MRCDRL: Multi-robot coordination with deep reinforcement learning
•Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance problems in real time.•Results indicate that our method effectively applied to multi-robot coordination. This paper proposes a multi-robot c...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 406; S. 68 - 76 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
17.09.2020
|
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance problems in real time.•Results indicate that our method effectively applied to multi-robot coordination.
This paper proposes a multi-robot cooperative algorithm based on deep reinforcement learning (MRCDRL). We use end-to-end methods to train directly from each robot-centered, relative perspective-generated image, and each robot’s reward as the input. During training, it is not necessary to specify the target position and movement path of each robot. MRCDRL learns the actions of each robot by training the neural network. MRCDRL uses the neural network structure that was modified from the Duel neural network structure. In the Duel network structure, there are two streams that each represents the state value function and the state-dependent action advantage function, and the results of the two streams are merged. The proposed method can solve the resource competition problem on the one hand and can solve the static and dynamic obstacle avoidance problems between multi-robot in real time on the other hand. Our new MRCDRL algorithm has higher accuracy and robustness than DQN and DDQN and can be effectively applied to multi-robot collaboration. |
|---|---|
| AbstractList | •Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance problems in real time.•Results indicate that our method effectively applied to multi-robot coordination.
This paper proposes a multi-robot cooperative algorithm based on deep reinforcement learning (MRCDRL). We use end-to-end methods to train directly from each robot-centered, relative perspective-generated image, and each robot’s reward as the input. During training, it is not necessary to specify the target position and movement path of each robot. MRCDRL learns the actions of each robot by training the neural network. MRCDRL uses the neural network structure that was modified from the Duel neural network structure. In the Duel network structure, there are two streams that each represents the state value function and the state-dependent action advantage function, and the results of the two streams are merged. The proposed method can solve the resource competition problem on the one hand and can solve the static and dynamic obstacle avoidance problems between multi-robot in real time on the other hand. Our new MRCDRL algorithm has higher accuracy and robustness than DQN and DDQN and can be effectively applied to multi-robot collaboration. |
| Author | Pan, Zhenhua Wang, Di Deng, Hongbin |
| Author_xml | – sequence: 1 givenname: Di orcidid: 0000-0002-3582-6756 surname: Wang fullname: Wang, Di email: diwang.faith@gmail.com organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 10081, China – sequence: 2 givenname: Hongbin surname: Deng fullname: Deng, Hongbin email: denghongbin@bit.edu.cn organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 10081, China – sequence: 3 givenname: Zhenhua surname: Pan fullname: Pan, Zhenhua email: pzh-mingzhe@outlook.com organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 10081, China |
| BookMark | eNqFkM1KAzEYRYNUcFp9AxfzAjMmmUw66UIo9RdahKLrkEm-aIZpUjKp4tvbWlcudHG5q3PhnjEa-eABoUuCS4IJv-pKDzsdNiXFFJeYlZg2JygjzZQWDW34CGVY0LqgFaFnaDwMHcZkSqjI0Hy1Xtysl7N8teuTK2JoQ8p1CNE4r5ILPv9w6S03ANs8gvM2RA0b8CnvQUXv_Os5OrWqH-Dipyfo5e72efFQLJ_uHxfzZaErzFNhuTKUU9aauq5sU1tGWlERpVtNDKsEEwAWK2F1zbioiTqk4YYqYpUWtJogdtzVMQxDBCu30W1U_JQEy4MG2cmjBnnQIDGTew17bPYL0y59P0tRuf4_-PoIw_7Yu4MoB-3AazAugk7SBPf3wBf7vH4e |
| CitedBy_id | crossref_primary_10_1007_s10846_022_01776_0 crossref_primary_10_3390_electronics13122423 crossref_primary_10_3390_s23073625 crossref_primary_10_1007_s42979_024_02650_6 crossref_primary_10_1016_j_eswa_2021_115128 crossref_primary_10_1016_j_engappai_2022_104747 crossref_primary_10_1088_1742_6596_2845_1_012005 crossref_primary_10_3390_sym14030610 crossref_primary_10_1016_j_compag_2021_106608 crossref_primary_10_3390_app13042462 crossref_primary_10_1007_s10489_023_04529_0 crossref_primary_10_1016_j_neucom_2021_11_106 crossref_primary_10_3390_s21237896 crossref_primary_10_1016_j_robot_2024_104843 crossref_primary_10_1007_s12555_020_0788_8 crossref_primary_10_1007_s43154_022_00091_8 crossref_primary_10_1016_j_eswa_2024_125900 crossref_primary_10_1016_j_tre_2022_102816 crossref_primary_10_1109_ACCESS_2024_3409076 crossref_primary_10_1049_itr2_12046 crossref_primary_10_1016_j_biosystems_2023_105110 crossref_primary_10_1016_j_rcim_2023_102570 crossref_primary_10_1109_TEVC_2025_3535954 crossref_primary_10_1007_s10462_023_10670_6 crossref_primary_10_1186_s40708_025_00266_x crossref_primary_10_1109_TNNLS_2021_3106777 crossref_primary_10_1016_j_neucom_2023_127220 crossref_primary_10_1016_j_ins_2024_121648 crossref_primary_10_1177_00368504211037771 |
| Cites_doi | 10.1609/aaai.v30i1.10295 10.1038/nature14236 10.1038/nature14539 10.1613/jair.301 10.1109/LRA.2019.2959442 10.1038/nature16961 10.1177/0278364913495721 10.1016/S0921-8890(99)00066-4 10.1016/j.neucom.2015.09.116 10.1038/nature24270 10.1016/j.neucom.2016.09.141 10.1109/TCYB.2016.2628161 10.1016/j.eswa.2017.11.011 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2020.04.028 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 76 |
| ExternalDocumentID | 10_1016_j_neucom_2020_04_028 S0925231220305932 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-f6ad2624bd553f85f41b931acbc1d43949eef0a9fc546951a951a86d2a1fac923 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540920100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:13:46 EST 2025 Tue Nov 18 21:30:47 EST 2025 Fri Feb 23 02:47:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image processing Cooperative control Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-f6ad2624bd553f85f41b931acbc1d43949eef0a9fc546951a951a86d2a1fac923 |
| ORCID | 0000-0002-3582-6756 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_04_028 crossref_citationtrail_10_1016_j_neucom_2020_04_028 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_04_028 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-17 |
| PublicationDateYYYYMMDD | 2020-09-17 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kube, Bonabeau (bib0020) 1999; 30 Guo, Liu, Oerlemans (bib0011) 2016; 187 Wang, Schaul, Hessel (bib0027) 2015 P. Mirowski, R. Pascanu, F. Viola, et al, Learning to navigate in complex environments, arXiv preprint arXiv Yan, Jouandeau, Cherif (bib0001) 2013; 10 Jarrett, Kavukcuoglu, Ranzato (bib0029) 2009; 30 LeCun, Bengio, Hinton (bib0010) 2015; 521 Khan, Rinner, Cavallaro (bib0002) 2018; 48 Hasselt (bib0028) 2010 Mnih, Kavukcuoglu, Silver (bib0004) 2015; 518 Levine, Finn, Darrell (bib0023) 2016; 17 Marcolino, Chaimowicz (bib0017) 2009 Martneztenor, Fernndezmadrigal, Cruzmartn (bib0006) 2018; 100 Luo, Lin, Li, Yang (bib0016) 2019; 5 Boureau, Roux, Bach (bib0030) 2011 Silver, Huang, Maddison (bib0025) 2016; 529 Wang, Silva (bib0021) 2007 Luna, Bekris (bib0019) 2011 Deng, Dong, Socher (bib0007) 2009 Silver, Schrittwieser, Simonyan (bib0008) 2017; 550 Jager, Nebel (bib0015) 2001 Mnih, Badia, Mirza (bib0013) 2016 Guo, Singh, Lee (bib0012) 2014 (2015). Kaelbling, Littman, Moore (bib0009) 1996; 4 Vamplew, Dazeley, Foale (bib0022) 2017; 263 Y. Li, Deep reinforcement learning: An overview, arXiv preprint arXiv Marcolino, Chaimowicz (bib0018) 2009 Kober, Bagnell, Peters (bib0005) 2013; 32 (2017). (2016). M. Jaderberg, V. Mnih, W. M. Czarnecki, et al, Reinforcement learning with unsupervised auxiliary tasks, arXiv preprint arXiv H. V. Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning, arXiv preprint arXiv Kober (10.1016/j.neucom.2020.04.028_bib0005) 2013; 32 10.1016/j.neucom.2020.04.028_bib0024 10.1016/j.neucom.2020.04.028_bib0003 Silver (10.1016/j.neucom.2020.04.028_bib0025) 2016; 529 10.1016/j.neucom.2020.04.028_bib0026 Kaelbling (10.1016/j.neucom.2020.04.028_bib0009) 1996; 4 Jarrett (10.1016/j.neucom.2020.04.028_bib0029) 2009; 30 Guo (10.1016/j.neucom.2020.04.028_bib0011) 2016; 187 Mnih (10.1016/j.neucom.2020.04.028_bib0004) 2015; 518 Deng (10.1016/j.neucom.2020.04.028_bib0007) 2009 Jager (10.1016/j.neucom.2020.04.028_bib0015) 2001 Marcolino (10.1016/j.neucom.2020.04.028_bib0018) 2009 Levine (10.1016/j.neucom.2020.04.028_bib0023) 2016; 17 Guo (10.1016/j.neucom.2020.04.028_bib0012) 2014 Martneztenor (10.1016/j.neucom.2020.04.028_bib0006) 2018; 100 Wang (10.1016/j.neucom.2020.04.028_bib0027) 2015 Yan (10.1016/j.neucom.2020.04.028_bib0001) 2013; 10 10.1016/j.neucom.2020.04.028_bib0014 LeCun (10.1016/j.neucom.2020.04.028_bib0010) 2015; 521 Vamplew (10.1016/j.neucom.2020.04.028_bib0022) 2017; 263 Wang (10.1016/j.neucom.2020.04.028_bib0021) 2007 Mnih (10.1016/j.neucom.2020.04.028_bib0013) 2016 Kube (10.1016/j.neucom.2020.04.028_bib0020) 1999; 30 Khan (10.1016/j.neucom.2020.04.028_bib0002) 2018; 48 Luo (10.1016/j.neucom.2020.04.028_bib0016) 2019; 5 Marcolino (10.1016/j.neucom.2020.04.028_bib0017) 2009 Silver (10.1016/j.neucom.2020.04.028_bib0008) 2017; 550 Luna (10.1016/j.neucom.2020.04.028_bib0019) 2011 Boureau (10.1016/j.neucom.2020.04.028_bib0030) 2011 Hasselt (10.1016/j.neucom.2020.04.028_bib0028) 2010 |
| References_xml | – start-page: 248 year: 2009 end-page: 255 ident: bib0007 article-title: Imagenet: A large-scale hierarchical image database publication-title: CVPR 2009 – start-page: 2651 year: 2011 end-page: 2658 ident: bib0030 article-title: Ask the locals: Multi-way local pooling for image recognition publication-title: IEEE International Conference on Computer Vision – volume: 48 start-page: 187 year: 2018 end-page: 198 ident: bib0002 article-title: Cooperative robots to observe moving targets: Review publication-title: IEEE Transactions on Cybernetics – reference: (2016). – start-page: 2613 year: 2010 end-page: 2621 ident: bib0028 article-title: Double q-learning publication-title: Mit Press – volume: 529 start-page: 484 year: 2016 ident: bib0025 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – start-page: 1955 year: 2009 end-page: 1961 ident: bib0018 article-title: Traffic control for a swarm of robots: Avoiding target congestion publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – volume: 30 start-page: 2146 year: 2009 end-page: 2153 ident: bib0029 article-title: What is the best multi-stage architecture for object recognition? publication-title: Journal of Machine Learning Research – reference: Y. Li, Deep reinforcement learning: An overview, arXiv preprint arXiv: – volume: 518 start-page: 529 year: 2015 ident: bib0004 article-title: Human-level control through deep reinforcement learning publication-title: Nature – start-page: 1213 year: 2001 end-page: 1219 ident: bib0015 article-title: Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots publication-title: International Conference on Intelligent Robots and Systems – reference: (2015). – reference: P. Mirowski, R. Pascanu, F. Viola, et al, Learning to navigate in complex environments, arXiv preprint arXiv: – volume: 10 start-page: 1 year: 2013 ident: bib0001 article-title: A survey and analysis of multi-robot coordination publication-title: International Journal of Advanced Robotic Systems – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0010 article-title: Deep learning publication-title: Nature – volume: 263 start-page: 74 year: 2017 end-page: 86 ident: bib0022 article-title: Softmax exploration strategies for multiobjective reinforcement learning publication-title: Neurocomputing – start-page: 1995 year: 2015 end-page: 2003 ident: bib0027 article-title: Dueling network architectures for deep reinforcement learning publication-title: Journal of Machine Learning Research – reference: M. Jaderberg, V. Mnih, W. M. Czarnecki, et al, Reinforcement learning with unsupervised auxiliary tasks, arXiv preprint arXiv: – volume: 4 start-page: 237 year: 1996 end-page: 285 ident: bib0009 article-title: Reinforcement learning: A survey publication-title: Journal of artificial intelligence research – start-page: 1928 year: 2016 end-page: 1937 ident: bib0013 article-title: Asynchronous methods for deep reinforcement learning publication-title: International Conference on Machine Learning – start-page: 3268 year: 2011 end-page: 3275 ident: bib0019 article-title: Efficient and complete centralized multi-robot path planning publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – start-page: 1949 year: 2009 end-page: 1954 ident: bib0017 article-title: Traffic control for a swarm of robots: Avoiding group conflicts publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – volume: 17 start-page: 1334 year: 2016 end-page: 1373 ident: bib0023 article-title: End-to-end training of deep visuomotor policies publication-title: Journal of Machine Learning Research – reference: H. V. Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning, arXiv preprint arXiv: – volume: 32 start-page: 1238 year: 2013 end-page: 1274 ident: bib0005 article-title: Reinforcement learning in robotics: A survey publication-title: The International Journal of Robotics Research – volume: 550 start-page: 354 year: 2017 end-page: 359 ident: bib0008 article-title: Mastering the game of go without human knowledge publication-title: Nature – start-page: 3694 year: 2007 end-page: 3699 ident: bib0021 article-title: Multi-robot box-pushing: Single-agent q-learning vs. team q-learning publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – start-page: 3338 year: 2014 end-page: 3346 ident: bib0012 article-title: Deep learning for real-time atari game play using offline monte-carlo tree search planning publication-title: International Conference on Neural Information Processing Systems – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: bib0011 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing – volume: 5 start-page: 377 year: 2019 end-page: 384 ident: bib0016 article-title: A teleoperation framework for mobile robots based on shared control publication-title: IEEE Robotics and Automation Letters – volume: 30 start-page: 85 year: 1999 end-page: 101 ident: bib0020 article-title: Cooperative transport by ants and robots publication-title: ROBOTICS AND AUTONOMOUS SYSTEMS – reference: (2017). – volume: 100 start-page: 246 year: 2018 end-page: 256 ident: bib0006 article-title: Towards a common implementation of reinforcement learning for multiple robotic tasks publication-title: Expert Systems with Applications – start-page: 1955 year: 2009 ident: 10.1016/j.neucom.2020.04.028_bib0018 article-title: Traffic control for a swarm of robots: Avoiding target congestion publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – ident: 10.1016/j.neucom.2020.04.028_bib0026 doi: 10.1609/aaai.v30i1.10295 – volume: 30 start-page: 2146 issue: 2 year: 2009 ident: 10.1016/j.neucom.2020.04.028_bib0029 article-title: What is the best multi-stage architecture for object recognition? publication-title: Journal of Machine Learning Research – start-page: 3268 year: 2011 ident: 10.1016/j.neucom.2020.04.028_bib0019 article-title: Efficient and complete centralized multi-robot path planning publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.neucom.2020.04.028_bib0004 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: 10.1016/j.neucom.2020.04.028_bib0003 – start-page: 1213 year: 2001 ident: 10.1016/j.neucom.2020.04.028_bib0015 article-title: Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots publication-title: International Conference on Intelligent Robots and Systems – volume: 17 start-page: 1334 issue: 7 year: 2016 ident: 10.1016/j.neucom.2020.04.028_bib0023 article-title: End-to-end training of deep visuomotor policies publication-title: Journal of Machine Learning Research – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neucom.2020.04.028_bib0010 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 2613 year: 2010 ident: 10.1016/j.neucom.2020.04.028_bib0028 article-title: Double q-learning publication-title: Mit Press – ident: 10.1016/j.neucom.2020.04.028_bib0024 – start-page: 2651 year: 2011 ident: 10.1016/j.neucom.2020.04.028_bib0030 article-title: Ask the locals: Multi-way local pooling for image recognition publication-title: IEEE International Conference on Computer Vision – volume: 4 start-page: 237 year: 1996 ident: 10.1016/j.neucom.2020.04.028_bib0009 article-title: Reinforcement learning: A survey publication-title: Journal of artificial intelligence research doi: 10.1613/jair.301 – volume: 5 start-page: 377 issue: 2 year: 2019 ident: 10.1016/j.neucom.2020.04.028_bib0016 article-title: A teleoperation framework for mobile robots based on shared control publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2019.2959442 – start-page: 3694 year: 2007 ident: 10.1016/j.neucom.2020.04.028_bib0021 article-title: Multi-robot box-pushing: Single-agent q-learning vs. team q-learning publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.neucom.2020.04.028_bib0025 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 32 start-page: 1238 issue: 11 year: 2013 ident: 10.1016/j.neucom.2020.04.028_bib0005 article-title: Reinforcement learning in robotics: A survey publication-title: The International Journal of Robotics Research doi: 10.1177/0278364913495721 – start-page: 1928 year: 2016 ident: 10.1016/j.neucom.2020.04.028_bib0013 article-title: Asynchronous methods for deep reinforcement learning publication-title: International Conference on Machine Learning – volume: 30 start-page: 85 year: 1999 ident: 10.1016/j.neucom.2020.04.028_bib0020 article-title: Cooperative transport by ants and robots publication-title: ROBOTICS AND AUTONOMOUS SYSTEMS doi: 10.1016/S0921-8890(99)00066-4 – volume: 187 start-page: 27 year: 2016 ident: 10.1016/j.neucom.2020.04.028_bib0011 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 10 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.neucom.2020.04.028_bib0001 article-title: A survey and analysis of multi-robot coordination publication-title: International Journal of Advanced Robotic Systems – ident: 10.1016/j.neucom.2020.04.028_bib0014 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 10.1016/j.neucom.2020.04.028_bib0008 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – start-page: 3338 year: 2014 ident: 10.1016/j.neucom.2020.04.028_bib0012 article-title: Deep learning for real-time atari game play using offline monte-carlo tree search planning publication-title: International Conference on Neural Information Processing Systems – volume: 263 start-page: 74 year: 2017 ident: 10.1016/j.neucom.2020.04.028_bib0022 article-title: Softmax exploration strategies for multiobjective reinforcement learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.141 – start-page: 1949 year: 2009 ident: 10.1016/j.neucom.2020.04.028_bib0017 article-title: Traffic control for a swarm of robots: Avoiding group conflicts publication-title: Ieee/rsj International Conference on Intelligent Robots and Systems – volume: 48 start-page: 187 issue: 1 year: 2018 ident: 10.1016/j.neucom.2020.04.028_bib0002 article-title: Cooperative robots to observe moving targets: Review publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2016.2628161 – volume: 100 start-page: 246 year: 2018 ident: 10.1016/j.neucom.2020.04.028_bib0006 article-title: Towards a common implementation of reinforcement learning for multiple robotic tasks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.11.011 – start-page: 1995 year: 2015 ident: 10.1016/j.neucom.2020.04.028_bib0027 article-title: Dueling network architectures for deep reinforcement learning publication-title: Journal of Machine Learning Research – start-page: 248 year: 2009 ident: 10.1016/j.neucom.2020.04.028_bib0007 article-title: Imagenet: A large-scale hierarchical image database publication-title: CVPR 2009 |
| SSID | ssj0017129 |
| Score | 2.5083048 |
| Snippet | •Proposed a novel approach for multi-robot coordination.•Our approach can solve the resource competition problem.•Our approach can solve the obstacle avoidance... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 68 |
| SubjectTerms | Cooperative control Image processing Machine learning |
| Title | MRCDRL: Multi-robot coordination with deep reinforcement learning |
| URI | https://dx.doi.org/10.1016/j.neucom.2020.04.028 |
| Volume | 406 |
| WOSCitedRecordID | wos000540920100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpode0jdJ-kCH3oLLWrb16G1JUtLShpCmdOnFyJKcbGjtZbNb8vM7I8mOw5a-oIc1i1h5heZjPPNZMx8hL7kthNLcJtIZga8ZwQ9amSZVJpTjQitT115sQhwdyelUHcdzupdeTkA0jby6UvP_amoYA2Nj6exfmLu_KQzAdzA6XMHscP0jw3842ds_eY-Zvi-uTRZt1S53TQtZ5ixQf4F8tc7NdxfOd041niTsJCTOhhGr795hvPZDZBUm37C5gkUk9SzC50g778_6yNiFkcO2OatmPQSPA-H65dw15ys95BwgwUTNBHFNhK0VwwRGkRUJhIvBubrgT6VgvlJ96HDz8dBlBlWd-PANWjBrbj0wDBevGrfCMz64JN-gNtaV32yY_REXgutg6MwgPr1NNpgolByRjcnbg-m7_i2TSFnoxRgX3pVW-vN_6__189BlEI6c3iebMY-gk2D_B-SWax6Se51GB40u-xGZBDi8pgMw0CEYKIKBIhjoDTDQDgyPyac3B6d7h0mUzUgM5H_LpObaMs7yyhZFVsuiztNKZak2lUktFkIr5-qxVrUpcg4BtsaP5JbptNYGAv4nZNS0jdsiNOWaZcqMZe0sShdoYU3hZJ7b1Dhusm2SdTtSmthTHqVNvpbd4cGLMuxjiftYjvMS9nGbJP2seeip8pvfi26zyxgXhnivBHz8cubOP898Su5eA_8ZGS0XK_ec3DHfl7PLxYsIpB8fcofx |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRCDRL%3A+Multi-robot+coordination+with+deep+reinforcement+learning&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wang%2C+Di&rft.au=Deng%2C+Hongbin&rft.au=Pan%2C+Zhenhua&rft.date=2020-09-17&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=406&rft.spage=68&rft.epage=76&rft_id=info:doi/10.1016%2Fj.neucom.2020.04.028&rft.externalDocID=S0925231220305932 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |