_2022_105619 crossref_primary_10_1038_s41598_024_79577_8 crossref_primary_10_1109_ACCESS_2020_2982441 crossref_primary_10_1007_s10489_022_03977_4 crossref_primary_10_1016_j_compbiomed_2023_106691 crossref_primary_10_1093_jcde_qwac131 crossref_primary_10_1007_s10586_024_04867_9 crossref_primary_10_1016_j_procs_2024_08_097 crossref_primary_10_1007_s41870_022_01022_8 crossref_primary_10_1016_j_eswa_2021_116235 crossref_primary_10_1186_s40537_024_00895_9 crossref_primary_10_1109_ACCESS_2020_3019048 crossref_primary_10_1007_s00521_023_08695_7 crossref_primary_10_1108_EC_05_2024_0415 crossref_primary_10_3390_sym12111800 crossref_primary_10_3390_computers10110136 crossref_primary_10_1038_s41598_023_36066_8 crossref_primary_10_1007_s10115_023_02054_7 crossref_primary_10_3390_sym13091706 crossref_primary_10_1080_0954898X_2025_2500046 crossref_primary_10_1007_s11227_023_05579_4 crossref_primary_10_1016_j_energy_2022_125530 crossref_primary_10_1007_s10462_025_11118_9 crossref_primary_10_1007_s10586_025_05269_1 crossref_primary_10_1007_s11227_023_05400_2 crossref_primary_10_1007_s12065_025_01052_8 crossref_primary_10_1016_j_jestch_2020_08_011 crossref_primary_10_1016_j_compbiomed_2025_110500 crossref_primary_10_1002_cpe_7971 crossref_primary_10_1186_s40537_025_01066_0 crossref_primary_10_1007_s11227_022_04606_0 crossref_primary_10_1016_j_enconman_2020_113409 crossref_primary_10_1093_jcde_qwaf050 crossref_primary_10_3233_JIFS_221098 crossref_primary_10_3390_drones7070427 crossref_primary_10_3389_fenrg_2022_941705 crossref_primary_10_1007_s00521_021_06273_3 crossref_primary_10_3390_math11153297 crossref_primary_10_1016_j_engappai_2020_103649 crossref_primary_10_1109_TIA_2020_3041808 crossref_primary_10_32604_cmc_2021_019047 crossref_primary_10_1007_s10462_022_10233_1 crossref_primary_10_1016_j_ins_2020_06_037 crossref_primary_10_1016_j_engappai_2022_104722 crossref_primary_10_1038_s41598_025_02154_0 crossref_primary_10_1109_ACCESS_2024_3390008 crossref_primary_10_1016_j_asoc_2025_113527 crossref_primary_10_1515_mt_2024_0187 crossref_primary_10_1007_s00366_021_01322_w crossref_primary_10_3390_math13040675 crossref_primary_10_1515_mt_2024_0188 crossref_primary_10_1016_j_advengsoft_2022_103301 crossref_primary_10_1007_s10489_021_02670_2 crossref_primary_10_1016_j_cma_2023_116200 crossref_primary_10_1093_jcde_qwad096 crossref_primary_10_1007_s10586_025_05201_7 crossref_primary_10_1016_j_cma_2023_116446 crossref_primary_10_1007_s11042_023_16655_5 crossref_primary_10_4018_IJSKD_330150 crossref_primary_10_1109_ACCESS_2020_2968981 crossref_primary_10_1007_s10586_023_04221_5 crossref_primary_10_1007_s11227_023_05851_7 crossref_primary_10_1016_j_prime_2023_100287 crossref_primary_10_3390_app121910057 crossref_primary_10_1007_s11227_022_04883_9 crossref_primary_10_1080_15397734_2025_2531077 crossref_primary_10_3390_bioengineering10070825 crossref_primary_10_1088_1402_4896_ad8e0e crossref_primary_10_1080_0305215X_2025_2464862 crossref_primary_10_3390_cancers15072146 crossref_primary_10_3139_120_111479 crossref_primary_10_1016_j_engappai_2022_104709 crossref_primary_10_1002_ett_4932 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_1007_s11831_023_09897_x crossref_primary_10_3390_math11183960 crossref_primary_10_3390_pr10112254 crossref_primary_10_1109_ACCESS_2020_3037510 crossref_primary_10_1007_s10462_021_10105_0 crossref_primary_10_1007_s10586_024_04901_w crossref_primary_10_32604_cmes_2024_054334 crossref_primary_10_1016_j_rineng_2025_104215 crossref_primary_10_1109_ACCESS_2023_3287859 crossref_primary_10_1007_s10489_022_03899_1 crossref_primary_10_1016_j_asoc_2020_107061 crossref_primary_10_3390_math11102340 crossref_primary_10_3390_biomimetics9070419 crossref_primary_10_1002_cpe_6607 crossref_primary_10_1016_j_asoc_2021_107328 crossref_primary_10_1109_ACCESS_2020_3013332 crossref_primary_10_1016_j_energy_2024_131163 crossref_primary_10_1002_cpe_7965 crossref_primary_10_1007_s12065_025_01030_0 crossref_primary_10_1007_s00521_022_07715_2 crossref_primary_10_1007_s10462_025_11291_x crossref_primary_10_1007_s10462_021_10009_z crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1016_j_compbiomed_2023_107389 crossref_primary_10_1038_s41598_023_49754_2 crossref_primary_10_1016_j_asoc_2020_107052 crossref_primary_10_1002_jnm_3040 crossref_primary_10_1007_s00521_024_10909_5 crossref_primary_10_1007_s11063_022_11068_1 crossref_primary_10_1063_5_0222940 crossref_primary_10_1007_s11831_022_09876_8 crossref_primary_10_1371_journal_pone_0235187 crossref_primary_10_1007_s11831_025_10363_z crossref_primary_10_1038_s41598_024_59960_1 crossref_primary_10_1007_s00521_021_06634_y crossref_primary_10_1016_j_knosys_2023_111081 crossref_primary_10_1038_s41598_020_71502_z crossref_primary_10_1016_j_cma_2023_116238 |
| Cites_doi | 10.1016/j.advengsoft.2016.01.008 10.1016/j.asoc.2016.02.038 10.1016/j.ins.2016.03.025 10.1016/j.asoc.2015.07.045 10.1016/j.ijepes.2016.01.028 10.1016/j.swevo.2015.09.007 10.1016/j.cnsns.2016.06.006 10.1016/j.biosystems.2018.09.007 10.1016/j.advengsoft.2018.04.007 10.1504/IJBIC.2016.081335 10.1016/j.ins.2015.06.044 10.1016/S0166-3615(99)00046-9 10.1016/j.jocs.2016.12.010 10.1038/scientificamerican0792-66 10.1109/ACCESS.2019.2904679 10.1016/j.future.2018.05.037 10.1016/j.engappai.2018.04.021 10.1016/j.ins.2013.02.041 10.1016/j.asoc.2015.10.034 10.1080/10643389609388492 10.1126/science.220.4598.671 10.1016/j.compstruc.2016.01.008 10.1016/j.bspc.2018.05.039 10.1109/JAS.2018.7511138 10.3390/app8030329 10.1016/j.asoc.2017.11.043 10.1007/s00500-008-0303-2 10.1109/JAS.2017.7510523 10.1007/s10462-016-9486-6 10.1016/j.advengsoft.2015.11.004 10.1016/j.eswa.2018.06.023 10.1061/(ASCE)0733-9496(1994)120:4(423) 10.1007/s00521-015-1920-1 10.1016/j.engappai.2019.01.001 10.1016/j.asoc.2012.03.068 10.1016/j.jct.2012.02.014 10.1016/j.ins.2009.03.004 10.1016/j.apm.2018.06.036 10.1016/j.advengsoft.2017.07.002 10.1109/4235.585893 10.1016/j.knosys.2015.12.022 10.1016/j.asoc.2015.10.036 10.1016/j.knosys.2018.06.001 10.1007/s00500-016-2045-x 10.1016/j.ins.2018.04.046 10.1016/j.asoc.2019.03.012 10.1016/j.future.2019.02.028 10.1016/j.advengsoft.2017.05.014 10.1016/j.eswa.2011.04.126 10.1016/j.engappai.2016.04.004 10.1016/j.neucom.2016.09.068 10.1016/j.advengsoft.2017.01.004 10.1016/j.swevo.2015.07.002 10.1016/j.asoc.2017.09.035 10.1016/j.jnggs.2018.02.001 10.1016/j.knosys.2015.07.006 10.1109/TSMC.2016.2560128 10.1016/j.asoc.2012.11.026 10.1016/j.advengsoft.2017.03.014 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2019.07.015 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 667 |
| ExternalDocumentID | 10_1016_j_future_2019_07_015 S0167739X19306557 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-f7c9e428f182cbb973f653c233594473e9e6cb33cb06ec8b6b3d3a88705e92a73 |
| ISICitedReferencesCount | 852 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501935700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 20:38:47 EST 2025 Sat Nov 29 07:27:08 EST 2025 Fri Feb 23 02:30:16 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Exploration and exploitation Henry gas solubility optimization Metaheuristic Local optima Physics-inspired Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-f7c9e428f182cbb973f653c233594473e9e6cb33cb06ec8b6b3d3a88705e92a73 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_future_2019_07_015 crossref_primary_10_1016_j_future_2019_07_015 elsevier_sciencedirect_doi_10_1016_j_future_2019_07_015 |
| PublicationCentury | 2000 |
| PublicationDate | December 2019 2019-12-00 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Topal, Altun (b16) 2016; 354 Brown (b71) 2009 Beheshti, Shamsuddin (b6) 2013; 5 Yapici, Cetinkaya (b41) 2019 Abdechiri, Meybodi, Bahrami (b29) 2013; 13 Vommi, Vemula (b65) 2018; 454 Dorigo, Di Caro (b19) 1999 Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b51) 2018; 72 Civicioglu (b31) 2013; 219 Mareda, Gaudard, Romerio (b13) 2017; 4 Hussain, Salleh, Cheng, Shi (b72) 2018 Labbi, Attous, Gabbar, Mahdad, Zidan (b47) 2016; 79 Holland (b22) 1992; 267 Aarts, Korst (b25) 1988 Li, Zhang, Wang, Zhao, Han, Chen (b68) 2017; 2 Ewees, Elaziz, Houssein (b81) 2018; 112 Eberhart, Kennedy (b18) 1995 Patel, Savsani (b28) 2015; 324 Dhiman, Kumar (b36) 2018 Jahani, Chizari (b40) 2018; 62 Akyol, Alatas (b46) 2017; 47 Mirjalili (b15) 2015; 89 Jain, Singh, Rani (b38) 2018 Baykasoğlu, Akpinar (b52) 2017; 56 Coello (b83) 2000; 41 Dhiman, Kumar (b84) 2017; 114 Jaddi, Alvankarian, Abdullah (b50) 2017; 42 Tharwat, Houssein, Ahmed, Hassanien, Gabel (b80) 2017 Hussain, Salleh, Cheng, Shi (b75) 2018 Hussain, Salleh, Cheng, Shi, Naseem (b74) 2018 Muthiah-Nakarajan, Noel (b61) 2016; 38 Zhao, Wang, Zhang (b58) 2019; 91 Amjad, Hussam (b64) 2017; 12 Punnathanam, Kotecha (b54) 2016; 54 Staudinger, Roberts (b69) 1996; 26 Ab Wahab, Nefti-Meziani, Atyabi (b3) 2015; 10 Mirjalili (b55) 2016; 96 Hassanien, Kilany, Houssein, AlQaheri (b79) 2018; 45 Bozorg-Haddad (b7) 2018 Huang (b44) 2016; 27 Salmani, Eshghi (b49) 2017; 2017 Wolpert, Macready (b11) 1997; 1 Lin, Gen (b10) 2009; 13 Rashedi, Nezamabadi-Pour, Saryazdi (b26) 2009; 179 Li, Zhao, Weng, Han (b30) 2016; 92 Zhang, Wang, Yang, Ding, Li, Hu (b63) 2017; 221 Hussien, Hassanien, Houssein (b82) 2017 Mirjalili, Lewis (b8) 2016; 95 Zaldívar, Morales, Rodríguez, Valdivia-G, Cuevas, Pérez-Cisneros (b37) 2018; 174 Kallioras, Lagaros, Avtzis (b39) 2018; 121 BoussaïD, Lepagnot, Siarry (b4) 2013; 237 Olorunda, Engelbrecht (b9) 2008 Dong, Zhou (b12) 2017; 47 Zhang, Xiao, Gao, Pan (b66) 2018; 63 Yang (b5) 2017 Alatas (b27) 2011; 38 Hussien, Houssein, Hassanien (b78) 2017 Kaboli, Selvaraj, Rahim (b62) 2017; 19 Jaderyan, Khotanlou (b43) 2016; 43 Mohebbi, Naderifar, Behbahani, Moshfeghian (b70) 2012; 51 Ismaeel, Elshaarawy, Houssein, Ismail, Hassanien (b14) 2019; 7 Shadravan, Naji, Bardsiri (b42) 2019; 80 N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Tech. Rep. Mezura-Montes, Coello (b85) 2005 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b34) 2017; 114 Tejani, Savsani, Patel, Mirjalili (b57) 2018 Zhao, Liu, Zhou, Guo, Qi (b17) 2018; 5 Sadollah, Bahreininejad, Eskandar, Hamdi (b77) 2013; 13 Yazdani, Jolai (b32) 2016; 3 Mirjalili (b20) 2016; 27 Moghdani, Salimifard (b67) 2018; 64 Cheng, Wu, Wang (b35) 2018; 8 Simpson, Dandy, Murphy (b1) 1994; 120 Kaveh, Bakhshpoori (b60) 2016; 167 Rechenberg (b23) 1978 Saremi, Mirjalili, Lewis (b33) 2017; 105 Momin, Yang (b73) 2013; 4 Tang, Dong, Jiang, Li, Huang (b45) 2015; 36 Kaveh, Dadras (b56) 2017; 110 Kirkpatrick, Gelatt, Vecchi (b24) 1983; 220 James (b2) 2003 Zhou, Wang, Chen, Zhang, Wu (b48) 2017; 21 Abedinpourshotorban, Shamsuddin, Beheshti, Jawawi (b53) 2016; 26 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b59) 2019; 97 Wang, Deb, Gao, Coelho (b21) 2016; 8 Alatas (10.1016/j.future.2019.07.015_b27) 2011; 38 Mirjalili (10.1016/j.future.2019.07.015_b34) 2017; 114 Kaveh (10.1016/j.future.2019.07.015_b56) 2017; 110 Hussain (10.1016/j.future.2019.07.015_b74) 2018 Hussien (10.1016/j.future.2019.07.015_b78) 2017 Shadravan (10.1016/j.future.2019.07.015_b42) 2019; 80 Sadollah (10.1016/j.future.2019.07.015_b77) 2013; 13 Patel (10.1016/j.future.2019.07.015_b28) 2015; 324 Baykasoğlu (10.1016/j.future.2019.07.015_b52) 2017; 56 Yazdani (10.1016/j.future.2019.07.015_b32) 2016; 3 Jaddi (10.1016/j.future.2019.07.015_b50) 2017; 42 Saremi (10.1016/j.future.2019.07.015_b33) 2017; 105 Eberhart (10.1016/j.future.2019.07.015_b18) 1995 Tejani (10.1016/j.future.2019.07.015_b57) 2018 Bozorg-Haddad (10.1016/j.future.2019.07.015_b7) 2018 Ewees (10.1016/j.future.2019.07.015_b81) 2018; 112 Yang (10.1016/j.future.2019.07.015_b5) 2017 Abdechiri (10.1016/j.future.2019.07.015_b29) 2013; 13 Huang (10.1016/j.future.2019.07.015_b44) 2016; 27 Rashedi (10.1016/j.future.2019.07.015_b26) 2009; 179 Yapici (10.1016/j.future.2019.07.015_b41) 2019 Momin (10.1016/j.future.2019.07.015_b73) 2013; 4 Zhao (10.1016/j.future.2019.07.015_b17) 2018; 5 Akyol (10.1016/j.future.2019.07.015_b46) 2017; 47 Mareda (10.1016/j.future.2019.07.015_b13) 2017; 4 Heidari (10.1016/j.future.2019.07.015_b59) 2019; 97 Li (10.1016/j.future.2019.07.015_b30) 2016; 92 Zhang (10.1016/j.future.2019.07.015_b66) 2018; 63 Ismaeel (10.1016/j.future.2019.07.015_b14) 2019; 7 Staudinger (10.1016/j.future.2019.07.015_b69) 1996; 26 Hussain (10.1016/j.future.2019.07.015_b75) 2018 Cheraghalipour (10.1016/j.future.2019.07.015_b51) 2018; 72 Hussain (10.1016/j.future.2019.07.015_b72) 2018 Kirkpatrick (10.1016/j.future.2019.07.015_b24) 1983; 220 Dong (10.1016/j.future.2019.07.015_b12) 2017; 47 Coello (10.1016/j.future.2019.07.015_b83) 2000; 41 Mirjalili (10.1016/j.future.2019.07.015_b8) 2016; 95 Zaldívar (10.1016/j.future.2019.07.015_b37) 2018; 174 Ab Wahab (10.1016/j.future.2019.07.015_b3) 2015; 10 Lin (10.1016/j.future.2019.07.015_b10) 2009; 13 BoussaïD (10.1016/j.future.2019.07.015_b4) 2013; 237 Cheng (10.1016/j.future.2019.07.015_b35) 2018; 8 Amjad (10.1016/j.future.2019.07.015_b64) 2017; 12 Labbi (10.1016/j.future.2019.07.015_b47) 2016; 79 Hassanien (10.1016/j.future.2019.07.015_b79) 2018; 45 Kallioras (10.1016/j.future.2019.07.015_b39) 2018; 121 Dorigo (10.1016/j.future.2019.07.015_b19) 1999 Mirjalili (10.1016/j.future.2019.07.015_b20) 2016; 27 Abedinpourshotorban (10.1016/j.future.2019.07.015_b53) 2016; 26 Muthiah-Nakarajan (10.1016/j.future.2019.07.015_b61) 2016; 38 Simpson (10.1016/j.future.2019.07.015_b1) 1994; 120 10.1016/j.future.2019.07.015_b76 Mezura-Montes (10.1016/j.future.2019.07.015_b85) 2005 Wang (10.1016/j.future.2019.07.015_b21) 2016; 8 Holland (10.1016/j.future.2019.07.015_b22) 1992; 267 Rechenberg (10.1016/j.future.2019.07.015_b23) 1978 Kaveh (10.1016/j.future.2019.07.015_b60) 2016; 167 Aarts (10.1016/j.future.2019.07.015_b25) 1988 Brown (10.1016/j.future.2019.07.015_b71) 2009 Wolpert (10.1016/j.future.2019.07.015_b11) 1997; 1 Olorunda (10.1016/j.future.2019.07.015_b9) 2008 Jahani (10.1016/j.future.2019.07.015_b40) 2018; 62 Vommi (10.1016/j.future.2019.07.015_b65) 2018; 454 Topal (10.1016/j.future.2019.07.015_b16) 2016; 354 Moghdani (10.1016/j.future.2019.07.015_b67) 2018; 64 Zhao (10.1016/j.future.2019.07.015_b58) 2019; 91 Hussien (10.1016/j.future.2019.07.015_b82) 2017 Zhou (10.1016/j.future.2019.07.015_b48) 2017; 21 Tharwat (10.1016/j.future.2019.07.015_b80) 2017 Li (10.1016/j.future.2019.07.015_b68) 2017; 2 James (10.1016/j.future.2019.07.015_b2) 2003 Dhiman (10.1016/j.future.2019.07.015_b36) 2018 Jaderyan (10.1016/j.future.2019.07.015_b43) 2016; 43 Beheshti (10.1016/j.future.2019.07.015_b6) 2013; 5 Mohebbi (10.1016/j.future.2019.07.015_b70) 2012; 51 Kaboli (10.1016/j.future.2019.07.015_b62) 2017; 19 Mirjalili (10.1016/j.future.2019.07.015_b15) 2015; 89 Jain (10.1016/j.future.2019.07.015_b38) 2018 Tang (10.1016/j.future.2019.07.015_b45) 2015; 36 Punnathanam (10.1016/j.future.2019.07.015_b54) 2016; 54 Civicioglu (10.1016/j.future.2019.07.015_b31) 2013; 219 Salmani (10.1016/j.future.2019.07.015_b49) 2017; 2017 Mirjalili (10.1016/j.future.2019.07.015_b55) 2016; 96 Zhang (10.1016/j.future.2019.07.015_b63) 2017; 221 Dhiman (10.1016/j.future.2019.07.015_b84) 2017; 114 |
| References_xml | – volume: 63 start-page: 464 year: 2018 end-page: 490 ident: b66 article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems publication-title: Appl. Math. Model. – volume: 80 start-page: 20 year: 2019 end-page: 34 ident: b42 article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – start-page: 83 year: 1978 end-page: 114 ident: b23 article-title: Evolutionsstrategien publication-title: Simulationsmethoden in der Medizin und Biologie – year: 1988 ident: b25 article-title: Simulated Annealing and Boltzmann Machines – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b59 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 13 start-page: 157 year: 2009 end-page: 168 ident: b10 article-title: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation publication-title: Soft Comput. – volume: 62 start-page: 987 year: 2018 end-page: 1002 ident: b40 article-title: Tackling global optimization problems with a novel algorithm–mouth brooding fish algorithm publication-title: Appl. Soft Comput. – volume: 324 start-page: 217 year: 2015 end-page: 246 ident: b28 article-title: Heat transfer search (hts): a novel optimization algorithm publication-title: Inform. Sci. – volume: 91 start-page: 601 year: 2019 end-page: 610 ident: b58 article-title: A novel atom search optimization for dispersion coefficient estimation in groundwater publication-title: Future Gener. Comput. Syst. – volume: 47 start-page: 1135 year: 2017 end-page: 1148 ident: b12 article-title: A supervised learning and control method to improve particle swarm optimization algorithms publication-title: IEEE Trans. Syst. Man Cybernet. Syst. – volume: 54 start-page: 62 year: 2016 end-page: 79 ident: b54 article-title: Yin-yang-pair optimization: A novel lightweight optimization algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b22 article-title: Genetic algorithms publication-title: Sci. Amer. – year: 2019 ident: b41 article-title: A new meta-heuristic optimizer: Pathfinder algorithm publication-title: Appl. Soft Comput. – volume: 4 start-page: 260 year: 2017 end-page: 272 ident: b13 article-title: A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling publication-title: IEEE/CAA J. Automat. Sinica – start-page: 1128 year: 2008 end-page: 1134 ident: b9 article-title: Measuring exploration/exploitation in particle swarms using swarm diversity publication-title: Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on – start-page: 1 year: 2018 end-page: 43 ident: b75 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – volume: 8 start-page: 394 year: 2016 end-page: 409 ident: b21 article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour publication-title: Int. J. Bio-Inspired Comput. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b24 article-title: Optimization by simulated annealing publication-title: science – year: 2018 ident: b36 article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems publication-title: Knowl.-Based Syst. – volume: 112 start-page: 156 year: 2018 end-page: 172 ident: b81 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst. Appl. – volume: 42 start-page: 358 year: 2017 end-page: 369 ident: b50 article-title: Kidney-inspired algorithm for optimization problems publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 2017 year: 2017 ident: b49 article-title: A metaheuristic algorithm based on chemotherapy science: Csa publication-title: J. Optim. – volume: 12 start-page: 2018 year: 2017 ident: b64 article-title: Supernova optimizer: A novel natural inspired meta-heuristic publication-title: Mod. Appl. Sci. – volume: 167 start-page: 69 year: 2016 end-page: 85 ident: b60 article-title: Water evaporation optimization: a novel physically inspired optimization algorithm publication-title: Comput. Struct. – volume: 237 start-page: 82 year: 2013 end-page: 117 ident: b4 article-title: A survey on optimization metaheuristics publication-title: Inf. Sci. – year: 2003 ident: b2 article-title: Introduction to Stochastics Search and Optimization – volume: 26 start-page: 205 year: 1996 end-page: 297 ident: b69 article-title: A critical review of henry’s law constants for environmental applications publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 10 year: 2015 ident: b3 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – volume: 221 start-page: 123 year: 2017 end-page: 137 ident: b63 article-title: Collective decision optimization algorithm: A new heuristic optimization method publication-title: Neurocomputing – volume: 7 start-page: 34738 year: 2019 end-page: 34752 ident: b14 article-title: Enhanced elephant herding optimization for global optimization publication-title: IEEE Access – volume: 174 start-page: 1 year: 2018 end-page: 21 ident: b37 article-title: A novel bio-inspired optimization model based on yellow saddle goatfish behavior publication-title: Biosystems – volume: 354 start-page: 222 year: 2016 end-page: 235 ident: b16 article-title: A novel meta-heuristic algorithm: Dynamic virtual bats algorithm publication-title: Inform. Sci. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b26 article-title: Gsa: a gravitational search algorithm publication-title: Inf. Sci. – volume: 120 start-page: 423 year: 1994 end-page: 443 ident: b1 article-title: Genetic algorithms compared to other techniques for pipe optimization publication-title: J. Water Resour. Plan. Manag. – volume: 13 start-page: 2932 year: 2013 end-page: 2946 ident: b29 article-title: Gases brownian motion optimization: an algorithm for optimization (gbmo) publication-title: Appl. Soft Comput. – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b83 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – start-page: 166 year: 2017 end-page: 172 ident: b78 article-title: A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection publication-title: 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) – volume: 72 start-page: 393 year: 2018 end-page: 414 ident: b51 article-title: Tree growth algorithm (tga): A novel approach for solving optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 110 start-page: 69 year: 2017 end-page: 84 ident: b56 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. – start-page: 39 year: 1995 end-page: 43 ident: b18 article-title: A new optimizer using particle swarm theory publication-title: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on – volume: 38 start-page: 13170 year: 2011 end-page: 13180 ident: b27 article-title: Acroa: artificial chemical reaction optimization algorithm for global optimization publication-title: Expert Syst. Appl. – volume: 121 start-page: 147 year: 2018 end-page: 166 ident: b39 article-title: Pity beetle algorithm–a new metaheuristic inspired by the behavior of bark beetles publication-title: Adv. Eng. Softw. – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b77 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. – volume: 5 start-page: 794 year: 2018 end-page: 806 ident: b17 article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems publication-title: IEEE/CAA J. Automat. Sinica – volume: 27 start-page: 31 year: 2016 end-page: 67 ident: b44 article-title: Artificial infectious disease optimization: A seiqr epidemic dynamic model-based function optimization algorithm publication-title: Swarm Evol. Comput. – volume: 5 start-page: 1 year: 2013 end-page: 35 ident: b6 article-title: A review of population-based meta-heuristic algorithms publication-title: Int. J. Adv. Soft Comput. Appl – volume: 92 start-page: 65 year: 2016 end-page: 88 ident: b30 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Adv. Eng. Softw. – volume: 21 start-page: 435 year: 2017 end-page: 445 ident: b48 article-title: A novel path planning algorithm based on plant growth mechanism publication-title: Soft Comput. – start-page: 315 year: 2017 end-page: 320 ident: b82 article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities publication-title: 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) – volume: 56 start-page: 520 year: 2017 end-page: 540 ident: b52 article-title: Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems–part 1: Unconstrained optimization publication-title: Appl. Soft Comput. – volume: 38 start-page: 771 year: 2016 end-page: 787 ident: b61 article-title: Galactic swarm optimization: A new global optimization metaheuristic inspired by galactic motion publication-title: Appl. Soft Comput. – year: 2018 ident: b38 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm Evol. Comput. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b11 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b33 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv. Eng. Softw. – volume: 43 start-page: 596 year: 2016 end-page: 618 ident: b43 article-title: Virulence optimization algorithm publication-title: Appl. Soft Comput. – reference: N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Tech. Rep. – year: 2018 ident: b74 article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement publication-title: J. King Saud Univ.-Comput. Inf. Sci. – year: 2018 ident: b7 article-title: Advanced Optimization by Nature-Inspired Algorithms – volume: 36 start-page: 670 year: 2015 end-page: 698 ident: b45 article-title: Itgo: Invasive tumor growth optimization algorithm publication-title: Appl. Soft Comput. – start-page: 1470 year: 1999 end-page: 1477 ident: b19 article-title: Ant colony optimization: a new meta-heuristic publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol. 2 – year: 2018 ident: b57 article-title: An improved heat transfer search algorithm for unconstrained optimization problems publication-title: J. Comput. Des. Eng. – volume: 2 start-page: 333 year: 2017 end-page: 339 ident: b68 article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin, China publication-title: J. Nat. Gas Geosci. – start-page: 1 year: 2018 end-page: 19 ident: b72 article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms publication-title: Neural Comput. Appl. – start-page: 1 year: 2017 end-page: 16 ident: b80 article-title: Mogoa algorithm for constrained and unconstrained multi-objective optimization problems publication-title: Appl. Intell. – year: 2017 ident: b5 article-title: Nature-inspired algorithms and applied optimization, Vol. 744 – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b15 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 26 start-page: 8 year: 2016 end-page: 22 ident: b53 article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm publication-title: Swarm Evol. Comput. – volume: 3 start-page: 24 year: 2016 end-page: 36 ident: b32 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: J. Comput. Des. Eng. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b34 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b8 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b55 article-title: Sca: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 4 start-page: 150 year: 2013 end-page: 194 ident: b73 article-title: A literature survey of benchmark functions for global optimization problems publication-title: J. Math. Model. Numer. Optim. – start-page: 652 year: 2005 end-page: 662 ident: b85 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms publication-title: Mexican International Conference on Artificial Intelligence – volume: 219 start-page: 8121 year: 2013 end-page: 8144 ident: b31 article-title: Backtracking search optimization algorithm for numerical optimization problems publication-title: Appl. Math. Comput. – volume: 45 start-page: 182 year: 2018 end-page: 191 ident: b79 article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 329 year: 2018 ident: b35 article-title: Artificial flora (af) optimization algorithm publication-title: Appl. Sci. – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b84 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. – volume: 19 start-page: 31 year: 2017 end-page: 42 ident: b62 article-title: Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems publication-title: J. Comput. Sci. – volume: 51 start-page: 8 year: 2012 end-page: 11 ident: b70 article-title: Determination of henry’s law constant of light hydrocarbon gases at low temperatures publication-title: J. Chem. Thermodyn. – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: b67 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. – volume: 47 start-page: 417 year: 2017 end-page: 462 ident: b46 article-title: Plant intelligence based metaheuristic optimization algorithms publication-title: Artif. Intell. Rev. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b20 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – volume: 454 start-page: 255 year: 2018 end-page: 274 ident: b65 article-title: A very optimistic method of minimization (vommi) for unconstrained problems publication-title: Inform. Sci. – volume: 79 start-page: 298 year: 2016 end-page: 311 ident: b47 article-title: A new rooted tree optimization algorithm for economic dispatch with valve-point effect publication-title: Int. J. Electr. Power Energy Syst. – year: 2009 ident: b71 article-title: Chemistry: The Central Science – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.future.2019.07.015_b8 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 43 start-page: 596 year: 2016 ident: 10.1016/j.future.2019.07.015_b43 article-title: Virulence optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.038 – start-page: 1 year: 2018 ident: 10.1016/j.future.2019.07.015_b75 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – start-page: 1128 year: 2008 ident: 10.1016/j.future.2019.07.015_b9 article-title: Measuring exploration/exploitation in particle swarms using swarm diversity – start-page: 39 year: 1995 ident: 10.1016/j.future.2019.07.015_b18 article-title: A new optimizer using particle swarm theory – start-page: 652 year: 2005 ident: 10.1016/j.future.2019.07.015_b85 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms – volume: 354 start-page: 222 year: 2016 ident: 10.1016/j.future.2019.07.015_b16 article-title: A novel meta-heuristic algorithm: Dynamic virtual bats algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.03.025 – volume: 36 start-page: 670 year: 2015 ident: 10.1016/j.future.2019.07.015_b45 article-title: Itgo: Invasive tumor growth optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.045 – volume: 79 start-page: 298 year: 2016 ident: 10.1016/j.future.2019.07.015_b47 article-title: A new rooted tree optimization algorithm for economic dispatch with valve-point effect publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.01.028 – volume: 27 start-page: 31 year: 2016 ident: 10.1016/j.future.2019.07.015_b44 article-title: Artificial infectious disease optimization: A seiqr epidemic dynamic model-based function optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.09.007 – volume: 42 start-page: 358 year: 2017 ident: 10.1016/j.future.2019.07.015_b50 article-title: Kidney-inspired algorithm for optimization problems publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.06.006 – volume: 174 start-page: 1 year: 2018 ident: 10.1016/j.future.2019.07.015_b37 article-title: A novel bio-inspired optimization model based on yellow saddle goatfish behavior publication-title: Biosystems doi: 10.1016/j.biosystems.2018.09.007 – volume: 121 start-page: 147 year: 2018 ident: 10.1016/j.future.2019.07.015_b39 article-title: Pity beetle algorithm–a new metaheuristic inspired by the behavior of bark beetles publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2018.04.007 – volume: 8 start-page: 394 issue: 6 year: 2016 ident: 10.1016/j.future.2019.07.015_b21 article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2016.081335 – volume: 324 start-page: 217 year: 2015 ident: 10.1016/j.future.2019.07.015_b28 article-title: Heat transfer search (hts): a novel optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.06.044 – start-page: 1 year: 2017 ident: 10.1016/j.future.2019.07.015_b80 article-title: Mogoa algorithm for constrained and unconstrained multi-objective optimization problems publication-title: Appl. Intell. – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.future.2019.07.015_b83 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 19 start-page: 31 year: 2017 ident: 10.1016/j.future.2019.07.015_b62 article-title: Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2016.12.010 – volume: 4 start-page: 150 issue: 2 year: 2013 ident: 10.1016/j.future.2019.07.015_b73 article-title: A literature survey of benchmark functions for global optimization problems publication-title: J. Math. Model. Numer. Optim. – start-page: 315 year: 2017 ident: 10.1016/j.future.2019.07.015_b82 article-title: Swarming behaviour of salps algorithm for predicting chemical compound activities – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.future.2019.07.015_b22 article-title: Genetic algorithms publication-title: Sci. Amer. doi: 10.1038/scientificamerican0792-66 – volume: 7 start-page: 34738 year: 2019 ident: 10.1016/j.future.2019.07.015_b14 article-title: Enhanced elephant herding optimization for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904679 – volume: 91 start-page: 601 year: 2019 ident: 10.1016/j.future.2019.07.015_b58 article-title: A novel atom search optimization for dispersion coefficient estimation in groundwater publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.05.037 – volume: 72 start-page: 393 year: 2018 ident: 10.1016/j.future.2019.07.015_b51 article-title: Tree growth algorithm (tga): A novel approach for solving optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.021 – volume: 237 start-page: 82 year: 2013 ident: 10.1016/j.future.2019.07.015_b4 article-title: A survey on optimization metaheuristics publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.02.041 – start-page: 1470 year: 1999 ident: 10.1016/j.future.2019.07.015_b19 article-title: Ant colony optimization: a new meta-heuristic – volume: 38 start-page: 771 year: 2016 ident: 10.1016/j.future.2019.07.015_b61 article-title: Galactic swarm optimization: A new global optimization metaheuristic inspired by galactic motion publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.034 – volume: 26 start-page: 205 issue: 3 year: 1996 ident: 10.1016/j.future.2019.07.015_b69 article-title: A critical review of henry’s law constants for environmental applications publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389609388492 – year: 2018 ident: 10.1016/j.future.2019.07.015_b57 article-title: An improved heat transfer search algorithm for unconstrained optimization problems publication-title: J. Comput. Des. Eng. – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.future.2019.07.015_b24 article-title: Optimization by simulated annealing publication-title: science doi: 10.1126/science.220.4598.671 – volume: 167 start-page: 69 year: 2016 ident: 10.1016/j.future.2019.07.015_b60 article-title: Water evaporation optimization: a novel physically inspired optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.01.008 – volume: 219 start-page: 8121 issue: 15 year: 2013 ident: 10.1016/j.future.2019.07.015_b31 article-title: Backtracking search optimization algorithm for numerical optimization problems publication-title: Appl. Math. Comput. – volume: 45 start-page: 182 year: 2018 ident: 10.1016/j.future.2019.07.015_b79 article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.05.039 – volume: 5 start-page: 794 issue: 4 year: 2018 ident: 10.1016/j.future.2019.07.015_b17 article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems publication-title: IEEE/CAA J. Automat. Sinica doi: 10.1109/JAS.2018.7511138 – volume: 8 start-page: 329 issue: 3 year: 2018 ident: 10.1016/j.future.2019.07.015_b35 article-title: Artificial flora (af) optimization algorithm publication-title: Appl. Sci. doi: 10.3390/app8030329 – volume: 64 start-page: 161 year: 2018 ident: 10.1016/j.future.2019.07.015_b67 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – volume: 13 start-page: 157 issue: 2 year: 2009 ident: 10.1016/j.future.2019.07.015_b10 article-title: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation publication-title: Soft Comput. doi: 10.1007/s00500-008-0303-2 – volume: 4 start-page: 260 issue: 2 year: 2017 ident: 10.1016/j.future.2019.07.015_b13 article-title: A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling publication-title: IEEE/CAA J. Automat. Sinica doi: 10.1109/JAS.2017.7510523 – start-page: 1 year: 2018 ident: 10.1016/j.future.2019.07.015_b72 article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms publication-title: Neural Comput. Appl. – volume: 47 start-page: 417 issue: 4 year: 2017 ident: 10.1016/j.future.2019.07.015_b46 article-title: Plant intelligence based metaheuristic optimization algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9486-6 – year: 1988 ident: 10.1016/j.future.2019.07.015_b25 – volume: 92 start-page: 65 year: 2016 ident: 10.1016/j.future.2019.07.015_b30 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.11.004 – volume: 112 start-page: 156 year: 2018 ident: 10.1016/j.future.2019.07.015_b81 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.023 – volume: 120 start-page: 423 issue: 4 year: 1994 ident: 10.1016/j.future.2019.07.015_b1 article-title: Genetic algorithms compared to other techniques for pipe optimization publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1994)120:4(423) – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.future.2019.07.015_b20 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 2017 year: 2017 ident: 10.1016/j.future.2019.07.015_b49 article-title: A metaheuristic algorithm based on chemotherapy science: Csa publication-title: J. Optim. – volume: 12 start-page: 2018 issue: 1 year: 2017 ident: 10.1016/j.future.2019.07.015_b64 article-title: Supernova optimizer: A novel natural inspired meta-heuristic publication-title: Mod. Appl. Sci. – volume: 80 start-page: 20 year: 2019 ident: 10.1016/j.future.2019.07.015_b42 article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.01.001 – volume: 13 start-page: 2932 issue: 5 year: 2013 ident: 10.1016/j.future.2019.07.015_b29 article-title: Gases brownian motion optimization: an algorithm for optimization (gbmo) publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.03.068 – year: 2018 ident: 10.1016/j.future.2019.07.015_b74 article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 51 start-page: 8 year: 2012 ident: 10.1016/j.future.2019.07.015_b70 article-title: Determination of henry’s law constant of light hydrocarbon gases at low temperatures publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2012.02.014 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.future.2019.07.015_b26 article-title: Gsa: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – year: 2018 ident: 10.1016/j.future.2019.07.015_b38 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm Evol. Comput. – volume: 63 start-page: 464 year: 2018 ident: 10.1016/j.future.2019.07.015_b66 article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.06.036 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.future.2019.07.015_b34 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – year: 2018 ident: 10.1016/j.future.2019.07.015_b7 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.future.2019.07.015_b11 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.future.2019.07.015_b55 article-title: Sca: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 3 start-page: 24 issue: 1 year: 2016 ident: 10.1016/j.future.2019.07.015_b32 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: J. Comput. Des. Eng. – volume: 56 start-page: 520 year: 2017 ident: 10.1016/j.future.2019.07.015_b52 article-title: Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems–part 1: Unconstrained optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.036 – year: 2009 ident: 10.1016/j.future.2019.07.015_b71 – start-page: 166 year: 2017 ident: 10.1016/j.future.2019.07.015_b78 article-title: A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection – start-page: 83 year: 1978 ident: 10.1016/j.future.2019.07.015_b23 article-title: Evolutionsstrategien – year: 2018 ident: 10.1016/j.future.2019.07.015_b36 article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.06.001 – volume: 21 start-page: 435 issue: 2 year: 2017 ident: 10.1016/j.future.2019.07.015_b48 article-title: A novel path planning algorithm based on plant growth mechanism publication-title: Soft Comput. doi: 10.1007/s00500-016-2045-x – year: 2017 ident: 10.1016/j.future.2019.07.015_b5 – volume: 454 start-page: 255 year: 2018 ident: 10.1016/j.future.2019.07.015_b65 article-title: A very optimistic method of minimization (vommi) for unconstrained problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.04.046 – year: 2019 ident: 10.1016/j.future.2019.07.015_b41 article-title: A new meta-heuristic optimizer: Pathfinder algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.012 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.future.2019.07.015_b59 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – year: 2003 ident: 10.1016/j.future.2019.07.015_b2 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.future.2019.07.015_b3 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.future.2019.07.015_b84 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.014 – volume: 38 start-page: 13170 issue: 10 year: 2011 ident: 10.1016/j.future.2019.07.015_b27 article-title: Acroa: artificial chemical reaction optimization algorithm for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.126 – volume: 54 start-page: 62 year: 2016 ident: 10.1016/j.future.2019.07.015_b54 article-title: Yin-yang-pair optimization: A novel lightweight optimization algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.04.004 – volume: 5 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.future.2019.07.015_b6 article-title: A review of population-based meta-heuristic algorithms publication-title: Int. J. Adv. Soft Comput. Appl – volume: 221 start-page: 123 year: 2017 ident: 10.1016/j.future.2019.07.015_b63 article-title: Collective decision optimization algorithm: A new heuristic optimization method publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.068 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.future.2019.07.015_b33 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 26 start-page: 8 year: 2016 ident: 10.1016/j.future.2019.07.015_b53 article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.07.002 – volume: 62 start-page: 987 year: 2018 ident: 10.1016/j.future.2019.07.015_b40 article-title: Tackling global optimization problems with a novel algorithm–mouth brooding fish algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.035 – volume: 2 start-page: 333 issue: 5–6 year: 2017 ident: 10.1016/j.future.2019.07.015_b68 article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin, China publication-title: J. Nat. Gas Geosci. doi: 10.1016/j.jnggs.2018.02.001 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.future.2019.07.015_b15 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – ident: 10.1016/j.future.2019.07.015_b76 – volume: 47 start-page: 1135 issue: 7 year: 2017 ident: 10.1016/j.future.2019.07.015_b12 article-title: A supervised learning and control method to improve particle swarm optimization algorithms publication-title: IEEE Trans. Syst. Man Cybernet. Syst. doi: 10.1109/TSMC.2016.2560128 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.future.2019.07.015_b77 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – volume: 110 start-page: 69 year: 2017 ident: 10.1016/j.future.2019.07.015_b56 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 |
| SSID | ssj0001731 |
| Score | 2.7041461 |
| Snippet | Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 646 |
| SubjectTerms | Exploration and exploitation Henry gas solubility optimization Local optima Metaheuristic Optimization Physics-inspired |
| Title | Henry gas solubility optimization: A novel physics-based algorithm |
| URI | https://dx.doi.org/10.1016/j.future.2019.07.015 |
| Volume | 101 |
| WOSCitedRecordID | wos000501935700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQcuvBHlpT1ws7ZysrbXy82gRAWJCoki5WbtrjdtWseuYicqv4C_zezDjktRoQcuVuS114nny7w0Mx9C7wohFjTmlOhEhCQCg0yk1ClJqRQS5G1m1lmyCXZ8nM7n_Oto9LPrhdmWrKrSqyt--V9FDedA2KZ19g7i7jeFE_AZhA5HEDsc_0nwtu0gOBVNYJ5ja19_BDVohpVvuXTN6FW91aVPbDTEGLMiEOVpvV62Z6uhyzqzU0cM1bL2aFGeCcKPgW52Wqw5c-TMM9GuRJAd9iv1pmk8rea0acQqOOrXvgi5rjcXrnFoGXzrF7KSZK2QoK1sISAEDMUwRzHmg3oPn7YEdcyoJc3d6V1_hdOcic9EOiOcOI6OG_rdpRrOD93AFVOZx-3sVdcSen2c9m9mri8-7OraznO3S252yUOWh2ZYwf6ExRzU4372aTr_3Bv1MfPUlv6HdF2YtlTw5rf5s5cz8FxOHqEHPuTAmYPKYzTS1RP0sKPzwF67P0UfLHIwIAfvkIOHyHmPM2xxg6_hBve4eYa-z6YnH4-Ip9ggCmLFliyY4hoi0AWEmUpKzugiiamaUPj_RhGjmutESUqVDBOtUplIWlABhimMNZ8IRp-jvaqu9AuE9dj0TOsYPGwRFSEVTGgVTuTYUDJEkh4g2r2SXPn584YGpcxvE8gBIv1dl27-yl-uZ93bzr0P6XzDHCB0650v7_ikV-j-Duqv0V673ug36J7atstm_dbj5xcTOJYx |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Henry+gas+solubility+optimization%3A+A+novel+physics-based+algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Hashim%2C+Fatma+A.&rft.au=Houssein%2C+Essam+H.&rft.au=Mabrouk%2C+Mai+S.&rft.au=Al-Atabany%2C+Walid&rft.date=2019-12-01&rft.issn=0167-739X&rft.volume=101&rft.spage=646&rft.epage=667&rft_id=info:doi/10.1016%2Fj.future.2019.07.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2019_07_015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |