Artificial neural network based optimization for Ag grated D-shaped optical fiber surface plasmon resonance refractive index sensor
This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial neural network (ANN) model. To demonstrate the applicability of the algorithm, we examined an Ag-grated D-shaped fiber optic sensor configuratio...
Saved in:
| Published in: | Optics communications Vol. 534; p. 129332 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2023
|
| Subjects: | |
| ISSN: | 0030-4018, 1873-0310 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial neural network (ANN) model. To demonstrate the applicability of the algorithm, we examined an Ag-grated D-shaped fiber optic sensor configuration with 4 basic input parameters with the aim of reaching the highest sensitivity. Through the conventional optimization, the best parameter set appeared to be a 10 nm air gap distance between the gratings (a), 20 gratings (N), 50 nm residual cladding thickness (d), and 70 nm silver layer thickness (Ag_th) at the indices of 1.35 and 1.39 yielding a sensitivity of 3775 nm/RIU. A close match is found between the actual and predicted sensitivity. 199 input data obtained from FEM are used for training by Leave One Out Cross-Validation (LOOCV) approach with R-squared value of 0.98, and the trained model with R-squared value of 0.97 is implemented in the Genetic Algorithm. We achieved the sensitivity of 3890 nm/RIU at the predicted a, N, d, and Ag_th of 10 nm, 20, 50 nm, and 75 nm, respectively. Future studies may further improve these results by integrating other algorithms. This method may apply to different and more complex structures to observe the correlation between the parameters, cover an entire range of parameters, and get more accurate results, especially with a high number of inputs requiring less time and computing effort. The proposed method carries great potential to improve the sensing ability and bring a new perspective to the literature.
•Artificial neural network and genetic algorithm-based optimization for Ag-grated D-shaped SPR sensors is studied.•R2 value has reached 97.85% for the training dataset and 96.84% for the test dataset.•A close match is observed between the actual and predicted data, with a 1% difference in sensitivity values.•Input and output parameters of complex structures can be easily and accurately optimized with a reduced computational cost. |
|---|---|
| AbstractList | This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial neural network (ANN) model. To demonstrate the applicability of the algorithm, we examined an Ag-grated D-shaped fiber optic sensor configuration with 4 basic input parameters with the aim of reaching the highest sensitivity. Through the conventional optimization, the best parameter set appeared to be a 10 nm air gap distance between the gratings (a), 20 gratings (N), 50 nm residual cladding thickness (d), and 70 nm silver layer thickness (Ag_th) at the indices of 1.35 and 1.39 yielding a sensitivity of 3775 nm/RIU. A close match is found between the actual and predicted sensitivity. 199 input data obtained from FEM are used for training by Leave One Out Cross-Validation (LOOCV) approach with R-squared value of 0.98, and the trained model with R-squared value of 0.97 is implemented in the Genetic Algorithm. We achieved the sensitivity of 3890 nm/RIU at the predicted a, N, d, and Ag_th of 10 nm, 20, 50 nm, and 75 nm, respectively. Future studies may further improve these results by integrating other algorithms. This method may apply to different and more complex structures to observe the correlation between the parameters, cover an entire range of parameters, and get more accurate results, especially with a high number of inputs requiring less time and computing effort. The proposed method carries great potential to improve the sensing ability and bring a new perspective to the literature.
•Artificial neural network and genetic algorithm-based optimization for Ag-grated D-shaped SPR sensors is studied.•R2 value has reached 97.85% for the training dataset and 96.84% for the test dataset.•A close match is observed between the actual and predicted data, with a 1% difference in sensitivity values.•Input and output parameters of complex structures can be easily and accurately optimized with a reduced computational cost. |
| ArticleNumber | 129332 |
| Author | Dogan, Yusuf Yartasi, Ekrem Katirci, Ramazan Erdogan, İlhan |
| Author_xml | – sequence: 1 givenname: Yusuf orcidid: 0000-0002-3461-5404 surname: Dogan fullname: Dogan, Yusuf email: yusufdogan@sivas.edu.tr organization: Department of Electrical and Electronics Engineering, Sivas University of Science and Technology, Sivas 58000, Turkey – sequence: 2 givenname: Ramazan surname: Katirci fullname: Katirci, Ramazan organization: Department of Metallurgical and Materials Engineering, Sivas University of Science and Technology, 58000 Sivas, Turkey – sequence: 3 givenname: İlhan surname: Erdogan fullname: Erdogan, İlhan organization: Department of Electrical and Electronics Engineering, Sivas University of Science and Technology, Sivas 58000, Turkey – sequence: 4 givenname: Ekrem surname: Yartasi fullname: Yartasi, Ekrem organization: Department of Engineering Fundamental Sciences, Sivas University of Science and Technology, 58000 Sivas, Turkey |
| BookMark | eNqFkMtOAzEMRSNUJErhD1jkB6Y4k-lMywKpKk-pEhtYR5mMU1LaSeWk5bHlx0kfKxawsmT7XNnnlHVa3yJjFwL6AkR5Oe_7VTR-2c8hl32Rj6TMj1hXDCuZgRTQYV0ACVkBYnjCTkOYA4Ao5LDLvscUnXXG6QVvcU27Et89vfFaB2x4SnZL96Wj8y23nvh4xmekYxrdZOFVrw47JpHW1Ug8rMlqg3y10GGZIMLgW92mDqElbaLbIHdtgx88YBs8nbFjqxcBzw-1x17ubp8nD9n06f5xMp5mRkIZM1tpqPJcSwQ5kgMhqlIKaQcV1qK2phmYUkAFAxQ6bYGotRli2RTQFGUjpZE9drXPNeRDSMco4-LusUjaLZQAtdWp5mqvU211qr3OBBe_4BW5pabP_7DrPYbpsY1DUsE4TDIaR2iiarz7O-AHciuWdQ |
| CitedBy_id | crossref_primary_10_1007_s11468_023_01881_2 crossref_primary_10_1007_s11468_024_02534_8 crossref_primary_10_1088_1402_4896_ad9c27 crossref_primary_10_1016_j_ijleo_2023_171162 crossref_primary_10_1007_s11468_024_02654_1 crossref_primary_10_1016_j_saa_2025_126276 crossref_primary_10_1016_j_optcom_2024_131304 crossref_primary_10_1016_j_yofte_2024_104113 crossref_primary_10_1016_j_optcom_2025_131980 crossref_primary_10_1088_1402_4896_ad2965 crossref_primary_10_1111_ppa_14036 crossref_primary_10_1007_s11240_024_02880_9 crossref_primary_10_1007_s12648_024_03418_7 crossref_primary_10_1016_j_rinp_2025_108409 crossref_primary_10_1364_AO_483385 crossref_primary_10_1016_j_ijleo_2024_172177 crossref_primary_10_1002_adom_202401862 crossref_primary_10_1007_s11468_023_01847_4 crossref_primary_10_1016_j_optlastec_2023_109959 crossref_primary_10_1515_joc_2023_0361 |
| Cites_doi | 10.1109/TIM.2013.2286956 10.1016/j.ijleo.2021.168527 10.1016/j.rinp.2019.102788 10.1016/j.ijleo.2019.05.089 10.1109/ACCESS.2019.2892062 10.3390/s111211752 10.1007/s13369-014-1244-y 10.1007/BF01391532 10.1364/OME.8.003927 10.1016/j.ijepes.2022.108591 10.1016/j.optcom.2007.02.030 10.1109/TIM.2015.2434094 10.1016/j.snb.2017.05.045 10.1007/s12596-021-00747-2 10.1016/0250-6874(83)85036-7 10.1016/j.ijleo.2022.169026 10.1109/JSEN.2020.2992854 10.1109/ACCESS.2020.2990567 10.3390/s18124325 10.1007/s13197-011-0437-6 10.1016/j.snb.2014.09.083 10.1016/j.surfcoat.2020.125764 10.1364/OE.23.008576 10.1016/j.tws.2022.109673 10.1016/j.yofte.2018.12.015 10.1016/j.rineng.2022.100353 10.1109/JPHOT.2019.2931713 10.1007/s13762-018-1943-0 10.1016/j.snb.2010.05.061 10.1016/j.snb.2013.10.108 10.1016/j.photonics.2018.11.005 10.1364/AO.56.003510 10.1016/j.snb.2014.01.045 10.1016/j.surfcoat.2021.127571 10.1177/003754979406200405 10.1109/JSEN.2007.897946 10.3390/photonics9020104 10.1016/j.swevo.2015.01.002 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optcom.2023.129332 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-0310 |
| ExternalDocumentID | 10_1016_j_optcom_2023_129332 S0030401823000780 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LY7 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~02 ~G- 29N 53G 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD F0J FEDTE FGOYB G-2 HMV HVGLF HZ~ MVM NDZJH R2- SET SPG WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c306t-f7a0722a3e039351176313f57eb1bfcd5c610705e1a22a01bac8e6d40d46d33c3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0030-4018 |
| IngestDate | Tue Nov 18 21:56:16 EST 2025 Sat Nov 29 07:30:28 EST 2025 Fri Feb 23 02:38:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optical fiber sensors Surface plasmon resonance (SPR) Artificial intelligence Genetic algorithm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-f7a0722a3e039351176313f57eb1bfcd5c610705e1a22a01bac8e6d40d46d33c3 |
| ORCID | 0000-0002-3461-5404 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_optcom_2023_129332 crossref_primary_10_1016_j_optcom_2023_129332 elsevier_sciencedirect_doi_10_1016_j_optcom_2023_129332 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 2023-05-00 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics communications |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang (b13) 2017; 251 Katırcı, Yılmaz, Kaynar, Zontul (b27) 2021; 422 Hassan, Hussein, Alshammari, Jalal, Rasheed (b34) 2022; 13 Rastegaripour, Saboni, Shojaei, Tavassoli (b36) 2019; 16 Alberto, Domingues, Marques, André, Antunes (b9) 2018; 18 Qi, Diao, Qiu (b43) 2019; 7 Luan, Wang, Lv, Yao (b15) 2015; 23 Onen (b35) 2014; 39 Blank, Deb (b44) 2020; 8 Kaur, Singh (b18) 2019; 48 Shukla, Sharma, Sajal (b23) 2015; 206 Mirjalili (b41) 2019; Vol. 780 Sakib (b19) 2019; 15 Fallauto, Liu, Perrone, Vallan (b7) 2013; 63 Narsaiah, Jha, Bhardwaj, Sharma, Kumar (b12) 2012; 49 Dubey, Kumar, Pandey, Pathak, Srivastava (b24) 2022 Liedberg, Nylander, Lunström (b3) 1983; 4 Sharma, Gupta (b32) 2007; 274 Soghra, Jamal, Bahar (b17) 2022; 260 Kurtoglu, Casanova, Graciano (b29) 2022; 179 Xu, Wang, Chen, Li (b39) 2015 Mishra, Rani, Gupta (b21) 2014; 195 Haque, Mahmuda, Hossain, Hai, Namihira, Ahmed (b26) 2019; 11 Kramer (b40) 2017 Sharma, Jha, Gupta (b6) 2007; 7 Zhao, Deng, Hu (b11) 2015; 64 Barchiesi (b20) 2022; 9 Kadhim, Yuan, Xu, Wu, Wang (b25) 2020; 20 Kreibig, Vollmer (b4) 2013 Kadhim, Wu, Wang (b16) 2022; 51 Rahman, Noor, Anower, Abdulrazak, Rahman, Rikta (b33) 2019; 33 Eskandari, Aghaei, Milimonfared, Nedaei (b42) 2023; 144 Homaifar, Qi, Lai (b37) 1994; 62 Dubey, Kumar, Kumar, Pathak, Srivastava (b14) 2022; 252 Cennamo, Massarotti, Conte, Zeni (b5) 2011; 11 Nooke (b8) 2010; 149 Saad, Selmi, Gazzah, Bajahzar, Belmabrouk (b22) 2019; 190 Zhan (b1) 2018; 8 Otto (b2) 1968; 216 Ghatak, Ghatak, Thyagarajan, Thyagarajan (b31) 1998 Lenz, Hasselbruch, Grozmann, Mehner (b28) 2020; 393 Long, Wu, Huang, Wang (b38) 2015; 22 Nayak, Jha (b30) 2017; 56 Zhao, q. Deng, Wang (b10) 2014; 192 Rahman (10.1016/j.optcom.2023.129332_b33) 2019; 33 Rastegaripour (10.1016/j.optcom.2023.129332_b36) 2019; 16 Long (10.1016/j.optcom.2023.129332_b38) 2015; 22 Eskandari (10.1016/j.optcom.2023.129332_b42) 2023; 144 Kadhim (10.1016/j.optcom.2023.129332_b25) 2020; 20 Soghra (10.1016/j.optcom.2023.129332_b17) 2022; 260 Homaifar (10.1016/j.optcom.2023.129332_b37) 1994; 62 Nayak (10.1016/j.optcom.2023.129332_b30) 2017; 56 Sharma (10.1016/j.optcom.2023.129332_b6) 2007; 7 Nooke (10.1016/j.optcom.2023.129332_b8) 2010; 149 Zhang (10.1016/j.optcom.2023.129332_b13) 2017; 251 Mirjalili (10.1016/j.optcom.2023.129332_b41) 2019; Vol. 780 Kaur (10.1016/j.optcom.2023.129332_b18) 2019; 48 Narsaiah (10.1016/j.optcom.2023.129332_b12) 2012; 49 Kadhim (10.1016/j.optcom.2023.129332_b16) 2022; 51 Zhan (10.1016/j.optcom.2023.129332_b1) 2018; 8 Haque (10.1016/j.optcom.2023.129332_b26) 2019; 11 Xu (10.1016/j.optcom.2023.129332_b39) 2015 Cennamo (10.1016/j.optcom.2023.129332_b5) 2011; 11 Fallauto (10.1016/j.optcom.2023.129332_b7) 2013; 63 Sakib (10.1016/j.optcom.2023.129332_b19) 2019; 15 Lenz (10.1016/j.optcom.2023.129332_b28) 2020; 393 Barchiesi (10.1016/j.optcom.2023.129332_b20) 2022; 9 Luan (10.1016/j.optcom.2023.129332_b15) 2015; 23 Mishra (10.1016/j.optcom.2023.129332_b21) 2014; 195 Shukla (10.1016/j.optcom.2023.129332_b23) 2015; 206 Dubey (10.1016/j.optcom.2023.129332_b24) 2022 Dubey (10.1016/j.optcom.2023.129332_b14) 2022; 252 Liedberg (10.1016/j.optcom.2023.129332_b3) 1983; 4 Blank (10.1016/j.optcom.2023.129332_b44) 2020; 8 Zhao (10.1016/j.optcom.2023.129332_b10) 2014; 192 Onen (10.1016/j.optcom.2023.129332_b35) 2014; 39 Hassan (10.1016/j.optcom.2023.129332_b34) 2022; 13 Zhao (10.1016/j.optcom.2023.129332_b11) 2015; 64 Saad (10.1016/j.optcom.2023.129332_b22) 2019; 190 Kurtoglu (10.1016/j.optcom.2023.129332_b29) 2022; 179 Kramer (10.1016/j.optcom.2023.129332_b40) 2017 Kreibig (10.1016/j.optcom.2023.129332_b4) 2013 Qi (10.1016/j.optcom.2023.129332_b43) 2019; 7 Katırcı (10.1016/j.optcom.2023.129332_b27) 2021; 422 Sharma (10.1016/j.optcom.2023.129332_b32) 2007; 274 Alberto (10.1016/j.optcom.2023.129332_b9) 2018; 18 Otto (10.1016/j.optcom.2023.129332_b2) 1968; 216 Ghatak (10.1016/j.optcom.2023.129332_b31) 1998 |
| References_xml | – volume: 22 start-page: 1 year: 2015 end-page: 14 ident: b38 article-title: A genetic algorithm for unconstrained multi-objective optimization publication-title: Swarm Evol. Comput. – volume: 149 start-page: 194 year: 2010 end-page: 198 ident: b8 article-title: On the application of gold based SPR sensors for the detection of hazardous gases publication-title: Sensors Actuators B – volume: 190 start-page: 1 year: 2019 end-page: 9 ident: b22 article-title: Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer publication-title: Optik – volume: 393 year: 2020 ident: b28 article-title: Application of CNN networks for an automatic determination of critical loads in scratch tests on aC: H: W coatings publication-title: Surf. Coat. Technol. – year: 2013 ident: b4 article-title: Optical Properties of Metal Clusters – volume: 49 start-page: 383 year: 2012 end-page: 406 ident: b12 article-title: Optical biosensors for food quality and safety assurance—a review publication-title: J. Food Sci. Technol. – year: 2015 ident: b39 article-title: Empirical evaluation of rectified activations in convolutional network – volume: 51 start-page: 71 year: 2022 end-page: 78 ident: b16 article-title: Sensitivity enhancement of a plasmonic sensor based on a side opening quasi-D-shaped optical fiber with Au nanowires publication-title: J. Opt. – year: 1998 ident: b31 article-title: An Introduction to Fiber Optics – volume: 15 year: 2019 ident: b19 article-title: High performance dual core D-shape PCF-SPR sensor modeling employing gold coat publication-title: Results Phys. – volume: 48 start-page: 159 year: 2019 end-page: 164 ident: b18 article-title: Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications publication-title: Opt. Fiber Technol., Mater. Devices Syst. – volume: 33 start-page: 29 year: 2019 end-page: 35 ident: b33 article-title: Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide publication-title: Photon. Nanostruct.: Fundam. Appl. – volume: 260 year: 2022 ident: b17 article-title: Design and analysis of surface plasmon resonance based photonic crystal fiber sensor employing gold nanowires publication-title: Optik – volume: 206 start-page: 463 year: 2015 end-page: 470 ident: b23 article-title: Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study publication-title: Sensors Actuators B – volume: 422 year: 2021 ident: b27 article-title: Automated evaluation of Cr-III coated parts using mask RCNN and ML methods publication-title: Surf. Coat. Technol. – volume: 274 start-page: 320 year: 2007 end-page: 326 ident: b32 article-title: Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor publication-title: Opt. Commun. – volume: 192 start-page: 229 year: 2014 end-page: 233 ident: b10 article-title: Fiber optic SPR sensor for liquid concentration measurement publication-title: Sensors Actuators B – volume: 251 start-page: 127 year: 2017 end-page: 133 ident: b13 article-title: U-bent fiber optic SPR sensor based on graphene/AgNPs publication-title: Sensors Actuators B – volume: 23 start-page: 8576 year: 2015 end-page: 8582 ident: b15 article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core publication-title: Opt. Express – volume: 63 start-page: 1287 year: 2013 end-page: 1292 ident: b7 article-title: Compensated surface plasmon resonance sensor for long-term monitoring applications publication-title: IEEE Trans. Instrum. Meas. – volume: 11 start-page: 1 year: 2019 end-page: 9 ident: b26 article-title: Highly sensitive dual-core PCF based plasmonic refractive index sensor for low refractive index detection publication-title: IEEE Photonics J. – volume: 179 year: 2022 ident: b29 article-title: Artificial intelligence-based modeling of extruded aluminum beams subjected to patch loading publication-title: Thin-Walled Struct. – volume: 8 start-page: 89497 year: 2020 end-page: 89509 ident: b44 article-title: Pymoo: Multi-objective optimization in python publication-title: IEEE Access – volume: 18 start-page: 4325 year: 2018 ident: b9 article-title: Optical fiber magnetic field sensors based on magnetic fluid: A review publication-title: Sensors – volume: 9 start-page: 104 year: 2022 ident: b20 article-title: Performance of surface plasmon resonance sensors using copper/copper oxide films: Influence of thicknesses and optical properties publication-title: Photonics – volume: 64 start-page: 3099 year: 2015 end-page: 3104 ident: b11 article-title: Fiber-optic SPR sensor for temperature measurement publication-title: IEEE Trans. Instrum. Meas. – start-page: 11 year: 2017 end-page: 19 ident: b40 article-title: Genetic algorithms publication-title: Genetic Algorithm Essentials – volume: 20 start-page: 9816 year: 2020 end-page: 9824 ident: b25 article-title: Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag- publication-title: IEEE Sens. J. – volume: 16 start-page: 5835 year: 2019 end-page: 5856 ident: b36 article-title: Simultaneous management of water and wastewater using ant and artificial neural network (ANN) algorithms publication-title: Int. J. Environ. Sci. Technol. – volume: 56 start-page: 3510 year: 2017 end-page: 3517 ident: b30 article-title: Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing publication-title: Appl. Opt. – volume: 13 year: 2022 ident: b34 article-title: Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier publication-title: Results Eng. – volume: 11 start-page: 11752 year: 2011 end-page: 11760 ident: b5 article-title: Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation publication-title: Sensors – volume: 4 start-page: 299 year: 1983 end-page: 304 ident: b3 article-title: Surface plasmon resonance for gas detection and biosensing publication-title: Sensors Actuators – volume: Vol. 780 year: 2019 ident: b41 article-title: Evolutionary algorithms and neural networks publication-title: Studies in Computational Intelligence – volume: 252 year: 2022 ident: b14 article-title: A study of highly sensitive D-shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2 publication-title: Optik – start-page: 1 year: 2022 end-page: 13 ident: b24 article-title: A study of sensitivity improved probe using hyperbolic metamaterial for optical fiber SPR (OFSPR)-based refractive index sensor publication-title: Plasmonics – volume: 39 start-page: 6031 year: 2014 end-page: 6041 ident: b35 article-title: Prediction of scour at a side-weir with GEP, ANN and regression models publication-title: Arab. J. Sci. Eng. – volume: 7 start-page: 33454 year: 2019 end-page: 33463 ident: b43 article-title: On estimating model in feature selection with cross-validation publication-title: IEEE Access – volume: 8 start-page: 3927 year: 2018 end-page: 3940 ident: b1 article-title: Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires publication-title: Opt. Mater. Express – volume: 216 start-page: 398 year: 1968 end-page: 410 ident: b2 article-title: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection publication-title: Z. Phys. – volume: 62 start-page: 242 year: 1994 end-page: 253 ident: b37 article-title: Constrained optimization via genetic algorithms publication-title: Simulation – volume: 195 start-page: 215 year: 2014 end-page: 222 ident: b21 article-title: Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film publication-title: Sensors Actuators B – volume: 144 year: 2023 ident: b42 article-title: A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 7 start-page: 1118 year: 2007 end-page: 1129 ident: b6 article-title: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review publication-title: IEEE Sens. J. – volume: 63 start-page: 1287 issue: 5 year: 2013 ident: 10.1016/j.optcom.2023.129332_b7 article-title: Compensated surface plasmon resonance sensor for long-term monitoring applications publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2286956 – volume: 252 year: 2022 ident: 10.1016/j.optcom.2023.129332_b14 article-title: A study of highly sensitive D-shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2 publication-title: Optik doi: 10.1016/j.ijleo.2021.168527 – volume: 15 year: 2019 ident: 10.1016/j.optcom.2023.129332_b19 article-title: High performance dual core D-shape PCF-SPR sensor modeling employing gold coat publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102788 – volume: 190 start-page: 1 year: 2019 ident: 10.1016/j.optcom.2023.129332_b22 article-title: Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer publication-title: Optik doi: 10.1016/j.ijleo.2019.05.089 – volume: 7 start-page: 33454 year: 2019 ident: 10.1016/j.optcom.2023.129332_b43 article-title: On estimating model in feature selection with cross-validation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892062 – volume: 11 start-page: 11752 issue: 12 year: 2011 ident: 10.1016/j.optcom.2023.129332_b5 article-title: Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation publication-title: Sensors doi: 10.3390/s111211752 – volume: Vol. 780 year: 2019 ident: 10.1016/j.optcom.2023.129332_b41 article-title: Evolutionary algorithms and neural networks – volume: 39 start-page: 6031 issue: 8 year: 2014 ident: 10.1016/j.optcom.2023.129332_b35 article-title: Prediction of scour at a side-weir with GEP, ANN and regression models publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-014-1244-y – volume: 216 start-page: 398 issue: 4 year: 1968 ident: 10.1016/j.optcom.2023.129332_b2 article-title: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection publication-title: Z. Phys. doi: 10.1007/BF01391532 – volume: 8 start-page: 3927 issue: 12 year: 2018 ident: 10.1016/j.optcom.2023.129332_b1 article-title: Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires publication-title: Opt. Mater. Express doi: 10.1364/OME.8.003927 – volume: 144 year: 2023 ident: 10.1016/j.optcom.2023.129332_b42 article-title: A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108591 – volume: 274 start-page: 320 issue: 2 year: 2007 ident: 10.1016/j.optcom.2023.129332_b32 article-title: Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor publication-title: Opt. Commun. doi: 10.1016/j.optcom.2007.02.030 – volume: 64 start-page: 3099 issue: 11 year: 2015 ident: 10.1016/j.optcom.2023.129332_b11 article-title: Fiber-optic SPR sensor for temperature measurement publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2434094 – volume: 251 start-page: 127 year: 2017 ident: 10.1016/j.optcom.2023.129332_b13 article-title: U-bent fiber optic SPR sensor based on graphene/AgNPs publication-title: Sensors Actuators B doi: 10.1016/j.snb.2017.05.045 – volume: 51 start-page: 71 issue: 1 year: 2022 ident: 10.1016/j.optcom.2023.129332_b16 article-title: Sensitivity enhancement of a plasmonic sensor based on a side opening quasi-D-shaped optical fiber with Au nanowires publication-title: J. Opt. doi: 10.1007/s12596-021-00747-2 – volume: 4 start-page: 299 year: 1983 ident: 10.1016/j.optcom.2023.129332_b3 article-title: Surface plasmon resonance for gas detection and biosensing publication-title: Sensors Actuators doi: 10.1016/0250-6874(83)85036-7 – volume: 260 year: 2022 ident: 10.1016/j.optcom.2023.129332_b17 article-title: Design and analysis of surface plasmon resonance based photonic crystal fiber sensor employing gold nanowires publication-title: Optik doi: 10.1016/j.ijleo.2022.169026 – volume: 20 start-page: 9816 issue: 17 year: 2020 ident: 10.1016/j.optcom.2023.129332_b25 article-title: Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-α-Fe 2 O 3 grating publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2992854 – volume: 8 start-page: 89497 year: 2020 ident: 10.1016/j.optcom.2023.129332_b44 article-title: Pymoo: Multi-objective optimization in python publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990567 – volume: 18 start-page: 4325 issue: 12 year: 2018 ident: 10.1016/j.optcom.2023.129332_b9 article-title: Optical fiber magnetic field sensors based on magnetic fluid: A review publication-title: Sensors doi: 10.3390/s18124325 – start-page: 1 year: 2022 ident: 10.1016/j.optcom.2023.129332_b24 article-title: A study of sensitivity improved probe using hyperbolic metamaterial for optical fiber SPR (OFSPR)-based refractive index sensor publication-title: Plasmonics – year: 2015 ident: 10.1016/j.optcom.2023.129332_b39 – volume: 49 start-page: 383 issue: 4 year: 2012 ident: 10.1016/j.optcom.2023.129332_b12 article-title: Optical biosensors for food quality and safety assurance—a review publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-011-0437-6 – volume: 206 start-page: 463 year: 2015 ident: 10.1016/j.optcom.2023.129332_b23 article-title: Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study publication-title: Sensors Actuators B doi: 10.1016/j.snb.2014.09.083 – volume: 393 year: 2020 ident: 10.1016/j.optcom.2023.129332_b28 article-title: Application of CNN networks for an automatic determination of critical loads in scratch tests on aC: H: W coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125764 – volume: 23 start-page: 8576 issue: 7 year: 2015 ident: 10.1016/j.optcom.2023.129332_b15 article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core publication-title: Opt. Express doi: 10.1364/OE.23.008576 – volume: 179 year: 2022 ident: 10.1016/j.optcom.2023.129332_b29 article-title: Artificial intelligence-based modeling of extruded aluminum beams subjected to patch loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.109673 – volume: 48 start-page: 159 year: 2019 ident: 10.1016/j.optcom.2023.129332_b18 article-title: Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications publication-title: Opt. Fiber Technol., Mater. Devices Syst. doi: 10.1016/j.yofte.2018.12.015 – volume: 13 year: 2022 ident: 10.1016/j.optcom.2023.129332_b34 article-title: Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100353 – volume: 11 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.optcom.2023.129332_b26 article-title: Highly sensitive dual-core PCF based plasmonic refractive index sensor for low refractive index detection publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2019.2931713 – volume: 16 start-page: 5835 issue: 10 year: 2019 ident: 10.1016/j.optcom.2023.129332_b36 article-title: Simultaneous management of water and wastewater using ant and artificial neural network (ANN) algorithms publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-1943-0 – year: 1998 ident: 10.1016/j.optcom.2023.129332_b31 – volume: 149 start-page: 194 issue: 1 year: 2010 ident: 10.1016/j.optcom.2023.129332_b8 article-title: On the application of gold based SPR sensors for the detection of hazardous gases publication-title: Sensors Actuators B doi: 10.1016/j.snb.2010.05.061 – volume: 192 start-page: 229 year: 2014 ident: 10.1016/j.optcom.2023.129332_b10 article-title: Fiber optic SPR sensor for liquid concentration measurement publication-title: Sensors Actuators B doi: 10.1016/j.snb.2013.10.108 – volume: 33 start-page: 29 year: 2019 ident: 10.1016/j.optcom.2023.129332_b33 article-title: Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide publication-title: Photon. Nanostruct.: Fundam. Appl. doi: 10.1016/j.photonics.2018.11.005 – volume: 56 start-page: 3510 issue: 12 year: 2017 ident: 10.1016/j.optcom.2023.129332_b30 article-title: Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing publication-title: Appl. Opt. doi: 10.1364/AO.56.003510 – volume: 195 start-page: 215 year: 2014 ident: 10.1016/j.optcom.2023.129332_b21 article-title: Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film publication-title: Sensors Actuators B doi: 10.1016/j.snb.2014.01.045 – volume: 422 year: 2021 ident: 10.1016/j.optcom.2023.129332_b27 article-title: Automated evaluation of Cr-III coated parts using mask RCNN and ML methods publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127571 – year: 2013 ident: 10.1016/j.optcom.2023.129332_b4 – volume: 62 start-page: 242 issue: 4 year: 1994 ident: 10.1016/j.optcom.2023.129332_b37 article-title: Constrained optimization via genetic algorithms publication-title: Simulation doi: 10.1177/003754979406200405 – volume: 7 start-page: 1118 issue: 8 year: 2007 ident: 10.1016/j.optcom.2023.129332_b6 article-title: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2007.897946 – start-page: 11 year: 2017 ident: 10.1016/j.optcom.2023.129332_b40 article-title: Genetic algorithms – volume: 9 start-page: 104 issue: 2 year: 2022 ident: 10.1016/j.optcom.2023.129332_b20 article-title: Performance of surface plasmon resonance sensors using copper/copper oxide films: Influence of thicknesses and optical properties publication-title: Photonics doi: 10.3390/photonics9020104 – volume: 22 start-page: 1 year: 2015 ident: 10.1016/j.optcom.2023.129332_b38 article-title: A genetic algorithm for unconstrained multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.01.002 |
| SSID | ssj0001438 |
| Score | 2.493344 |
| Snippet | This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129332 |
| SubjectTerms | Artificial intelligence Genetic algorithm optimization Optical fiber sensors Surface plasmon resonance (SPR) |
| Title | Artificial neural network based optimization for Ag grated D-shaped optical fiber surface plasmon resonance refractive index sensor |
| URI | https://dx.doi.org/10.1016/j.optcom.2023.129332 |
| Volume | 534 |
| WOSCitedRecordID | wos000943544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-0310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001438 issn: 0030-4018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiQuqLxEKaA5cLO28jNOji4EFQ4FoSKlJ2u93k1bUtuykyjiyq_hXzL78AOKCj1wcSJnd-3sfJ75djwzS8jrKPQ5F1xQ5nmMhmjjKIuDkEpkyzwWWSimmd5sIj45mczn00-j0Y82F2azjItist1Oq_8qajyHwlaps7cQdzconsDvKHQ8otjx-E-CT2od_qM84apYpf7Qod6Osli5U6KSuLLZlzrIMFk4umBE7rylzTmrbBud2qjiSZxmXUuGz3-FTBv_hoMr9LLQqQZoXnWW1UaVHsnF1mlwVVzWQ8b7sdKFoPkwEaXfzL5cGAfs2bpZy075Y6Oa6zCDz-yKfesBPKvztodiwUfu8rz_8QwngzW62-xrbV3S1qHhD8IHWyUduListWrZKunIujyNmlUkxbhFr1kA44y4PMSJUuFA6gKHffNfC27_Zgi78MQ28u0yNaOkapTUjHKH7PpxNEUbsJu8n80_dGZf7SNvaoCau2_zNHUw4fW7-TMPGnCb0z3ywC5KIDFgekhGonhE7ungYN48Jt97SIGBFFhIgYYUDCEFCClIFmAgBS2kwEIKNKTAQgospKCDFPSQAg0pMJB6Qr68m52-OaZ28w7KcRW6ojJmbuz7LBA6-9vz0JB5gYzw-fcyyfOII3GP3Uh4DFu5Xsb4RIzz0M3DcR4EPHhKdoqyEM8IuGMWjaV6wY9cUjCRSbQcuPCWqnAUkqt9ErRTmXJb2V5tsLJMbxLkPqFdr8pUdvlL-7iVUmrZqWGdKULvxp7Pb3mlA3K_fy5ekJ1VvRYvyV2-WV009SuLu59JmrgZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+based+optimization+for+Ag+grated+D-shaped+optical+fiber+surface+plasmon+resonance+refractive+index+sensor&rft.jtitle=Optics+communications&rft.au=Dogan%2C+Yusuf&rft.au=Katirci%2C+Ramazan&rft.au=Erdogan%2C+%C4%B0lhan&rft.au=Yartasi%2C+Ekrem&rft.date=2023-05-01&rft.issn=0030-4018&rft.volume=534&rft.spage=129332&rft_id=info:doi/10.1016%2Fj.optcom.2023.129332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optcom_2023_129332 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon |