MRCDRL: Multi-robot coordination with deep reinforcement learning

•Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance problems in real time.•Results indicate that our method effectively applied to multi-robot coordination. This paper proposes a multi-robot c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 406; S. 68 - 76
Hauptverfasser: Wang, Di, Deng, Hongbin, Pan, Zhenhua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 17.09.2020
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance problems in real time.•Results indicate that our method effectively applied to multi-robot coordination. This paper proposes a multi-robot cooperative algorithm based on deep reinforcement learning (MRCDRL). We use end-to-end methods to train directly from each robot-centered, relative perspective-generated image, and each robot’s reward as the input. During training, it is not necessary to specify the target position and movement path of each robot. MRCDRL learns the actions of each robot by training the neural network. MRCDRL uses the neural network structure that was modified from the Duel neural network structure. In the Duel network structure, there are two streams that each represents the state value function and the state-dependent action advantage function, and the results of the two streams are merged. The proposed method can solve the resource competition problem on the one hand and can solve the static and dynamic obstacle avoidance problems between multi-robot in real time on the other hand. Our new MRCDRL algorithm has higher accuracy and robustness than DQN and DDQN and can be effectively applied to multi-robot collaboration.
AbstractList •Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance problems in real time.•Results indicate that our method effectively applied to multi-robot coordination. This paper proposes a multi-robot cooperative algorithm based on deep reinforcement learning (MRCDRL). We use end-to-end methods to train directly from each robot-centered, relative perspective-generated image, and each robot’s reward as the input. During training, it is not necessary to specify the target position and movement path of each robot. MRCDRL learns the actions of each robot by training the neural network. MRCDRL uses the neural network structure that was modified from the Duel neural network structure. In the Duel network structure, there are two streams that each represents the state value function and the state-dependent action advantage function, and the results of the two streams are merged. The proposed method can solve the resource competition problem on the one hand and can solve the static and dynamic obstacle avoidance problems between multi-robot in real time on the other hand. Our new MRCDRL algorithm has higher accuracy and robustness than DQN and DDQN and can be effectively applied to multi-robot collaboration.
Author Pan, Zhenhua
Wang, Di
Deng, Hongbin
Author_xml – sequence: 1
  givenname: Di
  orcidid: 0000-0002-3582-6756
  surname: Wang
  fullname: Wang, Di
  email: diwang.faith@gmail.com
  organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 10081, China
– sequence: 2
  givenname: Hongbin
  surname: Deng
  fullname: Deng, Hongbin
  email: denghongbin@bit.edu.cn
  organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 10081, China
– sequence: 3
  givenname: Zhenhua
  surname: Pan
  fullname: Pan, Zhenhua
  email: pzh-mingzhe@outlook.com
  organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 10081, China
BookMark eNqFkM1KAzEYRYNUcFp9AxfzAjMmmUw66UIo9RdahKLrkEm-aIZpUjKp4tvbWlcudHG5q3PhnjEa-eABoUuCS4IJv-pKDzsdNiXFFJeYlZg2JygjzZQWDW34CGVY0LqgFaFnaDwMHcZkSqjI0Hy1Xtysl7N8teuTK2JoQ8p1CNE4r5ILPv9w6S03ANs8gvM2RA0b8CnvQUXv_Os5OrWqH-Dipyfo5e72efFQLJ_uHxfzZaErzFNhuTKUU9aauq5sU1tGWlERpVtNDKsEEwAWK2F1zbioiTqk4YYqYpUWtJogdtzVMQxDBCu30W1U_JQEy4MG2cmjBnnQIDGTew17bPYL0y59P0tRuf4_-PoIw_7Yu4MoB-3AazAugk7SBPf3wBf7vH4e
CitedBy_id crossref_primary_10_1007_s10846_022_01776_0
crossref_primary_10_3390_electronics13122423
crossref_primary_10_3390_s23073625
crossref_primary_10_1007_s42979_024_02650_6
crossref_primary_10_1016_j_eswa_2021_115128
crossref_primary_10_1016_j_engappai_2022_104747
crossref_primary_10_1088_1742_6596_2845_1_012005
crossref_primary_10_3390_sym14030610
crossref_primary_10_1016_j_compag_2021_106608
crossref_primary_10_3390_app13042462
crossref_primary_10_1007_s10489_023_04529_0
crossref_primary_10_1016_j_neucom_2021_11_106
crossref_primary_10_3390_s21237896
crossref_primary_10_1016_j_robot_2024_104843
crossref_primary_10_1007_s12555_020_0788_8
crossref_primary_10_1007_s43154_022_00091_8
crossref_primary_10_1016_j_eswa_2024_125900
crossref_primary_10_1016_j_tre_2022_102816
crossref_primary_10_1109_ACCESS_2024_3409076
crossref_primary_10_1049_itr2_12046
crossref_primary_10_1016_j_biosystems_2023_105110
crossref_primary_10_1016_j_rcim_2023_102570
crossref_primary_10_1109_TEVC_2025_3535954
crossref_primary_10_1007_s10462_023_10670_6
crossref_primary_10_1186_s40708_025_00266_x
crossref_primary_10_1109_TNNLS_2021_3106777
crossref_primary_10_1016_j_neucom_2023_127220
crossref_primary_10_1016_j_ins_2024_121648
crossref_primary_10_1177_00368504211037771
Cites_doi 10.1609/aaai.v30i1.10295
10.1038/nature14236
10.1038/nature14539
10.1613/jair.301
10.1109/LRA.2019.2959442
10.1038/nature16961
10.1177/0278364913495721
10.1016/S0921-8890(99)00066-4
10.1016/j.neucom.2015.09.116
10.1038/nature24270
10.1016/j.neucom.2016.09.141
10.1109/TCYB.2016.2628161
10.1016/j.eswa.2017.11.011
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.04.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 76
ExternalDocumentID 10_1016_j_neucom_2020_04_028
S0925231220305932
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-f6ad2624bd553f85f41b931acbc1d43949eef0a9fc546951a951a86d2a1fac923
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540920100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:13:46 EST 2025
Tue Nov 18 21:30:47 EST 2025
Fri Feb 23 02:47:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Image processing
Cooperative control
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-f6ad2624bd553f85f41b931acbc1d43949eef0a9fc546951a951a86d2a1fac923
ORCID 0000-0002-3582-6756
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_04_028
crossref_citationtrail_10_1016_j_neucom_2020_04_028
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_04_028
PublicationCentury 2000
PublicationDate 2020-09-17
PublicationDateYYYYMMDD 2020-09-17
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-17
  day: 17
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kube, Bonabeau (bib0020) 1999; 30
Guo, Liu, Oerlemans (bib0011) 2016; 187
Wang, Schaul, Hessel (bib0027) 2015
P. Mirowski, R. Pascanu, F. Viola, et al, Learning to navigate in complex environments, arXiv preprint arXiv
Yan, Jouandeau, Cherif (bib0001) 2013; 10
Jarrett, Kavukcuoglu, Ranzato (bib0029) 2009; 30
LeCun, Bengio, Hinton (bib0010) 2015; 521
Khan, Rinner, Cavallaro (bib0002) 2018; 48
Hasselt (bib0028) 2010
Mnih, Kavukcuoglu, Silver (bib0004) 2015; 518
Levine, Finn, Darrell (bib0023) 2016; 17
Marcolino, Chaimowicz (bib0017) 2009
Martneztenor, Fernndezmadrigal, Cruzmartn (bib0006) 2018; 100
Luo, Lin, Li, Yang (bib0016) 2019; 5
Boureau, Roux, Bach (bib0030) 2011
Silver, Huang, Maddison (bib0025) 2016; 529
Wang, Silva (bib0021) 2007
Luna, Bekris (bib0019) 2011
Deng, Dong, Socher (bib0007) 2009
Silver, Schrittwieser, Simonyan (bib0008) 2017; 550
Jager, Nebel (bib0015) 2001
Mnih, Badia, Mirza (bib0013) 2016
Guo, Singh, Lee (bib0012) 2014
(2015).
Kaelbling, Littman, Moore (bib0009) 1996; 4
Vamplew, Dazeley, Foale (bib0022) 2017; 263
Y. Li, Deep reinforcement learning: An overview, arXiv preprint arXiv
Marcolino, Chaimowicz (bib0018) 2009
Kober, Bagnell, Peters (bib0005) 2013; 32
(2017).
(2016).
M. Jaderberg, V. Mnih, W. M. Czarnecki, et al, Reinforcement learning with unsupervised auxiliary tasks, arXiv preprint arXiv
H. V. Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning, arXiv preprint arXiv
Kober (10.1016/j.neucom.2020.04.028_bib0005) 2013; 32
10.1016/j.neucom.2020.04.028_bib0024
10.1016/j.neucom.2020.04.028_bib0003
Silver (10.1016/j.neucom.2020.04.028_bib0025) 2016; 529
10.1016/j.neucom.2020.04.028_bib0026
Kaelbling (10.1016/j.neucom.2020.04.028_bib0009) 1996; 4
Jarrett (10.1016/j.neucom.2020.04.028_bib0029) 2009; 30
Guo (10.1016/j.neucom.2020.04.028_bib0011) 2016; 187
Mnih (10.1016/j.neucom.2020.04.028_bib0004) 2015; 518
Deng (10.1016/j.neucom.2020.04.028_bib0007) 2009
Jager (10.1016/j.neucom.2020.04.028_bib0015) 2001
Marcolino (10.1016/j.neucom.2020.04.028_bib0018) 2009
Levine (10.1016/j.neucom.2020.04.028_bib0023) 2016; 17
Guo (10.1016/j.neucom.2020.04.028_bib0012) 2014
Martneztenor (10.1016/j.neucom.2020.04.028_bib0006) 2018; 100
Wang (10.1016/j.neucom.2020.04.028_bib0027) 2015
Yan (10.1016/j.neucom.2020.04.028_bib0001) 2013; 10
10.1016/j.neucom.2020.04.028_bib0014
LeCun (10.1016/j.neucom.2020.04.028_bib0010) 2015; 521
Vamplew (10.1016/j.neucom.2020.04.028_bib0022) 2017; 263
Wang (10.1016/j.neucom.2020.04.028_bib0021) 2007
Mnih (10.1016/j.neucom.2020.04.028_bib0013) 2016
Kube (10.1016/j.neucom.2020.04.028_bib0020) 1999; 30
Khan (10.1016/j.neucom.2020.04.028_bib0002) 2018; 48
Luo (10.1016/j.neucom.2020.04.028_bib0016) 2019; 5
Marcolino (10.1016/j.neucom.2020.04.028_bib0017) 2009
Silver (10.1016/j.neucom.2020.04.028_bib0008) 2017; 550
Luna (10.1016/j.neucom.2020.04.028_bib0019) 2011
Boureau (10.1016/j.neucom.2020.04.028_bib0030) 2011
Hasselt (10.1016/j.neucom.2020.04.028_bib0028) 2010
References_xml – start-page: 248
  year: 2009
  end-page: 255
  ident: bib0007
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: CVPR 2009
– start-page: 2651
  year: 2011
  end-page: 2658
  ident: bib0030
  article-title: Ask the locals: Multi-way local pooling for image recognition
  publication-title: IEEE International Conference on Computer Vision
– volume: 48
  start-page: 187
  year: 2018
  end-page: 198
  ident: bib0002
  article-title: Cooperative robots to observe moving targets: Review
  publication-title: IEEE Transactions on Cybernetics
– reference: (2016).
– start-page: 2613
  year: 2010
  end-page: 2621
  ident: bib0028
  article-title: Double q-learning
  publication-title: Mit Press
– volume: 529
  start-page: 484
  year: 2016
  ident: bib0025
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– start-page: 1955
  year: 2009
  end-page: 1961
  ident: bib0018
  article-title: Traffic control for a swarm of robots: Avoiding target congestion
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– volume: 30
  start-page: 2146
  year: 2009
  end-page: 2153
  ident: bib0029
  article-title: What is the best multi-stage architecture for object recognition?
  publication-title: Journal of Machine Learning Research
– reference: Y. Li, Deep reinforcement learning: An overview, arXiv preprint arXiv:
– volume: 518
  start-page: 529
  year: 2015
  ident: bib0004
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– start-page: 1213
  year: 2001
  end-page: 1219
  ident: bib0015
  article-title: Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots
  publication-title: International Conference on Intelligent Robots and Systems
– reference: (2015).
– reference: P. Mirowski, R. Pascanu, F. Viola, et al, Learning to navigate in complex environments, arXiv preprint arXiv:
– volume: 10
  start-page: 1
  year: 2013
  ident: bib0001
  article-title: A survey and analysis of multi-robot coordination
  publication-title: International Journal of Advanced Robotic Systems
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0010
  article-title: Deep learning
  publication-title: Nature
– volume: 263
  start-page: 74
  year: 2017
  end-page: 86
  ident: bib0022
  article-title: Softmax exploration strategies for multiobjective reinforcement learning
  publication-title: Neurocomputing
– start-page: 1995
  year: 2015
  end-page: 2003
  ident: bib0027
  article-title: Dueling network architectures for deep reinforcement learning
  publication-title: Journal of Machine Learning Research
– reference: M. Jaderberg, V. Mnih, W. M. Czarnecki, et al, Reinforcement learning with unsupervised auxiliary tasks, arXiv preprint arXiv:
– volume: 4
  start-page: 237
  year: 1996
  end-page: 285
  ident: bib0009
  article-title: Reinforcement learning: A survey
  publication-title: Journal of artificial intelligence research
– start-page: 1928
  year: 2016
  end-page: 1937
  ident: bib0013
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: International Conference on Machine Learning
– start-page: 3268
  year: 2011
  end-page: 3275
  ident: bib0019
  article-title: Efficient and complete centralized multi-robot path planning
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– start-page: 1949
  year: 2009
  end-page: 1954
  ident: bib0017
  article-title: Traffic control for a swarm of robots: Avoiding group conflicts
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– volume: 17
  start-page: 1334
  year: 2016
  end-page: 1373
  ident: bib0023
  article-title: End-to-end training of deep visuomotor policies
  publication-title: Journal of Machine Learning Research
– reference: H. V. Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning, arXiv preprint arXiv:
– volume: 32
  start-page: 1238
  year: 2013
  end-page: 1274
  ident: bib0005
  article-title: Reinforcement learning in robotics: A survey
  publication-title: The International Journal of Robotics Research
– volume: 550
  start-page: 354
  year: 2017
  end-page: 359
  ident: bib0008
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
– start-page: 3694
  year: 2007
  end-page: 3699
  ident: bib0021
  article-title: Multi-robot box-pushing: Single-agent q-learning vs. team q-learning
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– start-page: 3338
  year: 2014
  end-page: 3346
  ident: bib0012
  article-title: Deep learning for real-time atari game play using offline monte-carlo tree search planning
  publication-title: International Conference on Neural Information Processing Systems
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: bib0011
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
– volume: 5
  start-page: 377
  year: 2019
  end-page: 384
  ident: bib0016
  article-title: A teleoperation framework for mobile robots based on shared control
  publication-title: IEEE Robotics and Automation Letters
– volume: 30
  start-page: 85
  year: 1999
  end-page: 101
  ident: bib0020
  article-title: Cooperative transport by ants and robots
  publication-title: ROBOTICS AND AUTONOMOUS SYSTEMS
– reference: (2017).
– volume: 100
  start-page: 246
  year: 2018
  end-page: 256
  ident: bib0006
  article-title: Towards a common implementation of reinforcement learning for multiple robotic tasks
  publication-title: Expert Systems with Applications
– start-page: 1955
  year: 2009
  ident: 10.1016/j.neucom.2020.04.028_bib0018
  article-title: Traffic control for a swarm of robots: Avoiding target congestion
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– ident: 10.1016/j.neucom.2020.04.028_bib0026
  doi: 10.1609/aaai.v30i1.10295
– volume: 30
  start-page: 2146
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2020.04.028_bib0029
  article-title: What is the best multi-stage architecture for object recognition?
  publication-title: Journal of Machine Learning Research
– start-page: 3268
  year: 2011
  ident: 10.1016/j.neucom.2020.04.028_bib0019
  article-title: Efficient and complete centralized multi-robot path planning
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.neucom.2020.04.028_bib0004
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: 10.1016/j.neucom.2020.04.028_bib0003
– start-page: 1213
  year: 2001
  ident: 10.1016/j.neucom.2020.04.028_bib0015
  article-title: Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots
  publication-title: International Conference on Intelligent Robots and Systems
– volume: 17
  start-page: 1334
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2020.04.028_bib0023
  article-title: End-to-end training of deep visuomotor policies
  publication-title: Journal of Machine Learning Research
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neucom.2020.04.028_bib0010
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 2613
  year: 2010
  ident: 10.1016/j.neucom.2020.04.028_bib0028
  article-title: Double q-learning
  publication-title: Mit Press
– ident: 10.1016/j.neucom.2020.04.028_bib0024
– start-page: 2651
  year: 2011
  ident: 10.1016/j.neucom.2020.04.028_bib0030
  article-title: Ask the locals: Multi-way local pooling for image recognition
  publication-title: IEEE International Conference on Computer Vision
– volume: 4
  start-page: 237
  year: 1996
  ident: 10.1016/j.neucom.2020.04.028_bib0009
  article-title: Reinforcement learning: A survey
  publication-title: Journal of artificial intelligence research
  doi: 10.1613/jair.301
– volume: 5
  start-page: 377
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2020.04.028_bib0016
  article-title: A teleoperation framework for mobile robots based on shared control
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2019.2959442
– start-page: 3694
  year: 2007
  ident: 10.1016/j.neucom.2020.04.028_bib0021
  article-title: Multi-robot box-pushing: Single-agent q-learning vs. team q-learning
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 10.1016/j.neucom.2020.04.028_bib0025
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  ident: 10.1016/j.neucom.2020.04.028_bib0005
  article-title: Reinforcement learning in robotics: A survey
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364913495721
– start-page: 1928
  year: 2016
  ident: 10.1016/j.neucom.2020.04.028_bib0013
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: International Conference on Machine Learning
– volume: 30
  start-page: 85
  year: 1999
  ident: 10.1016/j.neucom.2020.04.028_bib0020
  article-title: Cooperative transport by ants and robots
  publication-title: ROBOTICS AND AUTONOMOUS SYSTEMS
  doi: 10.1016/S0921-8890(99)00066-4
– volume: 187
  start-page: 27
  year: 2016
  ident: 10.1016/j.neucom.2020.04.028_bib0011
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.04.028_bib0001
  article-title: A survey and analysis of multi-robot coordination
  publication-title: International Journal of Advanced Robotic Systems
– ident: 10.1016/j.neucom.2020.04.028_bib0014
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 10.1016/j.neucom.2020.04.028_bib0008
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– start-page: 3338
  year: 2014
  ident: 10.1016/j.neucom.2020.04.028_bib0012
  article-title: Deep learning for real-time atari game play using offline monte-carlo tree search planning
  publication-title: International Conference on Neural Information Processing Systems
– volume: 263
  start-page: 74
  year: 2017
  ident: 10.1016/j.neucom.2020.04.028_bib0022
  article-title: Softmax exploration strategies for multiobjective reinforcement learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.141
– start-page: 1949
  year: 2009
  ident: 10.1016/j.neucom.2020.04.028_bib0017
  article-title: Traffic control for a swarm of robots: Avoiding group conflicts
  publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems
– volume: 48
  start-page: 187
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.04.028_bib0002
  article-title: Cooperative robots to observe moving targets: Review
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2628161
– volume: 100
  start-page: 246
  year: 2018
  ident: 10.1016/j.neucom.2020.04.028_bib0006
  article-title: Towards a common implementation of reinforcement learning for multiple robotic tasks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.11.011
– start-page: 1995
  year: 2015
  ident: 10.1016/j.neucom.2020.04.028_bib0027
  article-title: Dueling network architectures for deep reinforcement learning
  publication-title: Journal of Machine Learning Research
– start-page: 248
  year: 2009
  ident: 10.1016/j.neucom.2020.04.028_bib0007
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: CVPR 2009
SSID ssj0017129
Score 2.5083048
Snippet •Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Cooperative control
Image processing
Machine learning
Title MRCDRL: Multi-robot coordination with deep reinforcement learning
URI https://dx.doi.org/10.1016/j.neucom.2020.04.028
Volume 406
WOSCitedRecordID wos000540920100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpode0jdJ-kCH3oLLWrb16G1JUtLShpCmdOnFyJKcbGjtZbNb8vM7I8mOw5a-oIc1i1h5heZjPPNZMx8hL7kthNLcJtIZga8ZwQ9amSZVJpTjQitT115sQhwdyelUHcdzupdeTkA0jby6UvP_amoYA2Nj6exfmLu_KQzAdzA6XMHscP0jw3842ds_eY-Zvi-uTRZt1S53TQtZ5ixQf4F8tc7NdxfOd041niTsJCTOhhGr795hvPZDZBUm37C5gkUk9SzC50g778_6yNiFkcO2OatmPQSPA-H65dw15ys95BwgwUTNBHFNhK0VwwRGkRUJhIvBubrgT6VgvlJ96HDz8dBlBlWd-PANWjBrbj0wDBevGrfCMz64JN-gNtaV32yY_REXgutg6MwgPr1NNpgolByRjcnbg-m7_i2TSFnoxRgX3pVW-vN_6__189BlEI6c3iebMY-gk2D_B-SWax6Se51GB40u-xGZBDi8pgMw0CEYKIKBIhjoDTDQDgyPyac3B6d7h0mUzUgM5H_LpObaMs7yyhZFVsuiztNKZak2lUktFkIr5-qxVrUpcg4BtsaP5JbptNYGAv4nZNS0jdsiNOWaZcqMZe0sShdoYU3hZJ7b1Dhusm2SdTtSmthTHqVNvpbd4cGLMuxjiftYjvMS9nGbJP2seeip8pvfi26zyxgXhnivBHz8cubOP898Su5eA_8ZGS0XK_ec3DHfl7PLxYsIpB8fcofx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRCDRL%3A+Multi-robot+coordination+with+deep+reinforcement+learning&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wang%2C+Di&rft.au=Deng%2C+Hongbin&rft.au=Pan%2C+Zhenhua&rft.date=2020-09-17&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=406&rft.spage=68&rft.epage=76&rft_id=info:doi/10.1016%2Fj.neucom.2020.04.028&rft.externalDocID=S0925231220305932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon