Nested optimization design for combined cooling, heating, and power system coupled with solar and biomass energy

•Combined cooling, heating, and power (CCHP) can improve energy efficiency.•Expanded with renewable energy, CCHP systems can provide a variety of benefits.•Optimization of such systems has neglected the variability of renewable resources.•We consider this variability to optimize the system capacity...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of electrical power & energy systems Ročník 123; s. 106236
Hlavní autoři: Zhang, Liang, Zhang, Lizhi, Sun, Bo, Zhang, Chenghui, Li, Fan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2020
Témata:
ISSN:0142-0615, 1879-3517
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Combined cooling, heating, and power (CCHP) can improve energy efficiency.•Expanded with renewable energy, CCHP systems can provide a variety of benefits.•Optimization of such systems has neglected the variability of renewable resources.•We consider this variability to optimize the system capacity and operation.•Numerical results confirm energy, economic, and environmental benefits. Renewable energy source integration in combined cooling, heating, and power (RES-CCHP) systems can improve energy efficiency and foster renewable energy consumption, which is a promising solution to the current energy and environmental crisis. This paper studies the off-design characteristics of these systems, establishes a two-way interaction mechanism between the system capacity and operation strategy, and proposes a two-stage nested optimization design method for the RES-CCHP. In the first stage, the capacity of each system component is obtained by the genetic algorithm and then used as the constraint for the operation optimization. In the second stage, the nonlinear programming algorithm is employed to optimize the operational energy consumption, costs, and CO2 emissions taking the off-design characteristics of core devices into consideration. Several case studies are conducted to verify the feasibility of the two-stage optimal design method. It was found that the two-stage nested optimization design increases the primary energy saving ratio, cost saving ratio, and carbon dioxide emission reduction ratio by 4.5%, 4.32%, and 3.27% compared with the conventional optimal design method, respectively. Overall, the proposed two-stage nested optimization design was tested to improve the performance and the renewable energy consumption.
AbstractList •Combined cooling, heating, and power (CCHP) can improve energy efficiency.•Expanded with renewable energy, CCHP systems can provide a variety of benefits.•Optimization of such systems has neglected the variability of renewable resources.•We consider this variability to optimize the system capacity and operation.•Numerical results confirm energy, economic, and environmental benefits. Renewable energy source integration in combined cooling, heating, and power (RES-CCHP) systems can improve energy efficiency and foster renewable energy consumption, which is a promising solution to the current energy and environmental crisis. This paper studies the off-design characteristics of these systems, establishes a two-way interaction mechanism between the system capacity and operation strategy, and proposes a two-stage nested optimization design method for the RES-CCHP. In the first stage, the capacity of each system component is obtained by the genetic algorithm and then used as the constraint for the operation optimization. In the second stage, the nonlinear programming algorithm is employed to optimize the operational energy consumption, costs, and CO2 emissions taking the off-design characteristics of core devices into consideration. Several case studies are conducted to verify the feasibility of the two-stage optimal design method. It was found that the two-stage nested optimization design increases the primary energy saving ratio, cost saving ratio, and carbon dioxide emission reduction ratio by 4.5%, 4.32%, and 3.27% compared with the conventional optimal design method, respectively. Overall, the proposed two-stage nested optimization design was tested to improve the performance and the renewable energy consumption.
ArticleNumber 106236
Author Li, Fan
Zhang, Lizhi
Zhang, Liang
Sun, Bo
Zhang, Chenghui
Author_xml – sequence: 1
  givenname: Liang
  surname: Zhang
  fullname: Zhang, Liang
– sequence: 2
  givenname: Lizhi
  surname: Zhang
  fullname: Zhang, Lizhi
– sequence: 3
  givenname: Bo
  surname: Sun
  fullname: Sun, Bo
  email: sunbo@sdu.edu.cn
– sequence: 4
  givenname: Chenghui
  surname: Zhang
  fullname: Zhang, Chenghui
– sequence: 5
  givenname: Fan
  surname: Li
  fullname: Li, Fan
BookMark eNqFkMlOwzAURS1UJNrCH7DwB5DiISMLJFQxSRVsYG059kvrKLEjO1CVrydpWLGAlZ-sc690zwLNrLOA0CUlK0poel2vTA0dhBUjbPxKGU9P0JzmWRHxhGYzNCc0ZhFJaXKGFiHUhJCsiNkcdS8QetDYdb1pzZfsjbNYQzBbiyvnsXJtaewAKOcaY7dXeAcDNB7Saty5PXgcDkNHOyAfXTOge9PvcHCN9EemNK6VIWCw4LeHc3RaySbAxc-7RO8P92_rp2jz-vi8vttEipO0jype5bkknMU5yATiMk30sAQok4ozxnleMF7RUjGgFRRZnnEGWnOps1iWecWX6GbqVd6F4KESyvTHeb2XphGUiNGdqMXkTozuxORuCMe_wp03rfSH_2K3UwyGYZ8GvAjKgFWgjQfVC-3M3wXf8IiPSQ
CitedBy_id crossref_primary_10_1109_TIA_2022_3217229
crossref_primary_10_1016_j_energy_2024_132032
crossref_primary_10_1007_s11630_024_1953_9
crossref_primary_10_1016_j_energy_2023_128673
crossref_primary_10_1016_j_rser_2021_111892
crossref_primary_10_1016_j_enbenv_2022_05_002
crossref_primary_10_1016_j_energy_2025_138219
crossref_primary_10_1016_j_enconman_2022_115987
crossref_primary_10_1016_j_energy_2023_126846
crossref_primary_10_1016_j_apenergy_2023_121034
crossref_primary_10_1016_j_applthermaleng_2022_118082
crossref_primary_10_1016_j_jclepro_2022_132758
crossref_primary_10_1016_j_tsep_2024_102584
crossref_primary_10_1016_j_enconman_2021_114354
crossref_primary_10_1016_j_energy_2023_127610
crossref_primary_10_3390_pr9060907
crossref_primary_10_1109_TIA_2024_3524950
crossref_primary_10_3389_fenrg_2022_819420
crossref_primary_10_1016_j_energy_2021_121599
crossref_primary_10_3389_fenrg_2022_921411
crossref_primary_10_1007_s43979_024_00109_4
crossref_primary_10_1016_j_enconman_2020_113648
crossref_primary_10_1016_j_enconman_2020_113800
crossref_primary_10_1016_j_ijepes_2024_110173
crossref_primary_10_1016_j_applthermaleng_2025_128429
crossref_primary_10_1016_j_est_2025_115926
crossref_primary_10_1016_j_csite_2025_106509
crossref_primary_10_3390_pr10040711
crossref_primary_10_1039_D0RA10485J
Cites_doi 10.1016/j.energy.2014.02.057
10.1016/j.enbuild.2012.10.031
10.1016/j.applthermaleng.2012.01.067
10.1016/j.apenergy.2012.01.007
10.1002/er.1630
10.3390/en11040743
10.1016/j.energy.2013.02.014
10.1016/j.ijepes.2016.08.008
10.1016/j.enbuild.2015.10.050
10.1016/j.applthermaleng.2013.01.050
10.1016/j.energy.2015.04.003
10.1016/j.applthermaleng.2016.02.027
10.1016/j.ejor.2008.10.033
10.1016/j.apenergy.2017.03.105
10.1016/j.energy.2017.10.130
10.1016/j.ijepes.2013.06.028
10.1016/j.apenergy.2014.12.085
10.1016/j.enbuild.2014.11.003
10.1016/j.apenergy.2017.06.038
10.1109/ICICIP.2011.6008292
10.3390/en10070848
10.1016/j.enbuild.2010.07.019
10.1016/j.apenergy.2011.08.044
10.1016/j.enbuild.2015.08.056
10.1016/j.apenergy.2016.02.037
10.1016/j.enconman.2017.07.048
10.1016/j.energy.2016.01.060
10.1016/j.apenergy.2012.11.018
10.1016/j.apenergy.2012.08.041
10.1016/j.energy.2019.03.001
10.1016/j.energy.2016.01.027
10.1016/j.energy.2010.04.002
10.1016/j.renene.2019.07.011
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2020.106236
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
ExternalDocumentID 10_1016_j_ijepes_2020_106236
S0142061519325062
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c306t-f3f88a03248ea5e4b65d517e12ac322338923f1bc2e1fe978732edd3ad74ab8f3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572831700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Sat Nov 29 07:26:06 EST 2025
Tue Nov 18 22:16:24 EST 2025
Fri Feb 23 02:45:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combined cooling, heating, and power system
Two-stage design method
Off-design characteristics
Multi-objective mixed integer nonlinear programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-f3f88a03248ea5e4b65d517e12ac322338923f1bc2e1fe978732edd3ad74ab8f3
ParticipantIDs crossref_citationtrail_10_1016_j_ijepes_2020_106236
crossref_primary_10_1016_j_ijepes_2020_106236
elsevier_sciencedirect_doi_10_1016_j_ijepes_2020_106236
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mohammad, Zahed (b0060) 2016; 110
Rezvan, Gharneh, Gharehpetian (b0200) 2013; 57
Ebrahimi, Keshavarz (b0070) 2015; 108
Zheng, Wu, Qiu, Zhan, Shah, Li (b0065) 2018; 210
Caliano, Bianco, Graditi, Mongibello (b0110) 2017; 149
Wei, Chen, Sun, Zhang (b0170) 2016; 98
Yang, Zhai, Zheng, Wang (b0010) 2015; 66
Deng, Cai, Gao (b0220) 2017; 141
Zheng, Wu, Zhai, Wang (b0080) 2017; 85
Mago, Chamra, Hueffed (b0015) 2009; 33
Ren, Zhou, Gao (b0075) 2012; 91
Maraver, Sin, Sebastián, Royo (b0040) 2013; 57
Ameri, Besharati (b0125) 2016; 110
Li, Mu, Li (b0090) 2016; 99
Li, Wang, Zhang, Ming (b0115) 2018; 11
Ren, Wang, Zhu, Chen (b0145) 2019,197.
Jing, Bai, Zhang (b0135) 2012; 32
Bellos, Tzivanidis (b0025) 2017; 10
Smith, Luck, Mago (b0050) 2010; 42
Li, Sui, Jin, Zheng (b0030) 2013; 112
Xiong, Zhu, Shi, Wu (b0215) 2011; 29
Marialaura, Bing, Nicola, Peter, Giorgio, Luigi (b0055) 2016; 101
Díaz, Benito, Parise (b0195) 2010; 35
Xiao, Kan, Yang, Zhang, Xiao (b0085) 2012; 32
Hu, Ma, Li (b0180) 2017; 2
Gazda, Stanek (b0120) 2016; 169
Wei, Sun, Zhao, Zhang (b0130) 2015; 39
Zhu, Zhan, Liang, Zheng, Qiu, Lin (b0150) 2020; 146
Wang, Yang, Xu, Fu (b0020) 2015; 142
Wang, Zhao, Niu, Dai (b0035) 2012; 94
Li, Shi, Huang (b0095) 2008; 6
Wu, Wang, Liu (b0140) 2015; 39
Zhang, Liu (b0185) 2014; 6
Jabbari, Tahouni, Ataei, Panjeshahi (b0045) 2013; 61
Zhou, Liu, Li, Ni (b0210) 2013; 53
Marialaura, Bing, Nicola, Peter, Giorgio, Luigi (b0105) 2017; 204
Yang, Zhai (b0100) 2019; 174
Wu, Wang, Li, Wang (b0155) 2014; 68
Wang, Sui, Jin (b0160) 2015; 85
Wang Q, Fang F. Optimal configuration of CCHP system based on energy, economical, and environmental considerations. Int Conf Intelligent Control and Information Processing, Harbin, China, 2011 pp. 489–94.
Gu, Wu, Bo, Liu, Zhou, Chen (b0005) 2014; 54
Liu, Shi, Fang (b0165) 2013; 102
Poojari, Beasley (b0190) 2009; 199
Penna, Prada, Cappelletti, Gasparella (b0205) 2015; 95
Ebrahimi (10.1016/j.ijepes.2020.106236_b0070) 2015; 108
Caliano (10.1016/j.ijepes.2020.106236_b0110) 2017; 149
Marialaura (10.1016/j.ijepes.2020.106236_b0055) 2016; 101
Ameri (10.1016/j.ijepes.2020.106236_b0125) 2016; 110
Gu (10.1016/j.ijepes.2020.106236_b0005) 2014; 54
Xiao (10.1016/j.ijepes.2020.106236_b0085) 2012; 32
Mohammad (10.1016/j.ijepes.2020.106236_b0060) 2016; 110
Marialaura (10.1016/j.ijepes.2020.106236_b0105) 2017; 204
Jing (10.1016/j.ijepes.2020.106236_b0135) 2012; 32
Díaz (10.1016/j.ijepes.2020.106236_b0195) 2010; 35
Li (10.1016/j.ijepes.2020.106236_b0090) 2016; 99
Wang (10.1016/j.ijepes.2020.106236_b0035) 2012; 94
Poojari (10.1016/j.ijepes.2020.106236_b0190) 2009; 199
Yang (10.1016/j.ijepes.2020.106236_b0010) 2015; 66
Zheng (10.1016/j.ijepes.2020.106236_b0080) 2017; 85
Smith (10.1016/j.ijepes.2020.106236_b0050) 2010; 42
Mago (10.1016/j.ijepes.2020.106236_b0015) 2009; 33
Wang (10.1016/j.ijepes.2020.106236_b0160) 2015; 85
Yang (10.1016/j.ijepes.2020.106236_b0100) 2019; 174
10.1016/j.ijepes.2020.106236_b0175
Zheng (10.1016/j.ijepes.2020.106236_b0065) 2018; 210
Wu (10.1016/j.ijepes.2020.106236_b0140) 2015; 39
Liu (10.1016/j.ijepes.2020.106236_b0165) 2013; 102
Li (10.1016/j.ijepes.2020.106236_b0030) 2013; 112
Zhu (10.1016/j.ijepes.2020.106236_b0150) 2020; 146
Zhang (10.1016/j.ijepes.2020.106236_b0185) 2014; 6
Ren (10.1016/j.ijepes.2020.106236_b0075) 2012; 91
Wang (10.1016/j.ijepes.2020.106236_b0020) 2015; 142
Ren (10.1016/j.ijepes.2020.106236_b0145) 2019197
Rezvan (10.1016/j.ijepes.2020.106236_b0200) 2013; 57
Bellos (10.1016/j.ijepes.2020.106236_b0025) 2017; 10
Deng (10.1016/j.ijepes.2020.106236_b0220) 2017; 141
Xiong (10.1016/j.ijepes.2020.106236_b0215) 2011; 29
Maraver (10.1016/j.ijepes.2020.106236_b0040) 2013; 57
Li (10.1016/j.ijepes.2020.106236_b0095) 2008; 6
Zhou (10.1016/j.ijepes.2020.106236_b0210) 2013; 53
Gazda (10.1016/j.ijepes.2020.106236_b0120) 2016; 169
Wei (10.1016/j.ijepes.2020.106236_b0130) 2015; 39
Penna (10.1016/j.ijepes.2020.106236_b0205) 2015; 95
Li (10.1016/j.ijepes.2020.106236_b0115) 2018; 11
Wei (10.1016/j.ijepes.2020.106236_b0170) 2016; 98
Jabbari (10.1016/j.ijepes.2020.106236_b0045) 2013; 61
Wu (10.1016/j.ijepes.2020.106236_b0155) 2014; 68
Hu (10.1016/j.ijepes.2020.106236_b0180) 2017; 2
References_xml – volume: 112
  start-page: 673
  year: 2013
  end-page: 681
  ident: b0030
  article-title: Full chain energy performance for a combined cooling, heating and power system running with methanol and solar energy
  publication-title: Appl Energy
– volume: 29
  start-page: 16
  year: 2011
  end-page: 19
  ident: b0215
  article-title: Analysis on the price of the biogas for rural centralized biogas plant
  publication-title: China Biogas
– volume: 149
  start-page: 631
  year: 2017
  end-page: 645
  ident: b0110
  article-title: Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems
  publication-title: Energy Convers Manage
– volume: 94
  start-page: 58
  year: 2012
  end-page: 64
  ident: b0035
  article-title: Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy
  publication-title: Appl Energy
– volume: 110
  start-page: 135
  year: 2016
  end-page: 148
  ident: b0125
  article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex
  publication-title: Energy Build
– volume: 204
  start-page: 1299
  year: 2017
  end-page: 1316
  ident: b0105
  article-title: Multi-objective design optimization of distributed energysystems through cost and exergy assessments
  publication-title: Appl Energy
– volume: 146
  start-page: 2700
  year: 2020
  end-page: 2715
  ident: b0150
  article-title: The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects
  publication-title: Renewable Energy
– volume: 210
  start-page: 1126
  year: 2018
  end-page: 1140
  ident: b0065
  article-title: A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China
  publication-title: Appl Energy
– volume: 101
  start-page: 752
  year: 2016
  end-page: 761
  ident: b0055
  article-title: Multi-objective operation optimization of a Distributed Energy System for a large-scale utility customer
  publication-title: Appl Therm Eng
– volume: 174
  start-page: 647
  year: 2019
  end-page: 663
  ident: b0100
  article-title: Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition
  publication-title: Energy
– volume: 68
  start-page: 444
  year: 2014
  end-page: 453
  ident: b0155
  article-title: Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller
  publication-title: Energy
– volume: 54
  start-page: 26
  year: 2014
  end-page: 37
  ident: b0005
  article-title: Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review
  publication-title: Int J Electr Power Energy Syst
– volume: 110
  start-page: 135
  year: 2016
  end-page: 148
  ident: b0060
  article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex
  publication-title: Energy Build
– volume: 169
  start-page: 138
  year: 2016
  end-page: 149
  ident: b0120
  article-title: Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system
  publication-title: Appl Energy
– volume: 32
  start-page: 82
  year: 2012
  end-page: 87
  ident: b0135
  article-title: Multi-objective optimization design and operation strategy analysis of a solar combined cooling heating and power system
  publication-title: Proc CSEE
– volume: 99
  start-page: 202
  year: 2016
  end-page: 220
  ident: b0090
  article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system
  publication-title: Energy
– volume: 199
  start-page: 89
  year: 2009
  end-page: 97
  ident: b0190
  article-title: Improving benders decomposition using a genetic algorithm
  publication-title: Eur J of Oper Res
– volume: 85
  start-page: 117
  year: 2017
  end-page: 129
  ident: b0080
  article-title: A novel thermal storage strategy for CCHP system based on energy demands and state of storage tank
  publication-title: Int J Electr Power Energy Syst
– volume: 10
  start-page: 848
  year: 2017
  ident: b0025
  article-title: Optimization of a solar-driven trigeneration system with nanofluid-based parabolic trough collectors
  publication-title: Energies
– volume: 57
  start-page: 17
  year: 2013
  end-page: 23
  ident: b0040
  article-title: Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation
  publication-title: Energy
– volume: 102
  start-page: 794
  year: 2013
  end-page: 802
  ident: b0165
  article-title: Optimal power flow and PGU capacity of CCHP systems using a matrix modeling approach
  publication-title: Appl Energy
– year: 2019,197.
  ident: b0145
  article-title: Multi-objective optimization of combined cooling, heating and power system integrated with solar and geothermal energies. Energy Convers
  publication-title: Manage
– volume: 42
  start-page: 2231
  year: 2010
  end-page: 2240
  ident: b0050
  article-title: Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty
  publication-title: Energy Build
– volume: 66
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0010
  article-title: Current situation and development tendency of CCHP systems in China
  publication-title: CIESC J
– volume: 39
  start-page: 46
  year: 2015
  end-page: 51
  ident: b0140
  article-title: Strategies evaluation and optimal allocation of combined cooling heating and power system with solar
  publication-title: Autom Electric Power Syst
– volume: 141
  start-page: 1750
  year: 2017
  end-page: 1763
  ident: b0220
  article-title: A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin
  publication-title: Energy
– volume: 32
  start-page: 8
  year: 2012
  end-page: 14
  ident: b0085
  article-title: Superstructure-based optimal planning of cogeneration systems with storage
  publication-title: Proc CSEE
– volume: 98
  start-page: 296
  year: 2016
  end-page: 307
  ident: b0170
  article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
  publication-title: Energy
– volume: 2
  start-page: 83
  year: 2017
  end-page: 90
  ident: b0180
  article-title: Optimal allocation and applicability analysis of distributed combined cooling-heating-power system
  publication-title: Power Syst Technol
– volume: 142
  start-page: 317
  year: 2015
  end-page: 327
  ident: b0020
  article-title: Energy and exergy analyses of an integrated CCHP system with biomass air gasification
  publication-title: Appl Energy
– volume: 91
  start-page: 156
  year: 2012
  end-page: 165
  ident: b0075
  article-title: Optimal option of distributed energy systems for building complexes in different climate zones in China
  publication-title: Appl Energy
– volume: 11
  start-page: 743
  year: 2018
  ident: b0115
  article-title: Multi-objective optimal design of renewable energy integrated CCHP system using PICEA-g
  publication-title: Energies
– volume: 35
  start-page: 3540
  year: 2010
  end-page: 3550
  ident: b0195
  article-title: Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system–a case study
  publication-title: Energy
– volume: 33
  start-page: 1252
  year: 2009
  end-page: 1265
  ident: b0015
  article-title: A review on energy, economical, and environmental benefits of the use of CHP systems for small commercial buildings for the North American climate
  publication-title: Int J Energy Res
– volume: 6
  start-page: 606
  year: 2008
  end-page: 610
  ident: b0095
  article-title: Influence of load composition on the optimized configuration of a combined cooling, heating and power (CCHP) cogeneration system
  publication-title: J Eng Therm Energy Power
– volume: 95
  start-page: 57
  year: 2015
  end-page: 69
  ident: b0205
  article-title: Multi-objectives optimization of energy efficiency measures in existing buildings
  publication-title: Energy Build
– volume: 6
  start-page: 579
  year: 2014
  end-page: 584
  ident: b0185
  article-title: Sub-regional value of benchmark discount rate in life-cycle cost analysis of construction project
  publication-title: J Hebei University (Natural Science Edition)
– volume: 57
  start-page: 58
  year: 2013
  end-page: 64
  ident: b0200
  article-title: Optimization of distributed generation capacities in buildings under uncertainty in load demand
  publication-title: Energy Build
– volume: 61
  start-page: 88
  year: 2013
  end-page: 97
  ident: b0045
  article-title: Design and optimization of CCHP system incorporated into kraft process, using Pinch Analysis with pressure drop consideration
  publication-title: Appl Therm Eng
– reference: Wang Q, Fang F. Optimal configuration of CCHP system based on energy, economical, and environmental considerations. Int Conf Intelligent Control and Information Processing, Harbin, China, 2011 pp. 489–94.
– volume: 108
  start-page: 10
  year: 2015
  end-page: 22
  ident: b0070
  article-title: Designing an optimal solar collector (orientation, type and size) for a hybrid-CCHP system in different climates
  publication-title: Energy Build
– volume: 53
  start-page: 387
  year: 2013
  end-page: 396
  ident: b0210
  article-title: An engineering approach to the optimal design of distributed energy systems in China
  publication-title: Appl Therm Eng
– volume: 39
  start-page: 7
  year: 2015
  end-page: 12
  ident: b0130
  article-title: Multi-objective optimization design and operation analysis of small biomass biogas combined cooling heating and power system
  publication-title: Autom Electric Power Syst
– volume: 85
  start-page: 654
  year: 2015
  end-page: 666
  ident: b0160
  article-title: An improved operation strategy of combined cooling heating and power system following electrical load
  publication-title: Energy
– volume: 68
  start-page: 444
  year: 2014
  ident: 10.1016/j.ijepes.2020.106236_b0155
  article-title: Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.057
– volume: 57
  start-page: 58
  year: 2013
  ident: 10.1016/j.ijepes.2020.106236_b0200
  article-title: Optimization of distributed generation capacities in buildings under uncertainty in load demand
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.10.031
– volume: 66
  start-page: 1
  issue: S2
  year: 2015
  ident: 10.1016/j.ijepes.2020.106236_b0010
  article-title: Current situation and development tendency of CCHP systems in China
  publication-title: CIESC J
– volume: 53
  start-page: 387
  issue: 2
  year: 2013
  ident: 10.1016/j.ijepes.2020.106236_b0210
  article-title: An engineering approach to the optimal design of distributed energy systems in China
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.01.067
– volume: 94
  start-page: 58
  year: 2012
  ident: 10.1016/j.ijepes.2020.106236_b0035
  article-title: Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.01.007
– volume: 39
  start-page: 7
  issue: 12
  year: 2015
  ident: 10.1016/j.ijepes.2020.106236_b0130
  article-title: Multi-objective optimization design and operation analysis of small biomass biogas combined cooling heating and power system
  publication-title: Autom Electric Power Syst
– volume: 33
  start-page: 1252
  issue: 14
  year: 2009
  ident: 10.1016/j.ijepes.2020.106236_b0015
  article-title: A review on energy, economical, and environmental benefits of the use of CHP systems for small commercial buildings for the North American climate
  publication-title: Int J Energy Res
  doi: 10.1002/er.1630
– volume: 11
  start-page: 743
  issue: 4
  year: 2018
  ident: 10.1016/j.ijepes.2020.106236_b0115
  article-title: Multi-objective optimal design of renewable energy integrated CCHP system using PICEA-g
  publication-title: Energies
  doi: 10.3390/en11040743
– volume: 57
  start-page: 17
  year: 2013
  ident: 10.1016/j.ijepes.2020.106236_b0040
  article-title: Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.014
– volume: 2
  start-page: 83
  year: 2017
  ident: 10.1016/j.ijepes.2020.106236_b0180
  article-title: Optimal allocation and applicability analysis of distributed combined cooling-heating-power system
  publication-title: Power Syst Technol
– volume: 85
  start-page: 117
  year: 2017
  ident: 10.1016/j.ijepes.2020.106236_b0080
  article-title: A novel thermal storage strategy for CCHP system based on energy demands and state of storage tank
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.08.008
– volume: 110
  start-page: 135
  year: 2016
  ident: 10.1016/j.ijepes.2020.106236_b0060
  article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.10.050
– volume: 61
  start-page: 88
  issue: 1
  year: 2013
  ident: 10.1016/j.ijepes.2020.106236_b0045
  article-title: Design and optimization of CCHP system incorporated into kraft process, using Pinch Analysis with pressure drop consideration
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.01.050
– volume: 29
  start-page: 16
  issue: 4
  year: 2011
  ident: 10.1016/j.ijepes.2020.106236_b0215
  article-title: Analysis on the price of the biogas for rural centralized biogas plant
  publication-title: China Biogas
– volume: 85
  start-page: 654
  year: 2015
  ident: 10.1016/j.ijepes.2020.106236_b0160
  article-title: An improved operation strategy of combined cooling heating and power system following electrical load
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.003
– volume: 101
  start-page: 752
  year: 2016
  ident: 10.1016/j.ijepes.2020.106236_b0055
  article-title: Multi-objective operation optimization of a Distributed Energy System for a large-scale utility customer
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.02.027
– volume: 199
  start-page: 89
  issue: 1
  year: 2009
  ident: 10.1016/j.ijepes.2020.106236_b0190
  article-title: Improving benders decomposition using a genetic algorithm
  publication-title: Eur J of Oper Res
  doi: 10.1016/j.ejor.2008.10.033
– volume: 204
  start-page: 1299
  year: 2017
  ident: 10.1016/j.ijepes.2020.106236_b0105
  article-title: Multi-objective design optimization of distributed energysystems through cost and exergy assessments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.105
– volume: 141
  start-page: 1750
  year: 2017
  ident: 10.1016/j.ijepes.2020.106236_b0220
  article-title: A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.130
– volume: 54
  start-page: 26
  year: 2014
  ident: 10.1016/j.ijepes.2020.106236_b0005
  article-title: Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.06.028
– volume: 142
  start-page: 317
  year: 2015
  ident: 10.1016/j.ijepes.2020.106236_b0020
  article-title: Energy and exergy analyses of an integrated CCHP system with biomass air gasification
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.085
– volume: 32
  start-page: 8
  issue: 32
  year: 2012
  ident: 10.1016/j.ijepes.2020.106236_b0085
  article-title: Superstructure-based optimal planning of cogeneration systems with storage
  publication-title: Proc CSEE
– volume: 6
  start-page: 579
  year: 2014
  ident: 10.1016/j.ijepes.2020.106236_b0185
  article-title: Sub-regional value of benchmark discount rate in life-cycle cost analysis of construction project
  publication-title: J Hebei University (Natural Science Edition)
– volume: 95
  start-page: 57
  year: 2015
  ident: 10.1016/j.ijepes.2020.106236_b0205
  article-title: Multi-objectives optimization of energy efficiency measures in existing buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.11.003
– volume: 210
  start-page: 1126
  year: 2018
  ident: 10.1016/j.ijepes.2020.106236_b0065
  article-title: A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.038
– ident: 10.1016/j.ijepes.2020.106236_b0175
  doi: 10.1109/ICICIP.2011.6008292
– volume: 10
  start-page: 848
  issue: 7
  year: 2017
  ident: 10.1016/j.ijepes.2020.106236_b0025
  article-title: Optimization of a solar-driven trigeneration system with nanofluid-based parabolic trough collectors
  publication-title: Energies
  doi: 10.3390/en10070848
– volume: 32
  start-page: 82
  issue: 20
  year: 2012
  ident: 10.1016/j.ijepes.2020.106236_b0135
  article-title: Multi-objective optimization design and operation strategy analysis of a solar combined cooling heating and power system
  publication-title: Proc CSEE
– volume: 6
  start-page: 606
  year: 2008
  ident: 10.1016/j.ijepes.2020.106236_b0095
  article-title: Influence of load composition on the optimized configuration of a combined cooling, heating and power (CCHP) cogeneration system
  publication-title: J Eng Therm Energy Power
– volume: 42
  start-page: 2231
  issue: 11
  year: 2010
  ident: 10.1016/j.ijepes.2020.106236_b0050
  article-title: Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.07.019
– volume: 91
  start-page: 156
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2020.106236_b0075
  article-title: Optimal option of distributed energy systems for building complexes in different climate zones in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.044
– volume: 108
  start-page: 10
  year: 2015
  ident: 10.1016/j.ijepes.2020.106236_b0070
  article-title: Designing an optimal solar collector (orientation, type and size) for a hybrid-CCHP system in different climates
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.08.056
– volume: 169
  start-page: 138
  year: 2016
  ident: 10.1016/j.ijepes.2020.106236_b0120
  article-title: Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.037
– volume: 149
  start-page: 631
  year: 2017
  ident: 10.1016/j.ijepes.2020.106236_b0110
  article-title: Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.07.048
– volume: 99
  start-page: 202
  year: 2016
  ident: 10.1016/j.ijepes.2020.106236_b0090
  article-title: Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.060
– year: 2019197
  ident: 10.1016/j.ijepes.2020.106236_b0145
  article-title: Multi-objective optimization of combined cooling, heating and power system integrated with solar and geothermal energies. Energy Convers
  publication-title: Manage
– volume: 112
  start-page: 673
  year: 2013
  ident: 10.1016/j.ijepes.2020.106236_b0030
  article-title: Full chain energy performance for a combined cooling, heating and power system running with methanol and solar energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.11.018
– volume: 102
  start-page: 794
  year: 2013
  ident: 10.1016/j.ijepes.2020.106236_b0165
  article-title: Optimal power flow and PGU capacity of CCHP systems using a matrix modeling approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.041
– volume: 174
  start-page: 647
  year: 2019
  ident: 10.1016/j.ijepes.2020.106236_b0100
  article-title: Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.001
– volume: 110
  start-page: 135
  year: 2016
  ident: 10.1016/j.ijepes.2020.106236_b0125
  article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.10.050
– volume: 98
  start-page: 296
  year: 2016
  ident: 10.1016/j.ijepes.2020.106236_b0170
  article-title: Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.027
– volume: 35
  start-page: 3540
  issue: 9
  year: 2010
  ident: 10.1016/j.ijepes.2020.106236_b0195
  article-title: Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system–a case study
  publication-title: Energy
  doi: 10.1016/j.energy.2010.04.002
– volume: 39
  start-page: 46
  issue: 21
  year: 2015
  ident: 10.1016/j.ijepes.2020.106236_b0140
  article-title: Strategies evaluation and optimal allocation of combined cooling heating and power system with solar
  publication-title: Autom Electric Power Syst
– volume: 146
  start-page: 2700
  year: 2020
  ident: 10.1016/j.ijepes.2020.106236_b0150
  article-title: The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.07.011
SSID ssj0007942
Score 2.4375813
Snippet •Combined cooling, heating, and power (CCHP) can improve energy efficiency.•Expanded with renewable energy, CCHP systems can provide a variety of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106236
SubjectTerms Combined cooling, heating, and power system
Multi-objective mixed integer nonlinear programming
Off-design characteristics
Two-stage design method
Title Nested optimization design for combined cooling, heating, and power system coupled with solar and biomass energy
URI https://dx.doi.org/10.1016/j.ijepes.2020.106236
Volume 123
WOSCitedRecordID wos000572831700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYh3cP2MNZdWC8bethb6uHIdmQ_ltKxlRH20EHejGxJTULmmDYpZb-oP7Pn6MiO25TdYC_GCCkKOp_P-SSdC2MfhBlGsSqKoBhqG8RGFYHC-3cwLTrRttQipmITcjxOJ5PsW69328TCXC9kVaU3N1n9X0UNbSBsDJ39C3G3PwoN8A5ChyeIHZ5_JPixO8EcLEEX_PBBlgPt_DScSyFMCZthg8FsWK_HfemokP2ryxuAldN8jmfotq4XjY_6FW6EXR8M2wfePTAudrBLce-fMXYyU1DFHQcKmgFRR-P9ZC2_b4-xvwJ6Lx5p_Tmdba6zqOL8cqvbydRUF9P1rHuyIR56ibQhNxv_JjoBFViOgq7CDWntVGYYkiDvqXWKY94yEXRaMf84m5vaYMJ2gY3AAh9k5HY2Hn3fhGN9wHOTEI39jpBJlvbZzvGX08lZa_VBrwlyl6W_14RpOl_C7bkep0EdanP-gj33exJ-TFjaZT1TvWTPOpkqX7GaUMW7qOKEKg6o4g2quEfVEfeYOuKAFu7kzUnI3COKI6K4Q5Tr4xHFCRGv2fdPp-cnnwNfrCMoYde5Cmxk01SFwM9ToxITF6NEg0TMUKgSjEYExFhEdliUoB2sycBORMJoHSktQVekNnrD-tWyMm8ZD21oR6M4LJVSsRRGKeDQmcLEUqmU2u6xqFm7vPSZ7LGgyiJvXBbnOa14jiue04rvsaAdVVMml9_0l41Ycs9GiWXmgKRfjtz_55EH7OnmQzhk_dXl2rxjT8rr1ezq8r2H3B3dk7Xs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nested+optimization+design+for+combined+cooling%2C+heating%2C+and+power+system+coupled+with+solar+and+biomass+energy&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Zhang%2C+Liang&rft.au=Zhang%2C+Lizhi&rft.au=Sun%2C+Bo&rft.au=Zhang%2C+Chenghui&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=123&rft_id=info:doi/10.1016%2Fj.ijepes.2020.106236&rft.externalDocID=S0142061519325062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon