Ultimate Greedy Approximation of Independent Sets in Subcubic Graphs

We study the approximability of the maximum size independent set (MIS) problem in bounded degree graphs. This is one of the most classic and widely studied NP-hard optimization problems. It is known for its inherent hardness of approximation. We focus on the well known minimum-degree greedy algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 86; H. 11; S. 3518 - 3578
Hauptverfasser: Krysta, Piotr, Mari, Mathieu, Zhi, Nan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2024
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the approximability of the maximum size independent set (MIS) problem in bounded degree graphs. This is one of the most classic and widely studied NP-hard optimization problems. It is known for its inherent hardness of approximation. We focus on the well known minimum-degree greedy algorithm for this problem. This algorithm iteratively chooses a minimum degree vertex in the graph, adds it to the solution and removes its neighbors, until the remaining graph is empty. The approximation ratios of this algorithm have been widely studied, where it is augmented with an advice that tells the greedy algorithm which minimum degree vertex to choose if it is not unique. Our main contribution is a new mathematical theory for the design of such greedy algorithms for MIS with efficiently computable advice and for the analysis of their approximation ratios. Using this theory we obtain the ultimate approximation ratio of 5/4 for greedy algorithms on graphs with maximum degree 3, which completely solves an open problem from the paper by Halldórsson and Yoshihara (in: Staples, Eades, Katoh, Moffat (eds) Algorithms and computations—ISAAC ’95, in 2026 LNCS, Springer, Berlin, Heidelberg, 1995) . Our algorithm is the fastest currently known algorithm for MIS with this approximation ratio on such graphs. We also obtain a simple and short proof of the ( Δ + 2 ) / 3 -approximation ratio of any greedy algorithms on graphs with maximum degree Δ , the result proved previously by Halldórsson and Radhakrishnan (Nord J Comput 1:475–492, 1994) . We almost match this ratio by showing a lower bound of ( Δ + 1 ) / 3 on the ratio of a greedy algorithm that can use an advice. We apply our new algorithm to the minimum vertex cover problem on graphs with maximum degree 3 to obtain a substantially faster 6/5-approximation algorithm than the one currently known. We complement our algorithmic, upper bound results with lower bound results, which show that the problem of designing good advice for greedy algorithms for MIS is computationally hard and even hard to approximate on various classes of graphs. These results significantly improve on the previously known hardness results. Moreover, these results suggest that obtaining the upper bound results on the design and analysis of the greedy advice is non-trivial.
AbstractList We study the approximability of the maximum size independent set (MIS) problem in bounded degree graphs. This is one of the most classic and widely studied NP-hard optimization problems. It is known for its inherent hardness of approximation. We focus on the well known minimum-degree greedy algorithm for this problem. This algorithm iteratively chooses a minimum degree vertex in the graph, adds it to the solution and removes its neighbors, until the remaining graph is empty. The approximation ratios of this algorithm have been widely studied, where it is augmented with an advice that tells the greedy algorithm which minimum degree vertex to choose if it is not unique. Our main contribution is a new mathematical theory for the design of such greedy algorithms for MIS with efficiently computable advice and for the analysis of their approximation ratios. Using this theory we obtain the ultimate approximation ratio of 5/4 for greedy algorithms on graphs with maximum degree 3, which completely solves an open problem from the paper by Halldórsson and Yoshihara (in: Staples, Eades, Katoh, Moffat (eds) Algorithms and computations—ISAAC ’95, in 2026 LNCS, Springer, Berlin, Heidelberg, 1995) . Our algorithm is the fastest currently known algorithm for MIS with this approximation ratio on such graphs. We also obtain a simple and short proof of the $(\Delta+2)/3$-approximation ratio of any greedy algorithms on graphs with maximum degree $\Delta$, the result proved previously by Halldórsson and Radhakrishnan (Nord J Comput 1:475–492, 1994) . We almost match this ratio by showing a lower bound of $(\Delta+1)/3$ on the ratio of a greedy algorithm that can use an advice. We apply our new algorithm to the minimum vertex cover problem on graphs with maximum degree 3 to obtain a substantially faster 6/5-approximation algorithm than the one currently known. We complement our algorithmic, upper bound results with lower bound results, which show that the problem of designing good advice for greedy algorithms for MIS is computationally hard and even hard to approximate on various classes of graphs. These results significantly improve on the previously known hardness results. Moreover, these results suggest that obtaining the upper bound results on the design and analysis of the greedy advice is non-trivial.
We study the approximability of the maximum size independent set (MIS) problem in bounded degree graphs. This is one of the most classic and widely studied NP-hard optimization problems. It is known for its inherent hardness of approximation. We focus on the well known minimum-degree greedy algorithm for this problem. This algorithm iteratively chooses a minimum degree vertex in the graph, adds it to the solution and removes its neighbors, until the remaining graph is empty. The approximation ratios of this algorithm have been widely studied, where it is augmented with an advice that tells the greedy algorithm which minimum degree vertex to choose if it is not unique. Our main contribution is a new mathematical theory for the design of such greedy algorithms for MIS with efficiently computable advice and for the analysis of their approximation ratios. Using this theory we obtain the ultimate approximation ratio of 5/4 for greedy algorithms on graphs with maximum degree 3, which completely solves an open problem from the paper by Halldórsson and Yoshihara (in: Staples, Eades, Katoh, Moffat (eds) Algorithms and computations—ISAAC ’95, in 2026 LNCS, Springer, Berlin, Heidelberg, 1995) . Our algorithm is the fastest currently known algorithm for MIS with this approximation ratio on such graphs. We also obtain a simple and short proof of the ( Δ + 2 ) / 3 -approximation ratio of any greedy algorithms on graphs with maximum degree Δ , the result proved previously by Halldórsson and Radhakrishnan (Nord J Comput 1:475–492, 1994) . We almost match this ratio by showing a lower bound of ( Δ + 1 ) / 3 on the ratio of a greedy algorithm that can use an advice. We apply our new algorithm to the minimum vertex cover problem on graphs with maximum degree 3 to obtain a substantially faster 6/5-approximation algorithm than the one currently known. We complement our algorithmic, upper bound results with lower bound results, which show that the problem of designing good advice for greedy algorithms for MIS is computationally hard and even hard to approximate on various classes of graphs. These results significantly improve on the previously known hardness results. Moreover, these results suggest that obtaining the upper bound results on the design and analysis of the greedy advice is non-trivial.
We study the approximability of the maximum size independent set (MIS) problem in bounded degree graphs. This is one of the most classic and widely studied NP-hard optimization problems. It is known for its inherent hardness of approximation. We focus on the well known minimum-degree greedy algorithm for this problem. This algorithm iteratively chooses a minimum degree vertex in the graph, adds it to the solution and removes its neighbors, until the remaining graph is empty. The approximation ratios of this algorithm have been widely studied, where it is augmented with an advice that tells the greedy algorithm which minimum degree vertex to choose if it is not unique. Our main contribution is a new mathematical theory for the design of such greedy algorithms for MIS with efficiently computable advice and for the analysis of their approximation ratios. Using this theory we obtain the ultimate approximation ratio of 5/4 for greedy algorithms on graphs with maximum degree 3, which completely solves an open problem from the paper by Halldórsson and Yoshihara (in: Staples, Eades, Katoh, Moffat (eds) Algorithms and computations—ISAAC ’95, in 2026 LNCS, Springer, Berlin, Heidelberg, 1995) . Our algorithm is the fastest currently known algorithm for MIS with this approximation ratio on such graphs. We also obtain a simple and short proof of the (Δ+2)/3-approximation ratio of any greedy algorithms on graphs with maximum degree Δ, the result proved previously by Halldórsson and Radhakrishnan (Nord J Comput 1:475–492, 1994) . We almost match this ratio by showing a lower bound of (Δ+1)/3 on the ratio of a greedy algorithm that can use an advice. We apply our new algorithm to the minimum vertex cover problem on graphs with maximum degree 3 to obtain a substantially faster 6/5-approximation algorithm than the one currently known. We complement our algorithmic, upper bound results with lower bound results, which show that the problem of designing good advice for greedy algorithms for MIS is computationally hard and even hard to approximate on various classes of graphs. These results significantly improve on the previously known hardness results. Moreover, these results suggest that obtaining the upper bound results on the design and analysis of the greedy advice is non-trivial.
Author Krysta, Piotr
Zhi, Nan
Mari, Mathieu
Author_xml – sequence: 1
  givenname: Piotr
  surname: Krysta
  fullname: Krysta, Piotr
  organization: Augusta University, University of Liverpool
– sequence: 2
  givenname: Mathieu
  orcidid: 0000-0001-8074-0241
  surname: Mari
  fullname: Mari, Mathieu
  email: mathieu.mari@lirmm.fr
  organization: LIRMM, Université de Montpellier, CNRS
– sequence: 3
  givenname: Nan
  surname: Zhi
  fullname: Zhi, Nan
  organization: University of Liverpool
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-04834926$$DView record in HAL
BookMark eNp9kM9LwzAYhoNMcJv-A54KHiX6pfmatMcxdRMGHjbPoT8S19GlNenE_fdmVvTmJYHwvC9P3gkZ2dZqQq4Z3DEAee8BMOEUYqTAYpFSeUbGDHlMIUE2ImNgMqUomLwgE-93ECiZiTF5eG36ep_3Olo4ratjNOs6136enurWRq2Jnm2lOx0O20dr3fuottH6UJSHoi5DKO-2_pKcm7zx-urnnpLN0-NmvqSrl8XzfLaiJQfRUxPLAjNjuEwTBKYzlElVAJRFkEc0wR4LmYJBlEXOyiQ1VWZyURmRVCzjU3I71G7zRnUuOLqjavNaLWcr1dRuv1eAKccsFh8s0DcDHf7zftC-V7v24GzwU5wxwWMGkgcqHqjStd47bX6LGajTtGqYVgU59T2tkiHEh5APsH3T7q_6n9QXEvJ75Q
Cites_doi 10.1007/BF01994876
10.1002/rsa.3240050504
10.4086/toc.2011.v007a003
10.1142/S0129054118500168
10.1016/S0020-0190(96)00208-6
10.1007/BF01580444
10.1137/S089548010240415X
10.1007/BF02523693
10.1016/S0893-9659(97)00044-X
10.1016/0166-218X(83)90080-X
10.1016/0012-365X(83)90273-X
10.1016/S0304-3975(98)00158-3
10.1007/978-3-540-27796-5_5
10.1137/0403025
10.1007/BFb0015418
10.1016/0095-8956(75)90089-1
10.1006/jcss.2000.1727
10.1016/0304-3975(76)90059-1
10.1137/S0097539700381097
10.1137/S0097539795286612
10.1145/2811255
10.1007/BF01874388
10.1007/s002240000113
10.1145/195058.195221
10.1007/978-3-540-45077-1_4
10.1007/978-1-4684-2001-2_9
10.1145/2746539.2746607
10.1007/BF02392825
10.1007/3-540-58218-5_18
10.1145/1132516.1132612
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s00453-024-01268-7
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 3578
ExternalDocumentID oai:HAL:lirmm-04834926v1
10_1007_s00453_024_01268_7
GrantInformation_xml – fundername: Network Sciences and Technologies
– fundername: IDEAS NCBR
– fundername: European Research Council
  grantid: 772346
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
ID FETCH-LOGICAL-c306t-f27b49ff3785401e9475db00cb04544f0244b780f447ba1c58fd9fa6df65d193
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310599300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Wed Dec 10 08:49:12 EST 2025
Sun Nov 09 06:35:09 EST 2025
Sat Nov 29 02:20:34 EST 2025
Fri Feb 21 02:37:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Greedy algorithms
68Q25
Bounded degree graphs
Approximation algorithms
Independent set problem
68W25
90C27
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f27b49ff3785401e9475db00cb04544f0244b780f447ba1c58fd9fa6df65d193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8074-0241
PQID 3116321073
PQPubID 2043795
PageCount 61
ParticipantIDs hal_primary_oai_HAL_lirmm_04834926v1
proquest_journals_3116321073
crossref_primary_10_1007_s00453_024_01268_7
springer_journals_10_1007_s00453_024_01268_7
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Darmann, Döcker, Dorn (CR12) 2018; 29
Simon (CR36) 1990; 3
CR19
CR18
McDiarmid (CR33) 1984; 1
CR39
Halldórsson, Radhakrishnan (CR22) 1994; 1
Halldórsson, Radhakrishnan (CR23) 1997; 18
Khanna, Motwani, Sudan, Vazirani (CR31) 1998; 28
Boppana, Halldórsson (CR8) 1992; 32
Halperin (CR25) 2002; 31
Demange, Paschos (CR13) 1997; 10
CR10
Nemhauser, Trotter (CR34) 1975; 8
CR30
Frieze, Suen (CR16) 1994; 5
Impagliazzo, Paturi (CR28) 2001; 62
Lovász (CR32) 1975; 19
Feige (CR15) 2004; 18
Erdős (CR14) 1970; 21
Hochbaum (CR26) 1983; 6
Bodlaender, Thilikos, Yamazaki (CR7) 1997; 61
Shearer (CR35) 1983; 46
Garey, Johnson, Stockmeyer (CR17) 1976; 1
Wei (CR38) 1981
Berman, Fujito (CR5) 1999; 32
CR3
CR6
Berge (CR4) 1973
CR29
Alimonti, Kann (CR1) 2000; 237
CR27
Chan (CR9) 2016; 63
CR21
CR20
Halldórsson, Yoshihara, Staples, Eades, Katoh, Moffat (CR24) 1995
Chlebík, Chlebíková, Královic, Sýkora (CR11) 2004
Austrin, Khot, Safra (CR2) 2011; 7
Turán (CR37) 1941; 48
S Khanna (1268_CR31) 1998; 28
1268_CR21
C McDiarmid (1268_CR33) 1984; 1
P Alimonti (1268_CR1) 2000; 237
1268_CR20
P Erdős (1268_CR14) 1970; 21
MM Halldórsson (1268_CR22) 1994; 1
P Austrin (1268_CR2) 2011; 7
DS Hochbaum (1268_CR26) 1983; 6
U Feige (1268_CR15) 2004; 18
JB Shearer (1268_CR35) 1983; 46
HL Bodlaender (1268_CR7) 1997; 61
M Chlebík (1268_CR11) 2004
L Lovász (1268_CR32) 1975; 19
MM Halldórsson (1268_CR24) 1995
R Impagliazzo (1268_CR28) 2001; 62
E Halperin (1268_CR25) 2002; 31
P Turán (1268_CR37) 1941; 48
1268_CR29
1268_CR27
AM Frieze (1268_CR16) 1994; 5
C Berge (1268_CR4) 1973
1268_CR10
A Darmann (1268_CR12) 2018; 29
R Boppana (1268_CR8) 1992; 32
1268_CR30
SO Chan (1268_CR9) 2016; 63
MM Halldórsson (1268_CR23) 1997; 18
GL Nemhauser (1268_CR34) 1975; 8
1268_CR3
P Berman (1268_CR5) 1999; 32
1268_CR6
V Wei (1268_CR38) 1981
M Demange (1268_CR13) 1997; 10
M Garey (1268_CR17) 1976; 1
HU Simon (1268_CR36) 1990; 3
1268_CR18
1268_CR19
1268_CR39
References_xml – volume: 32
  start-page: 180
  year: 1992
  end-page: 196
  ident: CR8
  article-title: Approximating maximum independent sets by excluding subgraphs
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01994876
– ident: CR18
– ident: CR39
– volume: 5
  start-page: 649
  year: 1994
  end-page: 664
  ident: CR16
  article-title: On the independence number of random cubic graphs
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.3240050504
– volume: 7
  start-page: 27
  year: 2011
  end-page: 43
  ident: CR2
  article-title: Inapproximability of vertex cover and independent set in bounded degree graphs
  publication-title: Theory Comput.
  doi: 10.4086/toc.2011.v007a003
– ident: CR30
– volume: 29
  start-page: 979
  year: 2018
  end-page: 993
  ident: CR12
  article-title: The monotone satisfiability problem with bounded variable appearances
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054118500168
– ident: CR10
– volume: 21
  start-page: 249
  year: 1970
  end-page: 251
  ident: CR14
  article-title: On the graph theorem of Turán
  publication-title: Mat. Lapok
– volume: 61
  start-page: 101
  year: 1997
  end-page: 106
  ident: CR7
  article-title: It is hard to know when greedy is good for finding independent sets
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(96)00208-6
– ident: CR6
– ident: CR29
– year: 1973
  ident: CR4
  publication-title: Graphs and hypergraphs
– volume: 8
  start-page: 232
  year: 1975
  end-page: 248
  ident: CR34
  article-title: Vertex packings: structural properties and algorithms
  publication-title: Math. Program.
  doi: 10.1007/BF01580444
– volume: 18
  start-page: 219
  year: 2004
  end-page: 225
  ident: CR15
  article-title: Approximating maximum clique by removing subgraphs
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S089548010240415X
– ident: CR27
– volume: 18
  start-page: 145
  year: 1997
  end-page: 163
  ident: CR23
  article-title: Greed is good: approximating independent sets in sparse and bounded-degree graphs
  publication-title: Algorithmica
  doi: 10.1007/BF02523693
– volume: 10
  start-page: 105
  year: 1997
  end-page: 110
  ident: CR13
  article-title: Improved approximations for maximum independent set via approximation chains
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(97)00044-X
– ident: CR21
– ident: CR19
– volume: 6
  start-page: 243
  year: 1983
  end-page: 254
  ident: CR26
  article-title: Efficient bounds for the stable set, vertex cover and set packing problems
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(83)90080-X
– volume: 46
  start-page: 83
  year: 1983
  end-page: 87
  ident: CR35
  article-title: A note on the independence number of triangle-free graphs
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(83)90273-X
– volume: 237
  start-page: 123
  year: 2000
  end-page: 134
  ident: CR1
  article-title: Some APX-completeness results for cubic graphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00158-3
– ident: CR3
– start-page: 47
  year: 2004
  end-page: 56
  ident: CR11
  article-title: On approximability of the independent set problem for low degree graphs
  publication-title: Structural information and communication complexity
  doi: 10.1007/978-3-540-27796-5_5
– volume: 3
  start-page: 294
  year: 1990
  end-page: 310
  ident: CR36
  article-title: On approximate solutions for combinatorial optimization problems
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0403025
– start-page: 152
  year: 1995
  end-page: 161
  ident: CR24
  article-title: Greedy approximations of independent sets in low degree graphs
  publication-title: Algorithms and computations–ISAAC ’95, in LNCS
  doi: 10.1007/BFb0015418
– volume: 19
  start-page: 269
  year: 1975
  end-page: 271
  ident: CR32
  article-title: Three short proofs in graph theory
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(75)90089-1
– year: 1981
  ident: CR38
  publication-title: A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum, 81–11217-9
– volume: 62
  start-page: 367
  year: 2001
  end-page: 375
  ident: CR28
  article-title: On the complexity of k-sat
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1727
– volume: 1
  start-page: 237
  year: 1976
  end-page: 267
  ident: CR17
  article-title: Some simplified NP-complete graph problems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(76)90059-1
– volume: 31
  start-page: 1608
  year: 2002
  end-page: 1623
  ident: CR25
  article-title: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539700381097
– volume: 48
  start-page: 436
  year: 1941
  end-page: 452
  ident: CR37
  article-title: An extremal problem in graph theory
  publication-title: Mat. Fiz. Lapok
– volume: 28
  start-page: 164
  year: 1998
  end-page: 191
  ident: CR31
  article-title: On syntactic versus computational views of approximability
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795286612
– volume: 63
  start-page: 1
  year: 2016
  end-page: 32
  ident: CR9
  article-title: Approximation resistance from pairwise-independent subgroups
  publication-title: J. ACM
  doi: 10.1145/2811255
– volume: 1
  start-page: 183
  year: 1984
  end-page: 200
  ident: CR33
  article-title: Colouring random graphs
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF01874388
– volume: 1
  start-page: 475
  year: 1994
  end-page: 492
  ident: CR22
  article-title: Improved approximations of independent sets in bounded-degree graphs via subgraph removal
  publication-title: Nord. J. Comput.
– ident: CR20
– volume: 32
  start-page: 115
  year: 1999
  end-page: 132
  ident: CR5
  article-title: On approximation properties of the independent set problem for low degree graphs
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s002240000113
– volume: 32
  start-page: 180
  year: 1992
  ident: 1268_CR8
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01994876
– volume: 6
  start-page: 243
  year: 1983
  ident: 1268_CR26
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(83)90080-X
– volume: 8
  start-page: 232
  year: 1975
  ident: 1268_CR34
  publication-title: Math. Program.
  doi: 10.1007/BF01580444
– volume: 1
  start-page: 475
  year: 1994
  ident: 1268_CR22
  publication-title: Nord. J. Comput.
– volume: 1
  start-page: 183
  year: 1984
  ident: 1268_CR33
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF01874388
– volume: 7
  start-page: 27
  year: 2011
  ident: 1268_CR2
  publication-title: Theory Comput.
  doi: 10.4086/toc.2011.v007a003
– ident: 1268_CR20
  doi: 10.1145/195058.195221
– ident: 1268_CR19
– volume: 18
  start-page: 145
  year: 1997
  ident: 1268_CR23
  publication-title: Algorithmica
  doi: 10.1007/BF02523693
– volume: 19
  start-page: 269
  year: 1975
  ident: 1268_CR32
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(75)90089-1
– volume: 5
  start-page: 649
  year: 1994
  ident: 1268_CR16
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.3240050504
– volume: 61
  start-page: 101
  year: 1997
  ident: 1268_CR7
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(96)00208-6
– ident: 1268_CR10
  doi: 10.1007/978-3-540-45077-1_4
– volume: 48
  start-page: 436
  year: 1941
  ident: 1268_CR37
  publication-title: Mat. Fiz. Lapok
– volume: 18
  start-page: 219
  year: 2004
  ident: 1268_CR15
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S089548010240415X
– ident: 1268_CR29
– start-page: 152
  volume-title: Algorithms and computations–ISAAC ’95, in LNCS
  year: 1995
  ident: 1268_CR24
  doi: 10.1007/BFb0015418
– ident: 1268_CR30
  doi: 10.1007/978-1-4684-2001-2_9
– volume: 29
  start-page: 979
  year: 2018
  ident: 1268_CR12
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054118500168
– volume-title: Graphs and hypergraphs
  year: 1973
  ident: 1268_CR4
– volume: 46
  start-page: 83
  year: 1983
  ident: 1268_CR35
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(83)90273-X
– volume: 63
  start-page: 1
  year: 2016
  ident: 1268_CR9
  publication-title: J. ACM
  doi: 10.1145/2811255
– start-page: 47
  volume-title: Structural information and communication complexity
  year: 2004
  ident: 1268_CR11
  doi: 10.1007/978-3-540-27796-5_5
– volume: 31
  start-page: 1608
  year: 2002
  ident: 1268_CR25
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539700381097
– volume: 3
  start-page: 294
  year: 1990
  ident: 1268_CR36
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0403025
– ident: 1268_CR3
  doi: 10.1145/2746539.2746607
– volume: 62
  start-page: 367
  year: 2001
  ident: 1268_CR28
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1727
– ident: 1268_CR27
  doi: 10.1007/BF02392825
– ident: 1268_CR18
– volume: 28
  start-page: 164
  year: 1998
  ident: 1268_CR31
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795286612
– volume-title: A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum, 81–11217-9
  year: 1981
  ident: 1268_CR38
– volume: 1
  start-page: 237
  year: 1976
  ident: 1268_CR17
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(76)90059-1
– ident: 1268_CR6
– volume: 10
  start-page: 105
  year: 1997
  ident: 1268_CR13
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(97)00044-X
– ident: 1268_CR21
  doi: 10.1007/3-540-58218-5_18
– ident: 1268_CR39
  doi: 10.1145/1132516.1132612
– volume: 21
  start-page: 249
  year: 1970
  ident: 1268_CR14
  publication-title: Mat. Lapok
– volume: 32
  start-page: 115
  year: 1999
  ident: 1268_CR5
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s002240000113
– volume: 237
  start-page: 123
  year: 2000
  ident: 1268_CR1
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00158-3
SSID ssj0012796
Score 2.3896751
Snippet We study the approximability of the maximum size independent set (MIS) problem in bounded degree graphs. This is one of the most classic and widely studied...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3518
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Design analysis
Graphs
Greedy algorithms
Hardness
Lower bounds
Mathematics of Computing
Staples
Theory of Computation
Upper bounds
Title Ultimate Greedy Approximation of Independent Sets in Subcubic Graphs
URI https://link.springer.com/article/10.1007/s00453-024-01268-7
https://www.proquest.com/docview/3116321073
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04834926
Volume 86
WOSCitedRecordID wos001310599300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4MCF8RSDgXLYDSqtbbq0xwmYhjRNSBtot6hpEq3SXlq7Cf49TteWh-AA56ZxZCfxZ9n-AtD0paY2E8xiUkuLCr9lhUI4VtCWDm4H6jlRxjPbZ4OBPx4HT3lTWFJUuxcpyeymLpvdDPowOUdTNeG0fYtVYNczbDMmRh--lLkDlJFlKG2Mjyg66LxV5uc5vrijysQUQ35Cmt-So5nP6db-t9pDOMgxJulsN8UR7Kj5MdSK9xtIfpxP4P55msaIWBUx1TfyjXQMwfhrvO1mJAtNHstHclMyVGlC4jnBqyZaizjCn8LlJDmFUfdhdNez8lcVrAjDg9TSDhM00NplPqI1WwWUeRIPXyQMGx_VuGQqmN_SlDIR2pHnaxnosC1125MI986gOl_M1TkQl6mIBcpzPSqoo5gIpEt1EOLELsadug43hW75csudwUuW5Ew_HIXxTD-c1aGJ6i8HGtrrXqfPp_FqNuOG-N5QG27sOjQK-_D8uCXctRFWYvDK3DrcFvb4-Py70Iu_Db-EfceYNOtFbEA1Xa3VFexFmzROVtfZNnwH9rHUVQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIMGFN2IwIAduUIm26dIeJ2DaxJiQGGi3qGkSrdJeWrsJ_j1O15aH4ADnpnHkxMln2f4McOFLTW0mmMWklhYV_rUVCuFYQV06eByo50QZz2yHdbt-vx885kVhSZHtXoQks5u6LHYz6MPEHE3WhFP3LbYKa9S02TE--tNLGTtAGVmE0kb_iOIDnZfK_DzHl-dodWCSIT8hzW_B0ezNaW7_b7U7sJVjTNJYHopdWFHjPdgu-jeQ3Jz34fZ5mMaIWBUx2TfyjTQMwfhrvKxmJBNN2mWT3JQ8qTQh8ZjgVRPNRRzhT-F0kBxAr3nXu2lZeVcFK0L3ILW0wwQNtHaZj2jNVgFlnkTji4Rh46Mal0wF8681pUyEduT5WgY6rEtd9yTCvUOojCdjdQTEZSpigfJcjwrqKCYC6VIdhDixi36nrsJloVs-XXJn8JIlOdMPR2E80w9nVbhA9ZcDDe11q9Hhw3g2GnFDfG-oDRd2FWrF_vDc3BLu2ggr0XllbhWuiv34-Py70OO_DT-HjVbvocM77e79CWw6ZnuzusQaVNLZXJ3CerRI42R2lh3Jd_QK1zk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbYQIgLb8R45rAbVFvbdGmPEzAxMU2IDbRb1DSJVgnKtJUJ_j1O15aH4IA4N42j2E4-y_YXgLovNbWZYBaTWlpU-E0rFMKxgpZ00Byo50QZz2yP9fv-aBTcfuriz6rdi5TkoqfBsDQlaWMidaNsfDNIxOQfTQWF0_ItVoFlipGMKeq6GzyUeQSUl2UrbYyVKF7WedvMz3N8uZoqY1MY-Ql1fkuUZvdPZ-P_K9-E9Rx7kvbCWLZgSSXbsFG860ByN9-By_vHNEYkq4ipypFvpG2Ix1_jRZcjedakWz6em5KBSmckTggeQdGLiCP8KZyMZ7sw7FwNL66t_LUFK8KwIbW0wwQNtHaZjyjOVgFlnkSnjIRh6aMal0wF85uaUiZCO_J8LQMdtqRueRJh4B5Uk-dE7QNxmYpYoDzXo4I6iolAulQHIU7sYjyqa3BW7DOfLDg1eMmenO0PR2E82x_OalBHVZQDDR32dbvHH-Pp0xM3hPiG8nBu1-Co0BXP3XDGXRvhJga1zK3BeaGbj8-_Cz342_BTWL297PBet39zCGuO0W7WrngE1XT6oo5hJZqn8Wx6klnnO6Ll4B0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultimate+Greedy+Approximation+of+Independent+Sets+in+Subcubic+Graphs&rft.jtitle=Algorithmica&rft.au=Krysta+Piotr&rft.au=Mathieu%2C+Mari&rft.au=Zhi+Nan&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=86&rft.issue=11&rft.spage=3518&rft.epage=3578&rft_id=info:doi/10.1007%2Fs00453-024-01268-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon