Artificial neural network based optimization for Ag grated D-shaped optical fiber surface plasmon resonance refractive index sensor

This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial neural network (ANN) model. To demonstrate the applicability of the algorithm, we examined an Ag-grated D-shaped fiber optic sensor configuratio...

Full description

Saved in:
Bibliographic Details
Published in:Optics communications Vol. 534; p. 129332
Main Authors: Dogan, Yusuf, Katirci, Ramazan, Erdogan, İlhan, Yartasi, Ekrem
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2023
Subjects:
ISSN:0030-4018, 1873-0310
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial neural network (ANN) model. To demonstrate the applicability of the algorithm, we examined an Ag-grated D-shaped fiber optic sensor configuration with 4 basic input parameters with the aim of reaching the highest sensitivity. Through the conventional optimization, the best parameter set appeared to be a 10 nm air gap distance between the gratings (a), 20 gratings (N), 50 nm residual cladding thickness (d), and 70 nm silver layer thickness (Ag_th) at the indices of 1.35 and 1.39 yielding a sensitivity of 3775 nm/RIU. A close match is found between the actual and predicted sensitivity. 199 input data obtained from FEM are used for training by Leave One Out Cross-Validation (LOOCV) approach with R-squared value of 0.98, and the trained model with R-squared value of 0.97 is implemented in the Genetic Algorithm. We achieved the sensitivity of 3890 nm/RIU at the predicted a, N, d, and Ag_th of 10 nm, 20, 50 nm, and 75 nm, respectively. Future studies may further improve these results by integrating other algorithms. This method may apply to different and more complex structures to observe the correlation between the parameters, cover an entire range of parameters, and get more accurate results, especially with a high number of inputs requiring less time and computing effort. The proposed method carries great potential to improve the sensing ability and bring a new perspective to the literature. •Artificial neural network and genetic algorithm-based optimization for Ag-grated D-shaped SPR sensors is studied.•R2 value has reached 97.85% for the training dataset and 96.84% for the test dataset.•A close match is observed between the actual and predicted data, with a 1% difference in sensitivity values.•Input and output parameters of complex structures can be easily and accurately optimized with a reduced computational cost.
AbstractList This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial neural network (ANN) model. To demonstrate the applicability of the algorithm, we examined an Ag-grated D-shaped fiber optic sensor configuration with 4 basic input parameters with the aim of reaching the highest sensitivity. Through the conventional optimization, the best parameter set appeared to be a 10 nm air gap distance between the gratings (a), 20 gratings (N), 50 nm residual cladding thickness (d), and 70 nm silver layer thickness (Ag_th) at the indices of 1.35 and 1.39 yielding a sensitivity of 3775 nm/RIU. A close match is found between the actual and predicted sensitivity. 199 input data obtained from FEM are used for training by Leave One Out Cross-Validation (LOOCV) approach with R-squared value of 0.98, and the trained model with R-squared value of 0.97 is implemented in the Genetic Algorithm. We achieved the sensitivity of 3890 nm/RIU at the predicted a, N, d, and Ag_th of 10 nm, 20, 50 nm, and 75 nm, respectively. Future studies may further improve these results by integrating other algorithms. This method may apply to different and more complex structures to observe the correlation between the parameters, cover an entire range of parameters, and get more accurate results, especially with a high number of inputs requiring less time and computing effort. The proposed method carries great potential to improve the sensing ability and bring a new perspective to the literature. •Artificial neural network and genetic algorithm-based optimization for Ag-grated D-shaped SPR sensors is studied.•R2 value has reached 97.85% for the training dataset and 96.84% for the test dataset.•A close match is observed between the actual and predicted data, with a 1% difference in sensitivity values.•Input and output parameters of complex structures can be easily and accurately optimized with a reduced computational cost.
ArticleNumber 129332
Author Dogan, Yusuf
Yartasi, Ekrem
Katirci, Ramazan
Erdogan, İlhan
Author_xml – sequence: 1
  givenname: Yusuf
  orcidid: 0000-0002-3461-5404
  surname: Dogan
  fullname: Dogan, Yusuf
  email: yusufdogan@sivas.edu.tr
  organization: Department of Electrical and Electronics Engineering, Sivas University of Science and Technology, Sivas 58000, Turkey
– sequence: 2
  givenname: Ramazan
  surname: Katirci
  fullname: Katirci, Ramazan
  organization: Department of Metallurgical and Materials Engineering, Sivas University of Science and Technology, 58000 Sivas, Turkey
– sequence: 3
  givenname: İlhan
  surname: Erdogan
  fullname: Erdogan, İlhan
  organization: Department of Electrical and Electronics Engineering, Sivas University of Science and Technology, Sivas 58000, Turkey
– sequence: 4
  givenname: Ekrem
  surname: Yartasi
  fullname: Yartasi, Ekrem
  organization: Department of Engineering Fundamental Sciences, Sivas University of Science and Technology, 58000 Sivas, Turkey
BookMark eNqFkMtOAzEMRSNUJErhD1jkB6Y4k-lMywKpKk-pEhtYR5mMU1LaSeWk5bHlx0kfKxawsmT7XNnnlHVa3yJjFwL6AkR5Oe_7VTR-2c8hl32Rj6TMj1hXDCuZgRTQYV0ACVkBYnjCTkOYA4Ao5LDLvscUnXXG6QVvcU27Et89vfFaB2x4SnZL96Wj8y23nvh4xmekYxrdZOFVrw47JpHW1Ug8rMlqg3y10GGZIMLgW92mDqElbaLbIHdtgx88YBs8nbFjqxcBzw-1x17ubp8nD9n06f5xMp5mRkIZM1tpqPJcSwQ5kgMhqlIKaQcV1qK2phmYUkAFAxQ6bYGotRli2RTQFGUjpZE9drXPNeRDSMco4-LusUjaLZQAtdWp5mqvU211qr3OBBe_4BW5pabP_7DrPYbpsY1DUsE4TDIaR2iiarz7O-AHciuWdQ
CitedBy_id crossref_primary_10_1007_s11468_023_01881_2
crossref_primary_10_1007_s11468_024_02534_8
crossref_primary_10_1088_1402_4896_ad9c27
crossref_primary_10_1016_j_ijleo_2023_171162
crossref_primary_10_1007_s11468_024_02654_1
crossref_primary_10_1016_j_saa_2025_126276
crossref_primary_10_1016_j_optcom_2024_131304
crossref_primary_10_1016_j_yofte_2024_104113
crossref_primary_10_1016_j_optcom_2025_131980
crossref_primary_10_1088_1402_4896_ad2965
crossref_primary_10_1111_ppa_14036
crossref_primary_10_1007_s11240_024_02880_9
crossref_primary_10_1007_s12648_024_03418_7
crossref_primary_10_1016_j_rinp_2025_108409
crossref_primary_10_1364_AO_483385
crossref_primary_10_1016_j_ijleo_2024_172177
crossref_primary_10_1002_adom_202401862
crossref_primary_10_1007_s11468_023_01847_4
crossref_primary_10_1016_j_optlastec_2023_109959
crossref_primary_10_1515_joc_2023_0361
Cites_doi 10.1109/TIM.2013.2286956
10.1016/j.ijleo.2021.168527
10.1016/j.rinp.2019.102788
10.1016/j.ijleo.2019.05.089
10.1109/ACCESS.2019.2892062
10.3390/s111211752
10.1007/s13369-014-1244-y
10.1007/BF01391532
10.1364/OME.8.003927
10.1016/j.ijepes.2022.108591
10.1016/j.optcom.2007.02.030
10.1109/TIM.2015.2434094
10.1016/j.snb.2017.05.045
10.1007/s12596-021-00747-2
10.1016/0250-6874(83)85036-7
10.1016/j.ijleo.2022.169026
10.1109/JSEN.2020.2992854
10.1109/ACCESS.2020.2990567
10.3390/s18124325
10.1007/s13197-011-0437-6
10.1016/j.snb.2014.09.083
10.1016/j.surfcoat.2020.125764
10.1364/OE.23.008576
10.1016/j.tws.2022.109673
10.1016/j.yofte.2018.12.015
10.1016/j.rineng.2022.100353
10.1109/JPHOT.2019.2931713
10.1007/s13762-018-1943-0
10.1016/j.snb.2010.05.061
10.1016/j.snb.2013.10.108
10.1016/j.photonics.2018.11.005
10.1364/AO.56.003510
10.1016/j.snb.2014.01.045
10.1016/j.surfcoat.2021.127571
10.1177/003754979406200405
10.1109/JSEN.2007.897946
10.3390/photonics9020104
10.1016/j.swevo.2015.01.002
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2023.129332
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-0310
ExternalDocumentID 10_1016_j_optcom_2023_129332
S0030401823000780
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29N
53G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
F0J
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SET
SPG
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c306t-f7a0722a3e039351176313f57eb1bfcd5c610705e1a22a01bac8e6d40d46d33c3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-4018
IngestDate Tue Nov 18 21:56:16 EST 2025
Sat Nov 29 07:30:28 EST 2025
Fri Feb 23 02:38:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optical fiber sensors
Surface plasmon resonance (SPR)
Artificial intelligence
Genetic algorithm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-f7a0722a3e039351176313f57eb1bfcd5c610705e1a22a01bac8e6d40d46d33c3
ORCID 0000-0002-3461-5404
ParticipantIDs crossref_citationtrail_10_1016_j_optcom_2023_129332
crossref_primary_10_1016_j_optcom_2023_129332
elsevier_sciencedirect_doi_10_1016_j_optcom_2023_129332
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Optics communications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang (b13) 2017; 251
Katırcı, Yılmaz, Kaynar, Zontul (b27) 2021; 422
Hassan, Hussein, Alshammari, Jalal, Rasheed (b34) 2022; 13
Rastegaripour, Saboni, Shojaei, Tavassoli (b36) 2019; 16
Alberto, Domingues, Marques, André, Antunes (b9) 2018; 18
Qi, Diao, Qiu (b43) 2019; 7
Luan, Wang, Lv, Yao (b15) 2015; 23
Onen (b35) 2014; 39
Blank, Deb (b44) 2020; 8
Kaur, Singh (b18) 2019; 48
Shukla, Sharma, Sajal (b23) 2015; 206
Mirjalili (b41) 2019; Vol. 780
Sakib (b19) 2019; 15
Fallauto, Liu, Perrone, Vallan (b7) 2013; 63
Narsaiah, Jha, Bhardwaj, Sharma, Kumar (b12) 2012; 49
Dubey, Kumar, Pandey, Pathak, Srivastava (b24) 2022
Liedberg, Nylander, Lunström (b3) 1983; 4
Sharma, Gupta (b32) 2007; 274
Soghra, Jamal, Bahar (b17) 2022; 260
Kurtoglu, Casanova, Graciano (b29) 2022; 179
Xu, Wang, Chen, Li (b39) 2015
Mishra, Rani, Gupta (b21) 2014; 195
Haque, Mahmuda, Hossain, Hai, Namihira, Ahmed (b26) 2019; 11
Kramer (b40) 2017
Sharma, Jha, Gupta (b6) 2007; 7
Zhao, Deng, Hu (b11) 2015; 64
Barchiesi (b20) 2022; 9
Kadhim, Yuan, Xu, Wu, Wang (b25) 2020; 20
Kreibig, Vollmer (b4) 2013
Kadhim, Wu, Wang (b16) 2022; 51
Rahman, Noor, Anower, Abdulrazak, Rahman, Rikta (b33) 2019; 33
Eskandari, Aghaei, Milimonfared, Nedaei (b42) 2023; 144
Homaifar, Qi, Lai (b37) 1994; 62
Dubey, Kumar, Kumar, Pathak, Srivastava (b14) 2022; 252
Cennamo, Massarotti, Conte, Zeni (b5) 2011; 11
Nooke (b8) 2010; 149
Saad, Selmi, Gazzah, Bajahzar, Belmabrouk (b22) 2019; 190
Zhan (b1) 2018; 8
Otto (b2) 1968; 216
Ghatak, Ghatak, Thyagarajan, Thyagarajan (b31) 1998
Lenz, Hasselbruch, Grozmann, Mehner (b28) 2020; 393
Long, Wu, Huang, Wang (b38) 2015; 22
Nayak, Jha (b30) 2017; 56
Zhao, q. Deng, Wang (b10) 2014; 192
Rahman (10.1016/j.optcom.2023.129332_b33) 2019; 33
Rastegaripour (10.1016/j.optcom.2023.129332_b36) 2019; 16
Long (10.1016/j.optcom.2023.129332_b38) 2015; 22
Eskandari (10.1016/j.optcom.2023.129332_b42) 2023; 144
Kadhim (10.1016/j.optcom.2023.129332_b25) 2020; 20
Soghra (10.1016/j.optcom.2023.129332_b17) 2022; 260
Homaifar (10.1016/j.optcom.2023.129332_b37) 1994; 62
Nayak (10.1016/j.optcom.2023.129332_b30) 2017; 56
Sharma (10.1016/j.optcom.2023.129332_b6) 2007; 7
Nooke (10.1016/j.optcom.2023.129332_b8) 2010; 149
Zhang (10.1016/j.optcom.2023.129332_b13) 2017; 251
Mirjalili (10.1016/j.optcom.2023.129332_b41) 2019; Vol. 780
Kaur (10.1016/j.optcom.2023.129332_b18) 2019; 48
Narsaiah (10.1016/j.optcom.2023.129332_b12) 2012; 49
Kadhim (10.1016/j.optcom.2023.129332_b16) 2022; 51
Zhan (10.1016/j.optcom.2023.129332_b1) 2018; 8
Haque (10.1016/j.optcom.2023.129332_b26) 2019; 11
Xu (10.1016/j.optcom.2023.129332_b39) 2015
Cennamo (10.1016/j.optcom.2023.129332_b5) 2011; 11
Fallauto (10.1016/j.optcom.2023.129332_b7) 2013; 63
Sakib (10.1016/j.optcom.2023.129332_b19) 2019; 15
Lenz (10.1016/j.optcom.2023.129332_b28) 2020; 393
Barchiesi (10.1016/j.optcom.2023.129332_b20) 2022; 9
Luan (10.1016/j.optcom.2023.129332_b15) 2015; 23
Mishra (10.1016/j.optcom.2023.129332_b21) 2014; 195
Shukla (10.1016/j.optcom.2023.129332_b23) 2015; 206
Dubey (10.1016/j.optcom.2023.129332_b24) 2022
Dubey (10.1016/j.optcom.2023.129332_b14) 2022; 252
Liedberg (10.1016/j.optcom.2023.129332_b3) 1983; 4
Blank (10.1016/j.optcom.2023.129332_b44) 2020; 8
Zhao (10.1016/j.optcom.2023.129332_b10) 2014; 192
Onen (10.1016/j.optcom.2023.129332_b35) 2014; 39
Hassan (10.1016/j.optcom.2023.129332_b34) 2022; 13
Zhao (10.1016/j.optcom.2023.129332_b11) 2015; 64
Saad (10.1016/j.optcom.2023.129332_b22) 2019; 190
Kurtoglu (10.1016/j.optcom.2023.129332_b29) 2022; 179
Kramer (10.1016/j.optcom.2023.129332_b40) 2017
Kreibig (10.1016/j.optcom.2023.129332_b4) 2013
Qi (10.1016/j.optcom.2023.129332_b43) 2019; 7
Katırcı (10.1016/j.optcom.2023.129332_b27) 2021; 422
Sharma (10.1016/j.optcom.2023.129332_b32) 2007; 274
Alberto (10.1016/j.optcom.2023.129332_b9) 2018; 18
Otto (10.1016/j.optcom.2023.129332_b2) 1968; 216
Ghatak (10.1016/j.optcom.2023.129332_b31) 1998
References_xml – volume: 22
  start-page: 1
  year: 2015
  end-page: 14
  ident: b38
  article-title: A genetic algorithm for unconstrained multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 149
  start-page: 194
  year: 2010
  end-page: 198
  ident: b8
  article-title: On the application of gold based SPR sensors for the detection of hazardous gases
  publication-title: Sensors Actuators B
– volume: 190
  start-page: 1
  year: 2019
  end-page: 9
  ident: b22
  article-title: Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer
  publication-title: Optik
– volume: 393
  year: 2020
  ident: b28
  article-title: Application of CNN networks for an automatic determination of critical loads in scratch tests on aC: H: W coatings
  publication-title: Surf. Coat. Technol.
– year: 2013
  ident: b4
  article-title: Optical Properties of Metal Clusters
– volume: 49
  start-page: 383
  year: 2012
  end-page: 406
  ident: b12
  article-title: Optical biosensors for food quality and safety assurance—a review
  publication-title: J. Food Sci. Technol.
– year: 2015
  ident: b39
  article-title: Empirical evaluation of rectified activations in convolutional network
– volume: 51
  start-page: 71
  year: 2022
  end-page: 78
  ident: b16
  article-title: Sensitivity enhancement of a plasmonic sensor based on a side opening quasi-D-shaped optical fiber with Au nanowires
  publication-title: J. Opt.
– year: 1998
  ident: b31
  article-title: An Introduction to Fiber Optics
– volume: 15
  year: 2019
  ident: b19
  article-title: High performance dual core D-shape PCF-SPR sensor modeling employing gold coat
  publication-title: Results Phys.
– volume: 48
  start-page: 159
  year: 2019
  end-page: 164
  ident: b18
  article-title: Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications
  publication-title: Opt. Fiber Technol., Mater. Devices Syst.
– volume: 33
  start-page: 29
  year: 2019
  end-page: 35
  ident: b33
  article-title: Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide
  publication-title: Photon. Nanostruct.: Fundam. Appl.
– volume: 260
  year: 2022
  ident: b17
  article-title: Design and analysis of surface plasmon resonance based photonic crystal fiber sensor employing gold nanowires
  publication-title: Optik
– volume: 206
  start-page: 463
  year: 2015
  end-page: 470
  ident: b23
  article-title: Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study
  publication-title: Sensors Actuators B
– volume: 422
  year: 2021
  ident: b27
  article-title: Automated evaluation of Cr-III coated parts using mask RCNN and ML methods
  publication-title: Surf. Coat. Technol.
– volume: 274
  start-page: 320
  year: 2007
  end-page: 326
  ident: b32
  article-title: Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor
  publication-title: Opt. Commun.
– volume: 192
  start-page: 229
  year: 2014
  end-page: 233
  ident: b10
  article-title: Fiber optic SPR sensor for liquid concentration measurement
  publication-title: Sensors Actuators B
– volume: 251
  start-page: 127
  year: 2017
  end-page: 133
  ident: b13
  article-title: U-bent fiber optic SPR sensor based on graphene/AgNPs
  publication-title: Sensors Actuators B
– volume: 23
  start-page: 8576
  year: 2015
  end-page: 8582
  ident: b15
  article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core
  publication-title: Opt. Express
– volume: 63
  start-page: 1287
  year: 2013
  end-page: 1292
  ident: b7
  article-title: Compensated surface plasmon resonance sensor for long-term monitoring applications
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 9
  ident: b26
  article-title: Highly sensitive dual-core PCF based plasmonic refractive index sensor for low refractive index detection
  publication-title: IEEE Photonics J.
– volume: 179
  year: 2022
  ident: b29
  article-title: Artificial intelligence-based modeling of extruded aluminum beams subjected to patch loading
  publication-title: Thin-Walled Struct.
– volume: 8
  start-page: 89497
  year: 2020
  end-page: 89509
  ident: b44
  article-title: Pymoo: Multi-objective optimization in python
  publication-title: IEEE Access
– volume: 18
  start-page: 4325
  year: 2018
  ident: b9
  article-title: Optical fiber magnetic field sensors based on magnetic fluid: A review
  publication-title: Sensors
– volume: 9
  start-page: 104
  year: 2022
  ident: b20
  article-title: Performance of surface plasmon resonance sensors using copper/copper oxide films: Influence of thicknesses and optical properties
  publication-title: Photonics
– volume: 64
  start-page: 3099
  year: 2015
  end-page: 3104
  ident: b11
  article-title: Fiber-optic SPR sensor for temperature measurement
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 11
  year: 2017
  end-page: 19
  ident: b40
  article-title: Genetic algorithms
  publication-title: Genetic Algorithm Essentials
– volume: 20
  start-page: 9816
  year: 2020
  end-page: 9824
  ident: b25
  article-title: Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-
  publication-title: IEEE Sens. J.
– volume: 16
  start-page: 5835
  year: 2019
  end-page: 5856
  ident: b36
  article-title: Simultaneous management of water and wastewater using ant and artificial neural network (ANN) algorithms
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 56
  start-page: 3510
  year: 2017
  end-page: 3517
  ident: b30
  article-title: Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing
  publication-title: Appl. Opt.
– volume: 13
  year: 2022
  ident: b34
  article-title: Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier
  publication-title: Results Eng.
– volume: 11
  start-page: 11752
  year: 2011
  end-page: 11760
  ident: b5
  article-title: Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation
  publication-title: Sensors
– volume: 4
  start-page: 299
  year: 1983
  end-page: 304
  ident: b3
  article-title: Surface plasmon resonance for gas detection and biosensing
  publication-title: Sensors Actuators
– volume: Vol. 780
  year: 2019
  ident: b41
  article-title: Evolutionary algorithms and neural networks
  publication-title: Studies in Computational Intelligence
– volume: 252
  year: 2022
  ident: b14
  article-title: A study of highly sensitive D-shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2
  publication-title: Optik
– start-page: 1
  year: 2022
  end-page: 13
  ident: b24
  article-title: A study of sensitivity improved probe using hyperbolic metamaterial for optical fiber SPR (OFSPR)-based refractive index sensor
  publication-title: Plasmonics
– volume: 39
  start-page: 6031
  year: 2014
  end-page: 6041
  ident: b35
  article-title: Prediction of scour at a side-weir with GEP, ANN and regression models
  publication-title: Arab. J. Sci. Eng.
– volume: 7
  start-page: 33454
  year: 2019
  end-page: 33463
  ident: b43
  article-title: On estimating model in feature selection with cross-validation
  publication-title: IEEE Access
– volume: 8
  start-page: 3927
  year: 2018
  end-page: 3940
  ident: b1
  article-title: Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires
  publication-title: Opt. Mater. Express
– volume: 216
  start-page: 398
  year: 1968
  end-page: 410
  ident: b2
  article-title: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection
  publication-title: Z. Phys.
– volume: 62
  start-page: 242
  year: 1994
  end-page: 253
  ident: b37
  article-title: Constrained optimization via genetic algorithms
  publication-title: Simulation
– volume: 195
  start-page: 215
  year: 2014
  end-page: 222
  ident: b21
  article-title: Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film
  publication-title: Sensors Actuators B
– volume: 144
  year: 2023
  ident: b42
  article-title: A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 7
  start-page: 1118
  year: 2007
  end-page: 1129
  ident: b6
  article-title: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review
  publication-title: IEEE Sens. J.
– volume: 63
  start-page: 1287
  issue: 5
  year: 2013
  ident: 10.1016/j.optcom.2023.129332_b7
  article-title: Compensated surface plasmon resonance sensor for long-term monitoring applications
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2286956
– volume: 252
  year: 2022
  ident: 10.1016/j.optcom.2023.129332_b14
  article-title: A study of highly sensitive D-shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168527
– volume: 15
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b19
  article-title: High performance dual core D-shape PCF-SPR sensor modeling employing gold coat
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.102788
– volume: 190
  start-page: 1
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b22
  article-title: Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.05.089
– volume: 7
  start-page: 33454
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b43
  article-title: On estimating model in feature selection with cross-validation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892062
– volume: 11
  start-page: 11752
  issue: 12
  year: 2011
  ident: 10.1016/j.optcom.2023.129332_b5
  article-title: Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation
  publication-title: Sensors
  doi: 10.3390/s111211752
– volume: Vol. 780
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b41
  article-title: Evolutionary algorithms and neural networks
– volume: 39
  start-page: 6031
  issue: 8
  year: 2014
  ident: 10.1016/j.optcom.2023.129332_b35
  article-title: Prediction of scour at a side-weir with GEP, ANN and regression models
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-014-1244-y
– volume: 216
  start-page: 398
  issue: 4
  year: 1968
  ident: 10.1016/j.optcom.2023.129332_b2
  article-title: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection
  publication-title: Z. Phys.
  doi: 10.1007/BF01391532
– volume: 8
  start-page: 3927
  issue: 12
  year: 2018
  ident: 10.1016/j.optcom.2023.129332_b1
  article-title: Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.8.003927
– volume: 144
  year: 2023
  ident: 10.1016/j.optcom.2023.129332_b42
  article-title: A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108591
– volume: 274
  start-page: 320
  issue: 2
  year: 2007
  ident: 10.1016/j.optcom.2023.129332_b32
  article-title: Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2007.02.030
– volume: 64
  start-page: 3099
  issue: 11
  year: 2015
  ident: 10.1016/j.optcom.2023.129332_b11
  article-title: Fiber-optic SPR sensor for temperature measurement
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2434094
– volume: 251
  start-page: 127
  year: 2017
  ident: 10.1016/j.optcom.2023.129332_b13
  article-title: U-bent fiber optic SPR sensor based on graphene/AgNPs
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2017.05.045
– volume: 51
  start-page: 71
  issue: 1
  year: 2022
  ident: 10.1016/j.optcom.2023.129332_b16
  article-title: Sensitivity enhancement of a plasmonic sensor based on a side opening quasi-D-shaped optical fiber with Au nanowires
  publication-title: J. Opt.
  doi: 10.1007/s12596-021-00747-2
– volume: 4
  start-page: 299
  year: 1983
  ident: 10.1016/j.optcom.2023.129332_b3
  article-title: Surface plasmon resonance for gas detection and biosensing
  publication-title: Sensors Actuators
  doi: 10.1016/0250-6874(83)85036-7
– volume: 260
  year: 2022
  ident: 10.1016/j.optcom.2023.129332_b17
  article-title: Design and analysis of surface plasmon resonance based photonic crystal fiber sensor employing gold nanowires
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169026
– volume: 20
  start-page: 9816
  issue: 17
  year: 2020
  ident: 10.1016/j.optcom.2023.129332_b25
  article-title: Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-α-Fe 2 O 3 grating
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2992854
– volume: 8
  start-page: 89497
  year: 2020
  ident: 10.1016/j.optcom.2023.129332_b44
  article-title: Pymoo: Multi-objective optimization in python
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990567
– volume: 18
  start-page: 4325
  issue: 12
  year: 2018
  ident: 10.1016/j.optcom.2023.129332_b9
  article-title: Optical fiber magnetic field sensors based on magnetic fluid: A review
  publication-title: Sensors
  doi: 10.3390/s18124325
– start-page: 1
  year: 2022
  ident: 10.1016/j.optcom.2023.129332_b24
  article-title: A study of sensitivity improved probe using hyperbolic metamaterial for optical fiber SPR (OFSPR)-based refractive index sensor
  publication-title: Plasmonics
– year: 2015
  ident: 10.1016/j.optcom.2023.129332_b39
– volume: 49
  start-page: 383
  issue: 4
  year: 2012
  ident: 10.1016/j.optcom.2023.129332_b12
  article-title: Optical biosensors for food quality and safety assurance—a review
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-011-0437-6
– volume: 206
  start-page: 463
  year: 2015
  ident: 10.1016/j.optcom.2023.129332_b23
  article-title: Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2014.09.083
– volume: 393
  year: 2020
  ident: 10.1016/j.optcom.2023.129332_b28
  article-title: Application of CNN networks for an automatic determination of critical loads in scratch tests on aC: H: W coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125764
– volume: 23
  start-page: 8576
  issue: 7
  year: 2015
  ident: 10.1016/j.optcom.2023.129332_b15
  article-title: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core
  publication-title: Opt. Express
  doi: 10.1364/OE.23.008576
– volume: 179
  year: 2022
  ident: 10.1016/j.optcom.2023.129332_b29
  article-title: Artificial intelligence-based modeling of extruded aluminum beams subjected to patch loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.109673
– volume: 48
  start-page: 159
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b18
  article-title: Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications
  publication-title: Opt. Fiber Technol., Mater. Devices Syst.
  doi: 10.1016/j.yofte.2018.12.015
– volume: 13
  year: 2022
  ident: 10.1016/j.optcom.2023.129332_b34
  article-title: Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100353
– volume: 11
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b26
  article-title: Highly sensitive dual-core PCF based plasmonic refractive index sensor for low refractive index detection
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2019.2931713
– volume: 16
  start-page: 5835
  issue: 10
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b36
  article-title: Simultaneous management of water and wastewater using ant and artificial neural network (ANN) algorithms
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-018-1943-0
– year: 1998
  ident: 10.1016/j.optcom.2023.129332_b31
– volume: 149
  start-page: 194
  issue: 1
  year: 2010
  ident: 10.1016/j.optcom.2023.129332_b8
  article-title: On the application of gold based SPR sensors for the detection of hazardous gases
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2010.05.061
– volume: 192
  start-page: 229
  year: 2014
  ident: 10.1016/j.optcom.2023.129332_b10
  article-title: Fiber optic SPR sensor for liquid concentration measurement
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2013.10.108
– volume: 33
  start-page: 29
  year: 2019
  ident: 10.1016/j.optcom.2023.129332_b33
  article-title: Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide
  publication-title: Photon. Nanostruct.: Fundam. Appl.
  doi: 10.1016/j.photonics.2018.11.005
– volume: 56
  start-page: 3510
  issue: 12
  year: 2017
  ident: 10.1016/j.optcom.2023.129332_b30
  article-title: Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.003510
– volume: 195
  start-page: 215
  year: 2014
  ident: 10.1016/j.optcom.2023.129332_b21
  article-title: Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2014.01.045
– volume: 422
  year: 2021
  ident: 10.1016/j.optcom.2023.129332_b27
  article-title: Automated evaluation of Cr-III coated parts using mask RCNN and ML methods
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.127571
– year: 2013
  ident: 10.1016/j.optcom.2023.129332_b4
– volume: 62
  start-page: 242
  issue: 4
  year: 1994
  ident: 10.1016/j.optcom.2023.129332_b37
  article-title: Constrained optimization via genetic algorithms
  publication-title: Simulation
  doi: 10.1177/003754979406200405
– volume: 7
  start-page: 1118
  issue: 8
  year: 2007
  ident: 10.1016/j.optcom.2023.129332_b6
  article-title: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2007.897946
– start-page: 11
  year: 2017
  ident: 10.1016/j.optcom.2023.129332_b40
  article-title: Genetic algorithms
– volume: 9
  start-page: 104
  issue: 2
  year: 2022
  ident: 10.1016/j.optcom.2023.129332_b20
  article-title: Performance of surface plasmon resonance sensors using copper/copper oxide films: Influence of thicknesses and optical properties
  publication-title: Photonics
  doi: 10.3390/photonics9020104
– volume: 22
  start-page: 1
  year: 2015
  ident: 10.1016/j.optcom.2023.129332_b38
  article-title: A genetic algorithm for unconstrained multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.01.002
SSID ssj0001438
Score 2.493344
Snippet This study reports the optimization of fiber optic SPR refractive index sensor parameters with the simulation of finite element method (FEM) and artificial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129332
SubjectTerms Artificial intelligence
Genetic algorithm optimization
Optical fiber sensors
Surface plasmon resonance (SPR)
Title Artificial neural network based optimization for Ag grated D-shaped optical fiber surface plasmon resonance refractive index sensor
URI https://dx.doi.org/10.1016/j.optcom.2023.129332
Volume 534
WOSCitedRecordID wos000943544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001438
  issn: 0030-4018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiQuqLxEKaA5cLO28jNOji4EFQ4FoSKlJ2u93k1bUtuykyjiyq_hXzL78AOKCj1wcSJnd-3sfJ75djwzS8jrKPQ5F1xQ5nmMhmjjKIuDkEpkyzwWWSimmd5sIj45mczn00-j0Y82F2azjItist1Oq_8qajyHwlaps7cQdzconsDvKHQ8otjx-E-CT2od_qM84apYpf7Qod6Osli5U6KSuLLZlzrIMFk4umBE7rylzTmrbBud2qjiSZxmXUuGz3-FTBv_hoMr9LLQqQZoXnWW1UaVHsnF1mlwVVzWQ8b7sdKFoPkwEaXfzL5cGAfs2bpZy075Y6Oa6zCDz-yKfesBPKvztodiwUfu8rz_8QwngzW62-xrbV3S1qHhD8IHWyUduListWrZKunIujyNmlUkxbhFr1kA44y4PMSJUuFA6gKHffNfC27_Zgi78MQ28u0yNaOkapTUjHKH7PpxNEUbsJu8n80_dGZf7SNvaoCau2_zNHUw4fW7-TMPGnCb0z3ywC5KIDFgekhGonhE7ungYN48Jt97SIGBFFhIgYYUDCEFCClIFmAgBS2kwEIKNKTAQgospKCDFPSQAg0pMJB6Qr68m52-OaZ28w7KcRW6ojJmbuz7LBA6-9vz0JB5gYzw-fcyyfOII3GP3Uh4DFu5Xsb4RIzz0M3DcR4EPHhKdoqyEM8IuGMWjaV6wY9cUjCRSbQcuPCWqnAUkqt9ErRTmXJb2V5tsLJMbxLkPqFdr8pUdvlL-7iVUmrZqWGdKULvxp7Pb3mlA3K_fy5ekJ1VvRYvyV2-WV009SuLu59JmrgZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+based+optimization+for+Ag+grated+D-shaped+optical+fiber+surface+plasmon+resonance+refractive+index+sensor&rft.jtitle=Optics+communications&rft.au=Dogan%2C+Yusuf&rft.au=Katirci%2C+Ramazan&rft.au=Erdogan%2C+%C4%B0lhan&rft.au=Yartasi%2C+Ekrem&rft.date=2023-05-01&rft.issn=0030-4018&rft.volume=534&rft.spage=129332&rft_id=info:doi/10.1016%2Fj.optcom.2023.129332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optcom_2023_129332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon